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Abstract: The existing possibilities for modeling the kinetics of supercritical processes at the molec-
ular level are considered from the point of view that the Second Law of thermodynamics must be
fulfilled. The only approach that ensures the fulfillment of the Second Law of thermodynamics is the
molecular theory based on the discrete–continuous lattice gas model. Expressions for the rates of the
elementary stage on its basis give a self-consistent description of the equilibrium states of the mixtures
under consideration. The common usage today of ideal kinetic models in SC processes in modeling
industrial chemistry contradicts the non-ideal equation of states. The used molecular theory is the
theory of absolute reaction rates for non-ideal reaction systems, which takes into account intermolec-
ular interactions that change the effective activation energies of elementary stages. This allows the
theory to describe the rates of elementary stages of chemical transformations and molecular transport
at arbitrary temperatures and reagent densities in different phases. The application of this theory
in a wide range of state parameters (pressure and temperature) is considered when calculating the
rates of elementary bimolecular reactions and dissipative coefficients under supercritical conditions.
Generalized dependencies are calculated within the framework of the law of the corresponding states
for the coefficients of compressibility, shear viscosity, and thermal conductivity of pure substances,
and for the coefficients of compressibility, self- and mutual diffusion, and shear viscosity of binary
mixtures. The effect of density and temperature on the rates of elementary stages under supercritical
conditions has been demonstrated for a reaction’s effective energies of activation, diffusion and share
viscosity coefficients, and equilibrium constants of adsorption. Differences between models with
effective parameters and the prospects for developing them by allowing for differences in size and
contributions from the vibrational motions of components are described.

Keywords: non-ideal reaction systems; supercritical conditions; lattice gas model; theory of the
absolute rate of a reaction

1. Introduction

Transition to supercritical (SC) conditions of a gas mixture are connected with the
increase in temperature and pressure in a system [1–4]. Processes in supercritical fluids
(SCFs) are allocated in a separate area of research and practical applications owing to
their physicochemical properties. Many physical properties of SCFs (density, viscosity,
and speed of diffusion) are intermediate between the properties of a liquid and gas. SCFs
combine properties of gases at high pressures (low viscosity, high diffusion factor) and
liquids (high dissolving ability); they possess fast mass transfer carried out thanks to their
low viscosity and high factor of diffusion. Further, SCFs possess very small interphase
tension, low viscosity and the high factor of diffusion allowing SCF to get into porous
environments easier in comparison with liquids, high sensitivity of dissolving ability of
SCF to pressure or temperature change, and simplicity of division SCF and the substances
dissolved in them at pressure dump.

All these properties have allowed the development of high-pressure technologies
involving sub- and supercritical liquids, and have allowed the possibility of receiving
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products with special features or projecting new processes that are viable and harmless to
the environment. Now, SCF processes are an important part of industrial chemistry. Some
achievements in this direction are reflected in reviews [5–19].

In supercritical (SC) conditions, a wide range of various technological processes
is currently implemented. Among them are homogeneous chemical reactions in bulk
phases and processes for creating new materials, including nanoparticles, heterogeneous
catalytic reactions, physicochemical processes in porous media, chromatography, extraction,
and many others. The presence of fluids in the SC system can change the nature of
the implementation of chemical reactions in comparison with their flow under normal
conditions (i.e., at a temperature below the critical one and a pressure of the order of one
atmosphere). This change is due to the increased density of the SCF compared to the density
of the gas phase and the rapid dissipation of heat in it. Density changes in the components
in reaction systems lead to shifts in all chemical equilibria and allow the occurrence of
processes that are unlikely under normal conditions. This is the basis for the search for new
ways to implement physical and chemical processes that allow the development of new,
more environmentally friendly industries. In the existing set of SCF processes, their various
exploiting is possible as an environment (for inert fluids), solvents (for associated fluids) or
reagents, and for all these manifestations of SCFs, it is desirable to have a common approach
for modeling their implementation, since it affects their fundamental physico-chemical
features. The overall flow of the processes can be controlled by changing the pressure
in the system. The increase always leads to an increase in the total density of matter in
the system. In SCF processes, the temperature also rises. These two factors can influence
volumetric and surface processes in different ways. Thus, for adsorption inside porous
materials and at open surfaces, the increase in temperature always reduces the adsorption,
and adsorption increases with raising pressure.

For the practical realization of technological processes, a search for optimum modes
that are carried out by means of modeling methods is required. Modeling questions in
different technologies are connected with the necessity of the account of scale transition
from process studying in vitro to technological reactors.

In the general case, the same methods that have been developed earlier for other,
different technologies are applied to modeling SCF processes. The general equations of
nonequilibrium thermodynamics on the macro-level [20–22] and the molecular theory on
the molecular level [23,24] are usually used for the description of technological processes.
Traditionally these methods share the description of the kinetic and equilibrium processes
concerning the molecular and above-molecular levels.

The most widespread equations on the above-molecular level are hydrodynamic equa-
tions. The equations of a hydrodynamic mode of flows in gases and liquids describing
describe the dynamics of the system in terms of concepts the theory of continuous me-
dia concerning such equations, and in the more general case, the equations include the
following types of the kinetic equations: (1) hydrodynamic Navier–Stokes equations or
analogs for complex molecular systems [25–30]; (2) chemical kinetics equations within
the limits of ideal models (the law of mass action) which operate only with one or partial
functions of distributions (or a concentration of reagents) [31–35]; (3) classical thermo-
dynamics equations for the simplification of calculations of nucleation and coagulation
processes [36–40]; and (4) thermodynamics equations of irreversible processes which in-
clude points (1)–(3) [20,21], containing all types of molecular mechanisms of transport
processes in addition to convective flow.

Chemical kinetics equations within the limits of ideal models, i.e., using the law of
mass action, comprise information only about a concentration of reagents. These equations
also are included in the equations of the hydrodynamic level at any size of volume of
the system. The equations of classical thermodynamics are often used for calculations
of nucleation processes to simplify or eliminate the calculation of stages of condensation
and desorption of single molecules to a formed phase. The new phase (drop) is described
through functions of exceeded free energy (through an interface tension).
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At the hydrodynamic modeling level, there is a very large number of specific algo-
rithms for specific processes [41,42]. Among them, we can mention the finite element
method [43,44], which is focused on calculations of systems with complex geometric con-
figurations and irregular physical structures. In the finite element method, the problem of
finding the function is replaced by the problem of finding a finite number of its approximate
values at specific points. This may explain the view of the finite element method as a grid
method designed for solving microlevel problems, for which the model of the object is
defined by a system of differential equations in partial derivatives with given boundary
conditions.

The existing statistical physics methods of modeling the molecular level are the follow-
ing: the molecular dynamics (MD) method [45–49], the kinetic Monte Carlo method [50–55],
Brownian (or Langevin) dynamics [56,57], the Boltzmann equation (for gases in a contin-
uum) [58,59], the Boltzmann discrete equation [60–63], the lattice-gas model (LGM) [64–66],
microscopic hydrodynamics [67,68], and the lattice automata method [69–73]. More detail
on different methods of modeling nonequilibrium processes, ranges of intervals of time,
and areas of their application is given in Appendix 8 of the monograph [68]. The majority of
technological SCF processes are described by means of gas and hydrodynamics equations,
and local chemical kinetics equations. For examples of these, see various works on kinetics
for SCF extraction [74–90].

For many technological processes in SCFs, the modeling problem is reduced to cal-
culations of molecular distributions of components in different phases in almost equi-
librium conditions. In such situations, one can use only thermodynamic models for the
equations of state that allow the calculation of factors of interphase distribution of com-
ponents in processes of solubility or extraction [91–96]. So, the Peng–Robinson equation
of state [97] and the Mukhopadhyaya and Rao mixing law [98] were actively used in
the modeling of solubility in the following research: the phase diagram of the system
“CO2—diethylene glycol monoethyl ether (ethylcarbitol)” [99], the phase equilibrium of
the propylene glycol–propane/butane system and the solubility of propylene glycol in
supercritical propane–butane mixture [100], the solubility of ammonium palmitate in super-
critical carbon dioxide [101], the solubility of bio-diesel fuel components (methyl esters of
stearic and palmitic acid) in supercritical carbon dioxide [102], and in many other systems.

On the other hand, different equations of states can be used in one work. In [103]
14 equations of states were used; similarly, 13 equations of states were considered in [104].

Modeling questions in all technologies are connected with the transition scale from
process studying in vitro to technological reactors. Often, for technological problems,
one uses rough or simplified models for a targeted outcome, but a broader range of
information can be attained with more correct models based on kinetic models of processes,
thermodynamic models, and equations of states of non-ideal systems.

All possible approaches have been used for describing SCF processes. Equilibrium
characteristics are described by the equations on concentration (or density) reagents
whereas nonequilibrium processes are described by the kinetic equations on changes
of these concentration in time. Depending on the intensity of molecular mixing, the consid-
ered equations can relate to local volumes or to the system as a whole. In such modeling
technological processes, situations arise when two levels of models are used simultane-
ously: models of non-ideal systems for describing the equilibrium properties of SCFs and
kinetic models based on the law of mass action, i.e., models for ideal systems, which does
not agree with the second law of thermodynamics [22–24]. (1) According to the second
law of thermodynamics, there should be unified mathematical models that describe both
the relaxation stage of the displacement of the nonequilibrium state of the system to the
direction of its equilibrium and the limiting equilibrium state itself during long periods.
However, it is obvious that kinetic models based on the law of mass action cannot, in
principle, transform during long periods into equations of state for non-ideal systems. To
describe such a transition, it is necessary to have kinetic models and their mathematical
equations for non-ideal reaction systems.
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At the base of all modeling, there are local equilibrium models. The state of the theory
and methods of calculation of SCFs are reflected in the collection of works [105]. These
reviews deal with the modern theory of critical phenomena, methods to correlate near
critical experimental results, and approaches to understanding the behavior of near critical
fluids from microscopic theory. However, the question about the connection between kinetic
models and equilibrium equations of state in non-ideal systems has not been discussed.

The alternative is approaches in molecular-kinetic theory that are constructed based
on the so-called lattice-gas model (LGM) [68,106]. The advantage of the LGM is that
this method is the only one of the above methods that provides self-consistency in the
description of the rates of stages of non-ideal reaction systems with their equilibrium state
in accordance with the second law of thermodynamics. Also, this approach gives a uniform
method of the description of three-aggregate systems.

The purpose of this review is to present the possibility of modeling the physicochemi-
cal processes occurring at the molecular level in the LGM for the SC phases.

Expressions for the rates of elementary stages in ideal and non-ideal systems are
presented in Section 2. These expressions are discussed in Section 3 from the point of
view of the fulfillment of the second law of thermodynamics. Also discussed is the area
of thermodynamic parameters near the critical point, in which it is inappropriate to carry
out technological processes. Sections 4–6 present the possibilities of modeling kinetic SCF
processes using the theory of non-ideal reaction systems based on the LGM: Section 4
outlines a model of the effective pair potential (Section 4); Section 5 describes the influence
of SCFs on equilibrium and kinetic characteristics (5); and Section 6 describes the LGM
and dissipative coefficients (6). Extensions of the LGM are indicated in Section 7. Section 8
gives the conclusions.

2. Molecular Level
2.1. Ideal Systems

The law of mass action defines the following expression for the rate of the bimolecular
stage [21,22,31–35]:

Uij = kijninj, kij = kij
0exp(−βEij), (1)

where kij is the rate constant of elementary reaction i + j→ products; ni is the concentration
of molecules, measured as the number of i-type molecules in a unit volume; kij

0 is the
rate constant pre-exponential factor; Eij is the reaction’s energy of activation between i
and j reagents; β = 1/kBT, kB is the Boltzmann constant, and T is the temperature. In
Expression (1), for a heterogeneous process, the area which does not change during the
process is expressed in terms of the concentration of adsorbed particles θi [35], which
determines the fraction of the surface occupied by component i: Uij = kijθiθj (the product
ninj is replaced by the product θiθj). To calculate the rate constants, the theory of absolute
reaction rates is used [31]. This theory expresses the rate constants of the elementary steps
with the partition functions of the reactants and the activated complex (AC) of the stage.
Equation (1) assumes that the stage of chemical transformation is slow, the particles move
completely independently, and an equilibrium distribution of components is realized in
space. This means two important things: there is no intermolecular interaction in the
system and there are no diffusion inhibitions at the micro- and macro-levels.

It also follows from Expression (1) that an increase in temperature exponentially
increases the rate of the stage. The effect of SCF molecules as reagents is manifested
only through the factor ni. However, the rate of the stage slows down with the increased
pressure, even if the SCF component is inert. This pressure effect is due to the filling of
the SCF of the volume of the system and a decrease in the probability of approaching the
reagents, as well as the fact that, at high molecular densities, the formation of different
associates around each reagent is inevitable.

Equation (1) is written for the elementary stage of the chemical transformation. When
modeling real systems, it should be taken into account that a chemical process usually
consists of several elementary stages, depending on the mechanism of a chemical reaction
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and on the transport stages of molecular transfer. The rate of each stage is affected by the
temperature and concentrations of the components, which complicates the description of
the gross SCF process. Almost any chemical process consists of several elementary stages
determined by the mechanism of chemical transformation. To model SCF processes in
continuous or batch devices, it is important to know the dissipative transfer coefficients.

As the concentration of SCF increases, the influence of intermolecular interactions
increases, which affects the nature of all kinetic processes (chemical reactions, transfer
coefficients, adsorption, and catalytic processes). Intermolecular interactions in dense gases
lead to deviations from the law of mass action and it is necessary to turn to the theory of
non-ideal reaction systems. The influence of pressure increase on the rate of the catalytic
process of ammonia synthesis was first demonstrated in [107] (see also [35]). An increase in
pressure to 300 atmospheres led to a change in all effective rate constants of elementary
stages.

The main problem in the theory of non-ideal reaction systems is to take into account
the influence of the environment on the rate of the elementary stage [32,33,68,106,108–110].
Reagent molecules in the dense phase are constantly surrounded by their neighbors and
their intermolecular interactions change the potential surface of the elementary stage. In
general, this changes the activation energies of the reaction for each local environment of
the reactants.

2.2. Non-Ideal Systems and the Lattice-Gas Model

The theory of non-ideal reaction systems is also based on the theory of absolute
reaction rates, which exploits the concept of an activated complex (AC) of an elementary
stage. In this case, the AC is a particle with its own interparticle interaction potentials. The
spatial distribution of all components of the reaction system (reagents, AC, and SCF) is
described within the framework of the lattice-gas model (LGM) on discrete-continuum
scales [66,68,106] in the quasi-chemical approximation (QCA). The QCA reflects the effects
of direct correlations between all interacting particles. It should be recalled that the LGM
allows one to describe the entire range of dimensionless particle densities from zero to
one (in mole fractions), which allows it to be used to solve all problems of CSF processes.
The choice of QCA as the basic approximation for calculating the equilibrium and kinetic
characteristics is associated with full agreement with the second law of thermodynamics—
this approximation provides a self-consistent description of the rates of elementary stages
and the equilibrium state of the entire system. Below, for simplicity, we restrict ourselves
to the equations of the bimolecular stage and take into account the interaction of nearest
neighbors.

The entire volume of the system under consideration is divided into separate cells in
the LGM. The cell size is chosen on the order of the average particle size so that it can be
considered that this cell is occupied or free (vacant). The cell occupancy state is fixed by
the index i, where 1 ≤ i ≤ s − 1 (s is the number of system components) and the symbol
i = s refers to free cells. Above, the notation for the fraction of cells occupied by particles
of type i was introduced as θi (or its number density). Then, the normalization condition

will be written as
s
∑

j=1
θi = 1 and the value θ =

s−1
∑

j=1
θi is the complete occupancy of a lattice

system by all i components of the system, 1 ≤ i ≤ s − 1. The quantity is the fraction of free
sites (recall that vacancies are not thermodynamic characteristics). The ratio xi = θi/θ is
the mole fraction of component i.

The lattice structure is characterized by the number of nearest neighbors z. Between
particles in neighboring cells, lateral interactions are taken into account; the energy pa-
rameter of this interaction between a pair of particles ij is denoted by εij. The analogous
parameter of any particle with a neighboring vacancy is equal to zero. The probability of
finding a pair of particles ij at neighboring nodes is characterized by the value θij—this
is the pair distribution function of particles. Such functions are needed to describe the
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probability that reactants i and j will meet in dense phases so that a chemical reaction can
occur.

The rate of a bimolecular reaction of the Langmuir–Hinshelwood type Ufg
AB is written

in the theory of non-ideal reaction systems [66,106] as the following expression (subscripts
f and g indicate the numbers of sites where reagents A and B are located):

UAB
f g = kAB

f g exp(−βε f g)θ
AB
f g ΛAB

f g , (2)

where ΛAB
f g is the function of imperfections, defined as

ΛAB
f g = ∏

h∈(z( f )−1)
SA

f h ∏
h∈(z(g)−1)

SB
gh, SA

f h =
s

∑
j=1

tAj
f h exp(β(ε∗Aj − εAj)) (3)

The subscript h refers to the nearest neighbors of site f or g. The neighboring sites g or
f themselves are not included in the set of values of the index h; the function SA

gh is defined

similarly to the function SA
f h (indices A and f change to indices B and g). Here the symbol

ε*ij represents the interaction parameter of the AC reaction for an i-type particle with a
neighboring particle of type j.

The function tfh
ij = θfh

ij/θf
i is the conditional probability of finding particles j next

to particles i. Here, the numbers of neighboring sites (subscripts) are introduced only to
indicate differences in positions on the lattice of the reactants: θfh

ij = θij and tfh
ij = tij. In non-

ideal systems, θij 6= θiθj, which corresponds to the correlated distribution of components in
space. The case of equality θij = θiθj corresponds to the chaotic distribution of components,
which is typical for ideal systems (see Formula (1)).

Intermolecular interactions change the probability of encounters of reagents (the
factor θAB instead of the product θAθB) and the heights of activation barriers through the
functions Λfg

AB. Functions Si take into account the influence of neighbors on the magnitude
of activation barriers through the difference in interaction parameters due to the influence
of the neighboring particle j (via δεij = ε∗ ij − εij). The exponential factor with βεAB

f g in
Formula (2) is necessary for the transition at low system densities from Formula (4) to
Expression (1) for the law of mass action, as for an ideal system [66].

Equations (2) and (3) contain the pair function θij that characterizes the probability
that two particles i and j can be on neighboring sites. The calculation of pair functions θij in
non-ideal reaction systems is always carried out in some particular approximation because
the problem cannot be solved exactly [64–66]. In this case, the so-called quasi-chemical
approximation (QCA) is used [23,64–66]. Historically, it was the first approximation in
which the effects of direct correlations between interacting molecules were taken into
account. There, each pair of neighboring molecules is considered independent of other
molecules in the system. The function θij depends on the interaction energy of molecules
and concentrations of components.

The pairwise distribution functions are found from the solution of the system of
algebraic equations in the QCA together with the normalization condition:

θijθss = θisθsj exp(−βεij),
s

∑
j=1
θij = θi. (4)

It follows from Equations (4) that i and j particles attract one another when εij > 0;
analogously, i and j particles repulse one another when εij < 0.

When calculating the rates of reactions on a homogeneous surface, it is necessary to
first find the surface concentrations of the reagents, which are determined from the QCA
Equation (5) of adsorption in the presence of SCF molecules:

aiPi =

(
θi
θs

)
Si

z, Si = 1 +
s−1

∑
j=1

xijtij, (5)
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where Pi represents the partial pressures in the gas phase (1 ≤ i ≤ s − 1); θi is the degree
of filling the surface with particles i; ai = ai

0 exp(βQi), ai
0 is the pre-exponential of Henry’s

constant; Qi is the binding energy of particle i with the surface; and xij = exp(−βεij)− 1.
From the terms for the rates of individual stages, the right-hand sides of the kinetic

equations of the simulated processes (specified in Appendix A) are formed.
The rates of two-site stages have the form of Equations (2) and (3), and the rates of

single-site stages in QCA have the form of Equation (A6) in Appendix A.

3. Thermodynamics and Kinetics

The developed theory of non-ideal reactionary systems [66,106] answers a number of
requirements regarding its connection with chemical thermodynamics:

1. The second law of thermodynamics and connection between models of equilibrium
and kinetics;

2. A self-consistence of equilibrium and kinetics in ideal systems;
3. A self-consistence of equilibrium and kinetics in non-ideal systems;
4. The equations of a state for non-ideal systems and their connection with kinetic

models;
5. Why it is impossible to use factors of activity for the AC in kinetic models;
6. Thermodynamic parameters of the critical area and the requirement of technologies.

3.1. The Second Law of Thermodynamics and Connection between Models of Equilibrium and
Kinetics

Clausius’ formulation of the second law of thermodynamics contained a way to
consider the transfer of nonmechanical energy in the first law of thermodynamics. This
formulation is rather complex to understand because it simultaneously contains both the
process of development toward equilibrium in a closed system and the limiting equilibrium
state [25,111,112]. The mathematical formulation of the combined equation of thermody-
namics is dU ≤ TdS − PdV, where U is the internal energy, P is pressure, and V is the
volume of the system; the sign of the equality corresponds to the equilibrium. A quantita-
tive measure of the process considered in the second law of thermodynamics is entropy S
which characterizes the thermal motion of matter. The entropy in the time-limited equilib-
rium state of a system does not depend on the transition to the equilibrium state and it is
maximal with respect to all other states.

Clausius’ statements about the limiting states of equilibrium systems with extreme
properties of entropy were adopted as a basis in thermodynamics by Gibbs. This allowed
him to deal with various states without specifying transitions between them. Gibbs’s
mathematical formulation of the combined equation of thermodynamics (dU = TdS − PdV)
divided Clausius’ second law of thermodynamics into two parts: equilibrium and nonequi-
librium.

Dividing the second law of thermodynamics into two parts [112–114], Gibbs omit-
ted the requirements, contained in bases of thermodynamics, about a self-consistence
description of reaction rates and an equilibrium condition [115]. The existing law of mass
action [21,34] was highlighted, although it is not valid in non-ideal systems that comprise
the majority of real processes. The requirement of self-consistence did not become obliga-
tory for the kinetic theory of non-ideal reactionary systems (including all of Prigogine’s
works [22]). This requirement is not present either for transport processes where it is
absolutely necessary for the calculation of dissipative factors [20,23].

The requirement for the self-consistency of the description of the rates of stages in
a non-ideal reaction system and its equilibrium state was introduced only in Ref. [115],
as a necessary refinement of the second law of thermodynamics for modeling all kinetic
processes.
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3.2. Self-Consistence of Equilibrium and Kinetics in Ideal Systems

Irreversible processes take place until either a stationary state or equilibrium is estab-
lished (excluding the possibility of realization of periodic processes). If several irreversible
processes are superimposed and the final state attained corresponds to equilibrium, then in
certain cases it is possible to obtain general conditions for the coefficients that describe irre-
versible processes, without the application of the thermodynamics of irreversible processes.

In the general case of more complex elementary stages of chemical reactions in the gas
phase, the law of mass action, which was empirically established by Guldberg and Waage
(1867), is used to describe reaction rates. For reversible reactions of a general form, we

can write ∑i νi[Ai]
k1
�
k2

∑j νj
[
Aj
]
, where the symbols Ai and Aj in brackets denote different

reacting particles, and the values of νi and νj are equal to the negative and positive values of
the stoichiometric coefficient (the sign of the coefficient is determined by their location: on
the left or right side of the equation). The constants k1 and k2 are the reaction rate constants
in the forward and backward directions. Numerically, they are equal to the reaction rate at
single values of the concentration of each of their reagents in the forward direction.

The rate of the considered reaction within the framework of the law of mass ac-
tion [21,34] will be written as

U = k1 ∏
i

ni
νi − k2 ∏

j
nj

νj (6)

In the equilibrium state, the rate is zero, w = 0, and it follows from (6) that the rate
constants in the forward and backward directions are related to each other in the form

k1/k2 = ∏
j

nj
νj / ∏

i
ni

νi = K (7)

where K = k1/k2 is the equilibrium constant of the stage.
Let us consider the simplest process of adsorption–desorption of gas phase molecules

without dissociation. The rate of desorption of particles A from the occupied areas of the
surface will be written as UA = KAθA, where KA is the desorption rate constant and θA is the
fraction of the occupied surface. The adsorption rate on free surface areas (V is the symbol
of vacancies) will be written as UV = KVPθV, where KV is the adsorption rate constant, P is
the pressure in the gas phase, and θV is the fraction of the free surface (θV = 1 − θA).

At equilibrium UA = UV, it follows that KAθA = KVPθV, or θA = KVP(1 − θA)/KA or
θA = KVP/(KA + KVP), and θA = a1P/(1 + a1P), a1 = KV/KA is the adsorption coefficient
without dissociation. If the adsorption process proceeds with the dissociation of gas phase
molecules, then the rates of desorption and adsorption will be rewritten as UAA = KAAθAA
= KAA(θA)2 and UVV = KVVPθVV = KVVP(1 − θA)2. Hence, θA = a2P1/2/(1 + a2P1/2) is the
Langmuir isotherm of dissociating molecules and a2 = (KVV/KAA)1/2 is the adsorption
coefficient in the presence of dissociation.

In both cases, one can write down one fractionally rational function θA = y/(1 + y),
where y = y1 = a1P for adsorption without dissociation and y = y2 = a2P1/2 in the presence
of dissociation. It follows that in the coordinates θA = θA(y) both dependencies behave
equivalently. The coincidence of both dependences θA = θA(y) means that the equilibrium
adsorption of dissociating molecules does not depend on what occurs first: dissociation of
molecules in the gas phase or their adsorption. Both of these equilibrium dependences are
obtained from the condition that the second law of thermodynamics according to Clausius
is satisfied—from equalizing the velocities of the oppositely directed velocities of the stages.
As a result, the four different rates of elementary stages give one equilibrium concentration
dependence.

This result is obtained within the framework of the law of mass action, which is fulfilled
for an ideal gas mixture and dilute solutions. The following expression for the chemical
potential can be written µi = µi

0 + kT ln(ni), where µi
0 and ni are the chemical potential of
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the standard state and the molar volume concentration of component i. However, in kinetic
models for non-ideal systems it is impossible to use activities or activity coefficients [115]
as natural thermodynamic replacements of concentrations (see below).

3.3. Self-Consistence of Equilibrium and Kinetics in Non-Ideal Systems

The theory on the basis of the LGM provides a self-consistent description of an
equilibrium condition of a reactionary mixture and rates of elementary stages. This means
that by equalizing rates of oppositely directed processes of any stage, the equation of
equilibrium distribution of components [66,106] can be derived. These self-consistent
processes are only those where local correlations, such as QCA, are taken into account.

The above statement can be formally explained in the following way. The expression
for the equilibrium constant K (7) of the two-molecular stage A + B ↔ C + D can be
considered as a product of two independent monomolecular processes A↔ C and B↔
D. That is, global equilibrium does not depend on the way it is realized in the system—it
goes through different equilibrium reactions or coincides with a condition of equilibrium
of the environment as a whole. In this case, the theory of non-ideal reactionary systems
guarantees that the second law of thermodynamics is realized as it happens in the theory
of ideal reactionary systems.

Exactly the same situation with obtaining equilibrium dependences θA = θA(y) in
non-ideal reaction systems will be considered for adsorption and desorption processes with
(m = 2) and without (m = 1) dissociation. Let us consider the equalities of the rates in both
directions, UA = UV and UAA = UVV, expressed by Formulas (2) and (3) in the QCA.

To illustrate the logic of the second law of thermodynamics for a non-ideal system,
let us again (as for the ideal system) consider the process of adsorption of dissociating A2
molecules in the form of two routes: the dissociation of A2 molecules into atoms A in the
bulk phase followed by their adsorption or the adsorption of A2 molecules followed by
the dissociation process. Both routes are described by the rates of stages in the forward
(adsorption) and reverse (desorption) directions. At equilibrium, adsorption isotherms for
A2 molecules and A atoms should be obtained. Moreover, the degree of surface filling θA
must be the same regardless of the route, i.e., the final equilibrium state does not depend
on the way the equilibrium is reached. This fact reflects the concept of Clausius twice: the
equilibrium state itself follows from the equality of the rates of the stages and for different
routes, it receives a single mathematical dependence for the degree of surface filling on
pressure.

As a visual illustration, we present Figure 1, which shows the concentration factors
of the rates for the four indicated stages and the equilibrium values θA corresponding to
the equalities of the rates of the stages for chemisorption (εAA < 0), without dissociation
(Figure 1a) and in the presence of dissociation (Figure 1b). Here, Vi = Ui/Ki, Vii = Uii/Kii.
Each field consists of three curves for the logarithm of the concentration factors for rates of
non-dissociative (Figure 1a) and dissociative desorption (Figure 1b), adsorption (curve 1),
desorption (curve 2), and the logarithm of the isotherm of adsorption (curve 3, right y-axis).
As in ideal systems (Section 3.2), both curves 3 are identical for non-ideal systems.



Processes 2023, 11, 2541 10 of 39

Processes 2023, 11, x FOR PEER REVIEW 10 of 40 
 

 

field consists of three curves for the logarithm of the concentration factors for rates of non-
dissociative (Figure 1a) and dissociative desorption (Figure 1b), adsorption (curve 1), de-
sorption (curve 2), and the logarithm of the isotherm of adsorption (curve 3, right y-axis). 
As in ideal systems (Section 3.2), both curves 3 are identical for non-ideal systems. 

 
 

(a) (b) 

Figure 1. Concentration factors (Vi and Vii) in rates of non-dissociative (a) and dissociative (b) ad-
sorption (curves 1) and desorption (curves 2) for a non-ideal chemisorption (εАА < 0) system (Vi = 
Ui/Ki, Vii = Uii/Kii). Curves 3 (right y-axis) correspond to the equilibrium isotherm. 

A rigorous mathematical proof of the self-consistency of the stage rates and the equi-
librium distribution of the components of a non-ideal system in QCA is given in [66,106]. 

Other approaches, where the distribution of particles is not correlated, do not provide 
a self-consistent description of the kinetics and equilibrium stages (see more detail in 
[66,106]). In particular, all one-particle approaches without the effects of correlation are 
not self-consistent expressions for rates of two-molecular stages processes. These are av-
erage field approximation, chaotic approximation, and approximation of functional den-
sity. 

3.4. The Equations of a State for Non-Ideal Systems and Their Connection with Kinetic Models 
In the work of Fisher M.E. [116], it was shown that the van-der-Waals equation for 

non-ideal gases corresponds in LGM to the approach of an average field. All other con-
structions for phenomenological equations of a state are derived in the same style 
[103,104,117,118]; this leads to the obvious contradiction when modeling SCF processes: 
various phenomenological equations of a state reflect the non-ideality of a reactionary 
system, whereas the equations for kinetic models do not reflect the non-ideality of sys-
tems. 

All kinetic models for SCF processes are based on an ideal model with the law of 
mass action. This breaks the concept of the self-consistent description for the majority of 
SCF processes. In order to avoid this controversy, it is necessary to use the equations for 
non-ideal systems in the LGM. Then, all features of the movement of molecules in SCF 
conditions can be reflected through internal statistical sums of molecules, taking into ac-
count the effects of correlations and preservation of the self-consistency description of ki-
netics and equilibrium. 

  

Figure 1. Concentration factors (Vi and Vii) in rates of non-dissociative (a) and dissociative (b)
adsorption (curves 1) and desorption (curves 2) for a non-ideal chemisorption (εAA < 0) system
(Vi = Ui/Ki, Vii = Uii/Kii). Curves 3 (right y-axis) correspond to the equilibrium isotherm.

A rigorous mathematical proof of the self-consistency of the stage rates and the equi-
librium distribution of the components of a non-ideal system in QCA is given in [66,106].

Other approaches, where the distribution of particles is not correlated, do not provide a
self-consistent description of the kinetics and equilibrium stages (see more detail in [66,106]).
In particular, all one-particle approaches without the effects of correlation are not self-
consistent expressions for rates of two-molecular stages processes. These are average field
approximation, chaotic approximation, and approximation of functional density.

3.4. The Equations of a State for Non-Ideal Systems and Their Connection with Kinetic Models

In the work of Fisher M.E. [116], it was shown that the van-der-Waals equation for non-
ideal gases corresponds in LGM to the approach of an average field. All other constructions
for phenomenological equations of a state are derived in the same style [103,104,117,118];
this leads to the obvious contradiction when modeling SCF processes: various phenomeno-
logical equations of a state reflect the non-ideality of a reactionary system, whereas the
equations for kinetic models do not reflect the non-ideality of systems.

All kinetic models for SCF processes are based on an ideal model with the law of
mass action. This breaks the concept of the self-consistent description for the majority
of SCF processes. In order to avoid this controversy, it is necessary to use the equations
for non-ideal systems in the LGM. Then, all features of the movement of molecules in
SCF conditions can be reflected through internal statistical sums of molecules, taking into
account the effects of correlations and preservation of the self-consistency description of
kinetics and equilibrium.

3.5. Why It Is Impossible to Use Factors of Activity for AC in Kinetic Models

For non-ideal reaction systems, all expressions for the elementary stage rates are
interpreted within TARR [31]. So, instead of using Equation (1), the rate of a bimolecular
stage is written as

Uij = k∗ijninj, (8)

where k∗ij are the rate constants of the elementary stage, written as

k∗ij = kij
0 αiαj

αij
∗ exp(−βEij) = kijαiαj/αij

∗, (9)
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where k∗ij is a pre-exponential factor of rate constants; Eij is the energy of activation of
the reaction i + j → products; kij is the rate constant in the ideal reaction system (1); αi
is the activity coefficient of i-type reagents; and αij

∗ denotes the activity coefficients of
ACs. Calculating the activity coefficients for reagents and for ACs requires the use of the
well-known theory of non-ideal solutions [119–122].

However, for kinetic models, the above method leads to errors. This is because of
the calculation of the activities in a non-ideal mixture with the required averaging on all
configurations of all components. The analysis of the applicability of TARR to the condensed
phases in the form of Equation (8) has shown [68,115,123] that the basic condition of TARR
on the equilibrium presence between the AC and surrounding molecules is violated during
the elementary process.

This means that the elementary stage is realized at fixed positions of all neighbors
since the relaxation time of each neighbor’s environment is much longer than the time of
the AC formation. Therefore, an introduction of the concept for AC activities deforms the
basic TARR statement. As a result, the use of Equations (8) and (9) instead of Equations
(2) and (3) can lead to appreciable differences in the values of reaction rates, especially at
intermediate densities.

Figure 2 illustrates the qualitative difference in concentration dependences of reaction
rates for different environment relaxations in isothermal conditions (the curves describe
the desorption system of type CO-Pt).

Processes 2023, 11, x FOR PEER REVIEW 11 of 40 
 

 

3.5. Why It Is Impossible to Use Factors of Activity for АC in Kinetic Models 
For non-ideal reaction systems, all expressions for the elementary stage rates are in-

terpreted within TARR [31]. So, instead of using Equation (1), the rate of a bimolecular 
stage is written as 

* ij ij i jU k n n= , (8) 

where *
ijk  are the rate constants of the elementary stage, written as 

* 0 *
* ( ) /i j

ij ij ij ij i j ij
ij

k k exp E k
αα

β αα α
α

= − = , (9) 

where *
ijk  is a pre-exponential factor of rate constants; ijE  is the energy of activation of 

the reaction i + j → products; ijk  is the rate constant in the ideal reaction system (1); iα  

is the activity coefficient of i-type reagents; and *
ijα  denotes the activity coefficients of 

ACs. Calculating the activity coefficients for reagents and for ACs requires the use of the 
well-known theory of non-ideal solutions [119–122]. 

However, for kinetic models, the above method leads to errors. This is because of the 
calculation of the activities in a non-ideal mixture with the required averaging on all con-
figurations of all components. The analysis of the applicability of TARR to the condensed 
phases in the form of Equation (8) has shown [68,115,123] that the basic condition of TARR 
on the equilibrium presence between the АC and surrounding molecules is violated dur-
ing the elementary process. 

This means that the elementary stage is realized at fixed positions of all neighbors 
since the relaxation time of each neighbor’s environment is much longer than the time of 
the АC formation. Therefore, an introduction of the concept for ΑC activities deforms the 
basic ТАRR statement. As a result, the use of Equations (8) and (9) instead of Equations 
(2) and (3) can lead to appreciable differences in the values of reaction rates, especially at 
intermediate densities. 

Figure 2 illustrates the qualitative difference in concentration dependences of reac-
tion rates for different environment relaxations in isothermal conditions (the curves de-
scribe the desorption system of type СO-Pt). 

 
Figure 2. Concentration dependence of EA(ef) for monomolecular desorption at 300 K calculated in 
the case of (1) fast and (2) slow elementary stage [123]. 

The effective activation energy of desorption ( ( ) 0 ( ) / ( ) A A A Aexp E ef U Kβ θ− = ), 
and accordingly the reaction rate, increases monotonically with increasing surface 

Figure 2. Concentration dependence of EA(ef ) for monomolecular desorption at 300 K calculated in
the case of (1) fast and (2) slow elementary stage [123].

The effective activation energy of desorption ( exp(−βEA(e f )) = UA/(θAKA
0) ), and

accordingly the reaction rate, increases monotonically with increasing surface coverage
when calculated by Equation (A6) for the unimolecular stage with the function SA

f h (3)
(this stage is fast without taking into account environment relaxation). When calculated
by the Formula (9) for the unimolecular stage [123], the effective activation energy for
desorption under conditions of equilibrium relaxation of the environment (this stage
is slow) varies nonmonotonically. The nonmonotonic behavior of the desorption rate
contradicts the physics of the process, especially in view of the fact that, at short distances,
chemisorbed species repel each other. In general, in non-ideal systems, the nonmonotonic
behavior of the reaction rate is possible only if the potential is attractive [66,106,124].
Furthermore, the negative effective activation energy of the sole desorption reaction does
not have a physical sense. The behavior of curve 2 is due to an incorrect procedure for
averaging over all configurations of all neighbors with respect to the AC. This drastically
changes Equation (3), in which the functions SA

f h have a different relationship with the
concentrations and functions tij. As a result of this averaging procedure, the nature of
the effective interaction between particles changes: instead of repulsion, their effective
attraction appears (which distorts the physical nature of the system). When the density of
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the system changes, the particles behave as in the case of a first-order phase transition with
a nonmonotonic concentration dependence of the rate of the desorption stage.

The above comparison shows how much the effect of the environment relaxation
influences the rate of a unimolecular process. Therefore, the issue of the correctness of
using one or another method for averaging the contribution from the neighbors plays
a fundamental role in the dynamics of the elementary stages. So, the incorrect use in
TARR representations about AC activity (as in Equation (9)) excludes formal extension of
kinetic models on non-ideal reactionary systems via a conception of “activity” instead of a
concentration.

3.6. Thermodynamic Parameters of the Critical Area and the Requirement of Technologies

It should be remembered that for successful realization of chemical reactions in SC
conditions, it is necessary to displace on temperature upwards from the critical point
of phase transitions of the first order both in solid and in liquid phases. Otherwise,
near the critical point, processes of alignment of density are slowed down (or diffusion
transport stages are at a loss), and this complicates a current of chemical multiphase
processes [125–128]. The reason for such a delay is the general thermodynamic relations
connected with the equality to a zero in the critical point derivative of chemical potential
µi on concentration components i in the vicinity of the coordinates of the critical point
(Pcr, Tcr): (∂µi/∂ni )Pcr,Tcr

= 0 and (∂2µi/∂ni
2)Pcr,Tcr

= 0. This peculiarity to the same extent
concerns both the average field and the QCA approach in the LGM. It must be valid in any
calculation method.

Attention has been paid to the same circumstance in [129] in the analysis of condi-
tions for performing an experiment by definition of the parameters of the “coil–globule”
conformational transition for the polymeric chains dissolved in SC–CO2. On the basis of
the gas-dynamic model of the impulse jet expansion of a van der Waals gas, a strategy
experiment on the determination of the parameters of the “coil–globule” transition of the
polymer chain in SC carbon dioxide was developed. To use the condition of constant iso-
choric heat capacity outside the near-critical point in modeling, it is necessary to determine
the structure of the near-critical region.

For such purposes, the authors use techniques [130] based on representations about
thermal stability [131] and increases in fluctuations with near-critical areas [132]. Taking
into account the isentropic flow of the process and the behavior of CO2 in the near-critical
region, the conditions of expansion corresponding to the model was determined. An
experimental design (geometry and dimensions of the basic elements of the installation,
and the duration of the impulse valve) was developed. Possible variants of the experiment
and its data processing were discussed.

The area of thermodynamic parameters that is necessary to exclude from the area of
search for carrying out the experiment is specified in Figure 3 (solid lines). This area is
limited by curves C-SC—the line of local minima of stability, C-MSC—the line of maxima
of fluctuations, and line SC-MSC—the line of a supercritical isotherm [129], where C is
the critical point, SC is the super-critical point, and MSC is the point of the maximum of
fluctuations on the supercritical diagram.

Taking into account the developments of the authors of [129], Figure 3 shows the
general scheme reflecting the combined effects (dashed lines MSC-A and SC-B) of slowing
down mass transfer processes near the critical region (lower dashed line AB) and effects
with maximum fluctuations (solid lines from [129]) of thermodynamic parameters.

Thus, from the point of view of the implementation of optimal modes of technological
processes, the proximity of thermodynamic parameters to the parameters of the critical
point is not appropriate. Search for them is required at such a distance from the critical
point in order to avoid both the slowdown of the process near the critical point (Pcr, Tcr)
and the presence of large fluctuations of parameters on the supercritical isotherm, to ensure
the stability of obtaining the target product.
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4. Model of the Effective Pair Potential
4.1. Internal Motions of Particles

The initial interpretation of the LGM refers to a rigid lattice with fixed parameters
of the lateral interaction. These conditions limit the possibility of using the LGM to
describe experimental data even in equilibrium [119–122]. In order to expand the potential
possibilities of the LGM in interpreting different systems, the LGM equations [133] take
into account the motions of the center of mass of molecules inside the cells. This led to
integral equations [134], similar to the theory of liquid [135–138], but not without violating
the condition of a single filling of each cell.

As a result, the QCA continuum was formulated [133], which made it possible to use
traditional ideas about lattice models, including the concepts of the excluded (or accessible)
cell volume for the center of mass for molecules, the softness (or deformability) of the
lattice structure, and the vibrational motions of molecules. Extensions of models of internal
motions of molecules in LGM are associated with different degrees of freedom of molecules
in the condensed phase. The free volume of the cell is associated with the translational
motion of the center of mass of the molecule. Vibrational motions are always realized in
bound ensembles of molecules. The softness of the lattice structure is formed due to the
average displacement of molecules relative to each other. Traditionally, the concepts of
translational and oscillatory motion refer to a rarefied gas and a solid body. In the SCF
system for dense gases and liquids, these concepts have a conventional meaning, since
molecules are constantly interacting with each other.

“Excluded” volume [139]. The movement of a selected particle in a dense fluid phase
is hindered by neighboring molecules. They block part of the space and it becomes
inaccessible for the movement of the selected particles. If the lattice structure is free, then
the center of mass of the particle can be located at any point inside the cell. If the lattice
structure is filled, then the center of mass of the particle can shift inside the cell only near
its center.

The available volume for the movement of the center of mass in this case is equal
to the value V(θ~1) = κ3, where the value κ is the root-mean-square displacement of the
molecule from the center; it can be estimated from the theory of harmonic motions in a
solid for temperatures above the Debye temperature. That is, the value of κ is found from
the parameters of the paired Lennard–Jones interaction potential [139]. In the general case,
for any fluid densities θ, the available volume can be estimated as the ratio V(θ)/V(θ = 0)
= L(θ)3, where L(θ) = tAV + κ tAA, where the function tAA, characterizing the conditional
probability of finding two neighboring molecules A, is defined in Section 2.2. More accurate
estimates of the available volume V(θ)/V(θ = 0) are possible if a geometric model [139] is
used that refines different positions of neighboring molecules [139].
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Lattice softness. The softness of the lattice structure means that the average distance
between fluid particles determines the average size of the lattice parameter λ. This value
is found from the condition of minimum free energy of the system [140]—it is uniquely
related to the parameters of potentials of interparticle interactions without introducing
additional parameters. (In a number of situations, one can use the virial theorem to find
λ [141,142].) For a gas, this λ quantity is related to the properties of a dimer, while, in a solid,
all neighbors are taken into account. An increase in fluid density leads to a decrease in the
lattice parameter. This fact correlates well with experimental and molecular dynamics data.

Molecular vibrations. Vibrations of molecules affect the average values of intermolecular
interactions and all equilibrium distributions. Small deviations of molecules relative to
the average size of the value λ lead [143–145] to a temperature dependence of the lateral
interaction parameter of the type ε = ε0(1− uT), where the function u reflects the vibrational
motion of molecules. Previously, this form of dependence of the interaction parameter was
considered as a convenient fitting function [119–121,146–148]. This approach [133] makes
it possible to express the function u in terms of potential functions without introducing
additional parameters.

The listed molecular properties of the effective pair parameter of interparticle interac-
tion preserve the technique of calculating traditional lattice models and greatly simplify
the consideration of continuum displacements of particles inside the cell. This reduces the
calculation time in the LGM compared to using the technique of the integral equation by
two to three orders of magnitude.

4.2. Vapor–Liquid Systems

One of the most popular potentials for describing vapor–liquid systems is the Lennard–
Jones potential with parameters: σ (hard sphere diameter) and ε0 (isolated dimer potential
well depth) [23]. The values of these parameters are actively used in calculations for any
density using the Monte Carlo and molecular dynamics methods. They were determined
from experimental data for low-density gases (described up to the second virial coefficient).
With increasing fluid density, it is necessary to add triple interactions [23,137,149,150].
Therefore, to use the effective pair potential (εef) of the Lennard–Jones type in the LGM for
any densities [151–153], the following function was used:

εAA(r) = 4εef

((σ

r

)12
−
(σ

r

)6
)

, εef = ε0(1− dtr∆1rtAA)(1− uT), (10)

Equation (10) reflects the dependence of the effective pair potential on temperature
(u) and on triple interactions (dtr) for nearest neighbors (∆1r—Kronecker symbol) in the
form dtr = 0.2(z − 1)ε3/ε0 [66,154], where ε3 is the triple interaction parameter. The tAA
function reflects the presence of a third particle A nearby (it is defined in Section 2.2). For
simplicity, it is assumed that the contributions from concentration and temperature are
taken into account separately. For a quantitative description of experimental systems, it
is possible to involve contributions from several coordination spheres. A similar struc-
ture to Equation (10) for effective pair potentials is also preserved for multicomponent
mixtures [155].

As an example, the influence of the considered parameters in Figure 4a describes the
concentration dependence of the compressibility factor Z = p/nкT, where n* = nσ3 is the
reduced number density, for argon in the volume (σ = 0.34 nm and ε0 = 119K [23]). The
comparison was made for the virial expansion (curves 2–4) [156] and for the LGM [151] at
T = 162 K [157]. Figure 4a shows that at least five terms of the virial expansion are required
to agree with the experimental data and with the LGM.
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(4) with regard to the second–fourth virial coefficients. The inset shows the phase diagram of argon.
Symbols represent experimental values from [158]; the solid line represents calculations in [155] for
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experimental values from [159]; solid lines represent calculations in [160].

The stratification curve for argon with potential (10) was calculated taking into account
the contribution of the calibration function (inset in Figure 4a), which is necessary to
describe the critical region (see below). The density of argon is given in the reduced form
$/$c, where $c is the density at the critical point. Throughout the region, there is agreement
between the experimental data [158] and the calculation by the LGM, including the value
of the critical parameter β equal to 0.37.

The same approach was used to calculate the stratification curves for the Ar-N2 binary
mixture [159]. Curves for different compositions of the mole fraction of nitrogen are shown
in Figure 4b.

For other gases, the molecular theory based on the LGM gives the same satisfactory
agreement with experiments [161]. This is due to a certain extent to the fact that the
considered gases do not have specific interactions and obey the law of the corresponding
states. For these, a generalized compressibility coefficient was constructed [23,26,156] with
the coordinates Z, “reduced” pressure, which is the same for different substances at the
correspondingly introduced “reduced” temperatures (all quantities are normalized to their
critical parameters). Such a generalized experimental dependence [23,26,156] was described
in the LGM with an accuracy of about 3–4% (see Figure 5). These calculations reflect the
main properties of Z for different temperatures up to pressures of 1000 atmospheres [152].
If the components of the mixtures do not violate the conditions for using the law of the
corresponding states (as in Figure 4b), then the generalized dependences Z can be used for
estimates and for mixtures [26]. Curves for different compositions of the mole fraction of
nitrogen are shown in Figure 4b.



Processes 2023, 11, 2541 16 of 39

Processes 2023, 11, x FOR PEER REVIEW 16 of 40 
 

 

reflect the main properties of Z for different temperatures up to pressures of 1000 atmos-
pheres [152]. If the components of the mixtures do not violate the conditions for using the 
law of the corresponding states (as in Figure 4b), then the generalized dependences Z can 
be used for estimates and for mixtures [26]. Curves for different compositions of the mole 
fraction of nitrogen are shown in Figure 4b. 

 
Figure 5. Generalized compressibility factors of dense gases that obey the law of corresponding 
states [161]. 

Figure 5 includes the critical region. In works [134,162–164] (based on the ideas of 
scaling theory [165–167]), it was proposed to introduce a calibration function as an ap-
proximate method for calculating the equilibrium distributions of components in the 
LGM near the critical point. This approach separates the contributions in the equation for 
local isotherms from the short-range potential and from large-scale fluctuations. The last 
contributions are taken into account by the calibration function. For more details, see 
[68,134,162–164]. 

Potential functions (10) were also used to calculate the equilibrium characteristics of 
mixtures at high pressures in the bulk phase [168]. Here, the potential of the LGM to de-
scribe the stratification of ammonia–nitrogen gases is shown in Figure 6. The field on the 
left shows the experimental measurements (abscissa axis—percentage). In the right field, 
the same points are marked with symbols (abscissa axis—mole fractions) for the same 
temperatures. 

The reason for the deviation of the experimental value from the theoretical one is that 
the model equations use the rules for combining parameters of the LD-type potential for 
molecules obeying the law of the corresponding states. This calculation agrees qualita-
tively with the experiment. The calculation uses the usual concept of the law of corre-
sponding states for all components of the mixture, although for ammonia this assumption 
is conditional. Nevertheless, the use of LGM provides qualitatively acceptable results, alt-
hough the degree of deviation of ammonia from the law of corresponding states increases 
with increasing pressure. 

0,1 1 10

1

1.0

30

2

0.2

0.5

0.5 52

15.0 10.0
8.0
6.0
4.0

3.0

15.02.0

1.8
1.6

1.41.3
1.2

1.15
1.1

1.05
1.03

1.01

0.95
0.90

0.85
0.800.75

0.70

Tr=1.0 Pr

Z

Figure 5. Generalized compressibility factors of dense gases that obey the law of corresponding
states [161].

Figure 5 includes the critical region. In works [134,162–164] (based on the ideas
of scaling theory [165–167]), it was proposed to introduce a calibration function as an
approximate method for calculating the equilibrium distributions of components in the
LGM near the critical point. This approach separates the contributions in the equation
for local isotherms from the short-range potential and from large-scale fluctuations. The
last contributions are taken into account by the calibration function. For more details,
see [68,134,162–164].

Potential functions (10) were also used to calculate the equilibrium characteristics
of mixtures at high pressures in the bulk phase [168]. Here, the potential of the LGM to
describe the stratification of ammonia–nitrogen gases is shown in Figure 6. The field on
the left shows the experimental measurements (abscissa axis—percentage). In the right
field, the same points are marked with symbols (abscissa axis—mole fractions) for the same
temperatures.
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Figure 6. Dependences of a system’s pressure on the concentration of ammonia in a binary ammonia–
nitrogen mixture at different temperatures. Experimental values from [168] are on the left; calculated
values are on the right. Temperature values on the right lines from bottom to top: 90, 110, 120, 130,
140, 170, and two lines around 180, and 210◦.

The reason for the deviation of the experimental value from the theoretical one is that
the model equations use the rules for combining parameters of the LD-type potential for
molecules obeying the law of the corresponding states. This calculation agrees qualitatively
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with the experiment. The calculation uses the usual concept of the law of corresponding
states for all components of the mixture, although for ammonia this assumption is condi-
tional. Nevertheless, the use of LGM provides qualitatively acceptable results, although
the degree of deviation of ammonia from the law of corresponding states increases with
increasing pressure.

5. Influence of SCFs on Equilibrium and Kinetic Characteristics

While analyzing the specifics of the effect of SCFs on a variety of technological pro-
cesses, the following three circumstances should be taken into account: (1) an increase in the
role of lateral interactions with increasing pressure; (2) shifts in equilibrium concentrations
with increasing temperature, which can lead in reaction systems to the implementation
of stages that are unlikely for low temperatures (thermal dissociation of water sharply
increases the value of the ion product) [2,169]; (3) under SC conditions, the states of the
materials of the reaction system change (for example, the state of coke on catalysts or the
properties of polymer matrices in membranes change). Nevertheless, the main question
remains about changing the rates of the stages that form the gross processes, relating to
points two and three. Its decision determines the accuracy of the description of the entire
gross process.

The thermodynamic and structural characteristics of condensed systems are described
using the methods of statistical thermodynamics based on the knowledge of the potential
functions of interparticle interaction. SCF systems are created using CO2 molecules, low
molecular weight alkanes, alcohols, freons, water, etc. Such solvents are multicomponent
mixtures of low molecular weight substances. To model SC systems, it is necessary to be
able to calculate the bulk properties of SCFs and their contacts with the surfaces of solids
(non-porous and porous). For polymer matrices, the dissolution of SCF molecules through
open surfaces is possible. All these properties of SCF systems can be taken into account
within the framework of the unified LGM technique [66,106] discussed above.

5.1. Effect of SCFs on the Characteristics of Adsorption Processes

It was noted above that an increase in pressure always leads to an increase in the
density of the mixture components, and this causes a shift in the equilibrium conditions
and changes the rates of elementary stages [1,3,170]. This fact affects all surface processes:
catalytic, adsorption, membrane, etc. Depending on the composition of the gas mixture,
we will conditionally divide practical situations into two cases. The first case refers to a gas
mixture with strongly adsorbing particles. For these, an increase in pressure increases the
surface concentration of reactants or adsorbed particles.

The second case refers to gas mixtures with weakly adsorbing or inert molecules.
In this case, an increase in pressure also increases the near-surface number of molecules,
which can affect the competition for filling part of the surface between strongly and weakly
adsorbing molecules. This fact is important if the amount of weakly adsorbing molecules
in the volume exceeds the proportion of strongly adsorbing molecules. Such competition
makes it possible, in principle, to more accurately control the course of the surface pro-
cess. Many polymeric systems are of this type; their interaction with supercritical carbon
dioxide (SC–CO2) has been extensively studied [171,172]. CO2 molecules are a solvent for
some polymers, combining many important technological factors such as environmental
friendliness, low cost, ease of removal from the polymer, incombustibility, etc.

In paper [173], the processes of chemisorption and physical adsorption were analyzed
depending on the degree of surface coverage in the presence in the system of both the main
components for the studied surface processes and the influence of the presence of SCF
components, which, as a rule, are weakly adsorbing components. Methods for modeling
surface processes are given in [66,68].

As an example, typical isotherm curves of the adsorption of component A are shown [173]
for a rise in the SCF pressure. As the SCF pressure increases, the surface coverage by compo-
nent A decreases (see Figure 7); thus, component A is displaced from the adsorbent surface.
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There is the displacement of the adsorbed molecules of component A from the adsorbent
surface upon an increase in the pressure of the SCF for fixed surface coverages θA = 0.05
(1), 0.5 (2), and 0.85 (3). A comparison of Figure 6a,b leads to the conclusion that, on the
strongly binding surface, component A is displaced from adsorption sites at higher SCF
pressures more slowly and over a broader range of pressures of component SCF than for
the weakly binding surface. The same sort of curves will apply for chemisorption—values
of partial pressure change (the range of pressure of the basic component A at chemisorption
and physical adsorption differs by approximately 4–6 orders of magnitude) and the course
of concentration dependences remains similar.
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Figure 7. Dependence of adsorption of the basic component A in binary mixture of component A
and component SCF for rising pressure of SCF for fixed concentration component A corresponding
to θA = 0.05 (1), 0.5 (2), and 0.85 (3) for weak (a) and strong (b) adsorption [173].

In work [173] the influence of SCFs on the stratification characteristics of the adsorbed
particles A is investigated. With adding the component C, isotherms of component A
change, and, hence, the phase diagram changes. Additionally, it was found that at a great
enough pressure of an inert component C, there is a weakening of the connection between
components A. (Here, the two-dimensional situation reflects the real three-dimensional
process of SCF interaction with polymeric matrices).

5.2. Effect of an SCF on the Concentration Dependence of the Rate of a Reaction

Relation (2) defines the effective activation energy EAB
ef for a bimolecular reaction [170]

as
W12 = UAB/(kAB

0θAθB) = exp(-βEAB
ef) (11)

where EAB
ef = EAB +εAB − β−1ln(θAB/θAθB) − (z − 1)ln(SA SB).

At low concentrations of reagents, EAB
ef = EAB. At high fluid densities, when the

proportion of reagents A and B is small, and the proportion of SCF is large (θC >> θA + θB),
then

EAB
ef ≈ EAB − (z − 1)(δεAC + δεBC) = EAB + (z − 1)(1 − α)(εAC + εBC).

In this expression, the equivalence αij = α is used for both reagents.
Formula (11) determines the effect of the interaction of the SCF with reagents on

the value of EAB
ef. If α < 1, then the presence of the SCF associates around the reagents

increases EAB
ef. If α > 1, then the SCF associates decrease EAB

ef. The difference in values of
∆EAB(θ) = EAB

ef − EAB indicates the effect of the SCF on the activation energy of the stage.
In that case, when the SCF plays the role of a solvent, then the influence of intermolecu-

lar interactions manifests itself in a change in EAB
ef with varying pressure and temperature.

In the case of a large value of EAB
ef, the influence of the SCF is small if the rate of the

chemical reaction itself remains in the region of the kinetic regime. However, due to the
addition of a large amount of inert SCF molecules, with an increase in the pressure in the
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system, the nature of the flow of the bimolecular reaction can change and move from the
kinetic regime to the diffusion regime.

A detailed analysis of the ratios between Eij
ef for chemical reactions and transport

stages was carried out in [170]. The contributions of the total density of the system and the
role of intermolecular interactions at different temperatures of the SCF of the system were
discussed. The theory of non-ideal reaction systems allows the SCF process to separate into
failure contributions from pressure and temperature. In situations where the contribution
of temperature predominates, the differences between the values of Eij

ef and Eij are small,
so Equation (1) can be used. If the contribution from pressure is predominant, then the
differences between Eij

ef and Eij limit the region of the SCF for concentrations where the
mixture can be considered an ideal one.

Such a molecular interpretation distinguishes the chemical features of reaction systems
at high pressures from the collective properties of multicomponent systems. Thus, for
water molecules, an increase in temperature of more than ~10 degrees above the critical
temperature leads to a decrease in density and water remains as a dense vapor up to very
high pressures (almost 10 Pcr) [174].

For the case when the SCF is a reactant, the dependence of the effective reaction energy
is shown in Figure 8. A three-component system (A, B, C) with the chemical reaction
A + B (here θA = θB) is considered, in which the reaction between molecules A and C is
also possible (C is the SCF component). The proportion of component C varies and it
is demonstrated how the effective activation energy EAC(ef ) changes with respect to the
energy EAC of the same reaction in an ideal system as a function of the total amount of
substance θ = θA + θB + θC.
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Curves correspond to reagent concentrations xA = xB = 0.01-mole fractions.

Here, the SCF manifests itself through lateral interactions and as one reagent; therefore,
in general, the role of the SCF component increases, although only lateral interactions make
a smaller contribution compared to the contribution from the main chemical reaction A + B
(for these, the relative contribution of lateral interactions reaches values of 4–5). Obviously,
an increase in the activation energy of the parallel stage A + C reduces the contribution
from lateral interactions (curves 3 and 6).

The theory of reaction rates in condensed phases [66,68] demonstrates that, under
supercritical conditions, intermolecular interactions cannot be ignored even for an inert
supercritical component, which may exert a significant effect on the rates of elementary
processes.

The curves shown in Figure 8 indicate the characteristic intervals of possible deviations
from the law of mass action in the typical diapasons of supercritical processes in the
gas phase, in the temperature and activation energy, which differs from a process in an
ordinary gas atmosphere at 1 atm. An increase in the density of the supercritical component
decreases the probability of the reactants meeting one another and the SCF–reactant lateral
interactions, though comparatively weak, stabilize the initial states and reduce the rates
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of the reactions. The latter circumstance is significant for most reactive reactants, such as
ozone [2,175]. The calculations were carried out for the entire SCF density range, so it can
readily be seen from the calculated curves whether it is possible to neglect the interactions
between the SCF molecules under the given conditions. (If the lateral interactions can be
neglected, then EAB(ef) = EAB at any θC.)

In many cases, such a state may arise with an increase in the density of inert SCF
(θ→ 1), when the reagent transport stage begins to limit the processes, especially at low
concentrations of the main chemical reagents. This problem, however, does not occur if the
SCF component is one of the reactants. In this case, the bimolecular stage A + C transforms
into a quasi-monomolecular one. In general, when analyzing the role of the SCF, one should
take into account the possibility of changing the mechanism of the process under study and
the state of the accompanying materials, in addition to traditional ideas about the increase
in the rate of stages with increasing temperature and its decrease with increasing pressure,
together with a decrease in the self-diffusion coefficient and an increase in the viscosity
coefficient.

A comprehensive analysis of the entire system as a whole is required because a
change in one of the thermodynamic parameters (pressure or temperature) can worsen the
implementation of elementary stages. Using the concepts of specific mechanisms of gross
processes, the kinetic equations of non-ideal reaction systems make it possible to relate the
characteristics of the SCF processes to similar processes under normal conditions.

5.3. Effect of an SCF on the Concentration Dependence of the Dissipative Coefficients

The theory of non-ideal reaction systems provides ways to consider transport charac-
teristics. The simplest characteristic of molecular transport in mixtures is the self-diffusion
coefficient of component i (1 ≤ i ≤ (s − 1)), which characterizes the thermal motion of
type i molecules under equilibrium conditions. In practice, the self-diffusion coefficient is
usually associated with the motion of an isotopic label locally introduced into some region
of the system and the temporal distribution of the label over the rest of the solution is
monitored. For labeled type i molecules, we have the following expression for the local
partial self-diffusion coefficient [68,176]:

Di* = zfg* UiV/θf
i, (12)

where zfg* is the number of possible hops to nearest-neighbor sites g for the f th cell along
the direction in which the label moves. The expression for wiV is given by Formula (2). This
refers to the bimolecular hop of molecule i, i + V→ V + i, in which the first “reactant” is a
moving type i molecule, and the second “reactant” is the vacancy into which the molecule i
is transferred. The activation energy of this process is EiV = 0 for a bulk phase and EiV > 0
for the surface migration step. With the growth of the full density of a system, the fraction
of free volume decreases and the factor of self-diffusion of any particle decreases.

The apparent activation energy of the self-diffusion of component i is written in the
form of Formula (11):

EiV(ef ) = EiV − β−1ln(θiV/θiθV) − (z − 1)ln(Si SV), (13)

For high SCF coverages, it follows from Formula (13) that ∆EiV = EiV(ef ) − EiV = (z −
1)(1 − 2α)εAC. For α = 0.5, ∆EiV = 0 and the decrease in the self-diffusion coefficient is only
due to the decrease in the free volume fraction.

Figure 8 plots the concentration dependences of the self-diffusion coefficient of the
main component A (DA) in the SCF bulk (EiV = 0). The effect of the density of the supercrit-
ical component was studied as a function of the density θC varying between zero and 1 −
θA for two main component coverages, θA = 0.01 and 0.1.

In these calculations, we fixed the mole fraction of the main component A relative to
the supercritical component C; accordingly, all curves begin at θ = 0. The curves descend as
the total density increases. This is due to the decrease in the free volume, which is necessary
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for molecular transport. The self-diffusion coefficients of the SCF in the bulk are similar to
those of the main component. The behavior of the DC curves is similar to the behavior of the
curves shown in Figure 9. The concentration dependence of the self-diffusion coefficients
depends strongly on the nature of the supercritical component. The stronger the interaction
between SCF molecules, the greater the extent to which diffusion slows down with an
increasing SCF concentration. The self-diffusion coefficient decreases as the temperature is
raised.
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Figure 9. Self-diffusion coefficient of component A (DA) as a function of θ = (θA + θC) at γA= εAA/εCC

= (1) 1, (2) 1.6, (3) 3.2, and (4) 6.4 for τ = 1.15. Solid lines: θA= 0.01; dotted lines: θA = 0.1.

Shear viscosity. Another important transport characteristic is the shear viscosity. Knowl-
edge of this characteristic is necessary for calculating flow velocities in various reactors.
Like the self-diffusion coefficient, viscosity is expressed in terms of the thermal velocities
of molecules. The local shear viscosity ηfg for spherical molecules of comparable sizes is
expressed as follows [25]:

η =

[
s−1

∑
j=1

xj

(
ηj

)−1
]−1

, η j = θ j/UiV, xi = θi/θ, θ = ∑ i = 1s−1θi, (14)

where xi is the mole fraction of component i and θ is the total coverage of the system.
For pure components, it follows from this expression that η depends on temperature

as T1/2 and depends linearly on the density. For high densities, we have an exponential
temperature dependence, as in Eyring’s conventional model [31]. Equation (14) allows
viscosity to be calculated for any composition of a multicomponent mixture.

Figure 10 plots viscosity versus the total mixture density θ. In these calculations, we
fixed the mole fraction of the main component A relative to the supercritical component C;
accordingly, all curves begin at θ = 0. With this method of expressing the amount of the
main component A, the difference between the viscosities at θA= 0.01 and 0.1 is smaller
than in the case of the fixed amounts of component A. The concentration dependences of
viscosity are normalized to the viscosity of component A in a rarefied gas. The calculations
were carried out at a fixed εAA value for component A and a decreasing ε0 value or an
increasing γA = εAA/εCC ratio. An increase in γA leads to an increase in the energy of the
lateral interactions between the main component A and the SCF. As a result, the viscosity
of the system decreases. Therefore, by changing the SCF, it is possible to vary the viscosity
of the system in a fairly wide range. This range is temperature-dependent: it widens with
increasing temperature.
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Figure 10. Viscosity as a function of θ at γA = (1) 1, (2) 1.6, (3) 3.2, and (4) 6.4 for τ =1.15. Solid lines:
θA = 0.01; dotted lines: θA = 0.1.

The calculated data indicate that the self-diffusion coefficients and viscosity character-
izing the transport properties of the entire supercritical system depend on the density of
the supercritical component to a lesser extent than the reaction rates. This is due to the fact
that the thermal velocities of molecular migration, which determine both of the transport
coefficients, depend on temperature much less strongly than chemical reactions.

The above results in Section 5 correlate well with the known similar relationships for
the same steps occurring at atmospheric pressure. At the same time, they were obtained
by an analysis of the processes in a very wide SCF density range. The validity of the
above inferences throughout the pressure and temperature ranges typical for supercritical
processes suggests that this good correlation is a more general point than a simple corollary
of the law of mass action.

6. LGM and Dissipative Coefficients

Real technological SCF processes are implemented in reactors and for their modeling
it is necessary to know not only the equations for describing chemical reactions, but also
the general thermophysical flows of momentum, energy, and mass transfer. As noted
in Appendix A, the dissipative coefficients are directly related to the elementary rates of
transport processes; therefore, the same model potentials of intermolecular interaction
are used for their calculation, both for chemical reactions and equilibrium distributions
(according to Section 3.1). Therefore, the effective pair potential (10) was used to calculate all
dissipative coefficients. These calculations were carried out both for individual components
(coefficients of self-diffusion, viscosity, and thermal conductivity) and for binary mixtures
(coefficients of mutual diffusion and viscosity). These calculations refer to the group
properties of simple fluids, which reflect the general patterns for many molecules that
obey the law of corresponding states. There are no strong specific bonds for molecules of
this kind. Comparisons were made with the so-called generalized diagrams, which were
actively used earlier in technological calculations. Specifying the properties of molecules,
such diagrams correspond to an accuracy of the order of 3–5%.

Calculations of shear viscosity coefficients for specific molecules and their general-
ized normalized values of the coefficients are shown in Figure 11. The accuracy of these
calculations is about 5%.
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Figure 11. (a) Dependences of O2 shear viscosity η on pressure P at different gas temperatures:
(1) 289, (2) 328 K. Dots are experimental values from [177]. (b) Analogous dependences for low
densities. (c) Generalized diagram of reduced shear viscosity η/η0, depending on reduced pressure
Pr at different reduced temperatures Tr. Dots are experimental values from [23,26].

Another important dissipative coefficient is the coefficient of thermal conductivity.
For dense gases and liquids, this coefficient is calculated based on the simulation of two
channels of heat transfer: the diffusion mechanism of transfer of atoms and/or molecules
in space through a selected plane (see Appendix A), and the mechanism of particle colli-
sion among themselves, when no movement occurs through a selected plane of particles
from different half-spaces (this mechanism was first introduced for rarefied gases by En-
skog [178]). Calculations of the thermal conductivity coefficient are demonstrated for the
bulk phase [158,177] (Figure 12a) and for its generalized dependence [26] (Figure 12b).
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For multicomponent mixtures, the self-diffusion and mutual diffusion coefficients
are necessary for modeling mass transfer processes. These coefficients are shown in
Figure 13a,b. The self-diffusion coefficient characterizes the motion of a labeled particle in a
one-component system under the condition of a complete equilibrium distribution of parti-
cles within the system. The coefficient of mutual diffusion characterizes the nonequilibrium
of a binary system with respect to its composition. Experimental data on the indicated mass
transfer coefficients are presented in [26] with the help of weighted average correlations,
which make it possible to display both types of coefficients in wide ranges of temperature
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and pressure changes. In Figure 13b, the interdiffusion coefficients refer both to individual
gases (argon and nitrogen) and to their mixtures.
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Figure 13. (a) Generalized diagrams of the self-diffusion coefficient for the p/pC < 4 range of pressures.
Lines represent calculations in [160]; dots represent experimental values from [26] at τ = (1) 1, (2)
1.1, (3) 1.2, (4) 1.3, (5) 1.4, (6) 1.6, (7) 2, and (8) 3. (b) Generalized diagrams of the mutual diffusion
coefficients of an Ar–N2 mixture with xN2 = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0-mole fractions at τ = (1)
1, (2) 1.3, and (3) 3 in the p/pc < 4 range of pressures. Series of curves calculated for each τ value
are displayed from the bottom up as the concentration of nitrogen grows [160]. Dots represent
experimental data recalculated according to the rules in [26].

Weighted average correlations over gas densities were actively used for approximate
estimates of various characteristics. For shear viscosity coefficients of binary mixtures, the
approach of Dean and Steele was popular (cited in [26]). Based on experimental data for
mixtures of non-polar dense gases (light hydrocarbons, and hydrocarbons with inert gases
and air components), an approximation expression was proposed that is almost linear in the
logarithmic scale. The numerical values of this approximate formula for the experimental
data are shown in Figure 14 by thin lines.
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Figure 14. Logarithmic dependences ηm/η0
m on reduced density $rm, obtained for a binary Ar–N2

mixture at different reduced temperatures τ: (1) 0.75, (2) 1, and (3) 3; thick lines represent the
calculated values from [160]; thin lines represent experimental values from [26].

Figure 14 compares the dependences ηm/ηm0 (where the denominator ηm0 is a normal-
ization factor to the properties of a rarefied gas) on the reduced density ρrm, obtained for
the Ar − N2 binary mixture for three values of τ according to this empirical formula and to
the LGM (thick lines are the calculation of the LGM [160]). Here, the reduced temperature
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τ = T/Tcr = 0.75, 1, and 3, where Tcr is the critical temperature reflecting the change in the
value as a function of the composition of the mixture.

7. Extension of the Models

This section briefly mentions the directions where approaches based on the LGM
have been developed. Above, the components of the mixture were assumed to be approxi-
mately commensurate in size in order to singly occupy a cell of the lattice structure, and a
spherically symmetric pair potential was used for the model interaction potential. These
restrictions were lifted in subsequent works when nonspherical effective potentials were
considered, jointly taking into account electrostatic contributions with the Lennard–Jones
potential. Also, the kinetic equations are discussed below in the LGM, which are necessary
for describing three-aggregate states.

7.1. Nonspherical Potential Functions

Refusal to use spherically symmetric effective pair functions (10) has been considered
in the framework of lattice models since the beginning of their development [119–122]
(see also [179–181]). This direction of work made it possible to move to a more accurate
accounting of the size of molecules and their shape, which can differ greatly from spherical
ones. This includes models of interactions with local atom–atom potential functions for
individual functional groups of molecules, as well as their simplified description, which
involves the use of energy contact interaction parameters.

As an example of the development of such approaches, a model was considered
in [182] that makes it possible to take into account the differences between hard spheres of
particles and an integer number of cells. Thus, one of the main SCF components, the CO2
molecule, has noticeable differences in shape from a spherical one. The ratio of its long and
short axes is 1.38. As an example, Figure 15 shows the compressibility factor χ = PV/(PV)s
of CO2 molecules [183], where the product of pressure and specific volume (PV)s refers to
normal conditions. The calculations were carried out for different potential models: curves
1–3 are given for a single-site model; curve 4 reflects the difference in the shape of the hard
sphere of the molecule. (For comparison, curve 2 is given for the strong contribution of the
triple interaction).
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The discussed modification of the potential is better than the experimental curve [184].
(Figure 15 presents the compressibility factor described by the theory with accuracies of up
to ~4%). Curves 1 and 4 for a temperature of 272 K reflect the separation of CO2 molecules
(Tcr = 304 K). Calculations of the separation curve of CO2 molecules demonstrate a number
of differences depending on the interaction potential; their consideration depends on the
goal of modeling the processes with their participation.
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The [182] approach also reflects the possibility of taking into account different energy
contact interactions in nonspherical molecules. Such potential modifications can be pro-
posed for other SCF components of mixtures and for the reactant molecules themselves.
The refinement of differences in the shape of molecules from spherical is important for
the calculation of all dissipative coefficients. When modeling processes inside porous
materials and on open surfaces, the role of molecular asymmetry increases, since the spatial
distribution of molecules is additionally affected by the surface potential of the solid. The
nonsphericity of molecules is important in the analysis of short-range order and in the
transition to the appearance of long-range order.

7.2. Water Molecules

Water is a component that is actively used in SCF processes. To expand the possibility
of using LGM approaches with different potential functions, in [185,186] a potential was
considered with a combination of the contributions of the dipole potential and the Lennard–
Jones potential and simultaneous generalization according to a more general statistical de-
scription: direct correlations in the QCA were taken into account instead of the average field
description of interacting molecules [187,188]. Previously, it was known [32,33,108–110]
that the use of only electrostatic interaction is not enough to describe the thermodynamic
characteristics of water.

The joint allowance for the dipole potential and the Lennard–Jones potential made
it possible to improve the quantitative description of the experimental data [189,190]. In
particular, it was found that the LGM describes the stratification curve of water with the
same accuracy as for argon. The microscopic nature of the LGM makes it possible to obtain
a description of dipole systems without resorting to the macroscopic concept of permittivity.
The same approach can be applied to many other polar liquids. On the other hand, the
LGM [185,186] used in [191] makes it possible to describe the experimental data on the
self-diffusion of water molecules [190].

In this work, we studied the temperature behavior of the water self-diffusion coeffi-
cient. This process can be written in the form of the bimolecular reaction (H2O)f + Vg = Vf +
(H2O)g, in which the numbers of the neighboring sites f and g are used as indices and the
symbol Vg denotes a vacant site with the number g, i.e., the diffusion of water molecules is
a special case of a bimolecular reaction occurring on the f and g sites.

The theory allows the determination of the water self-diffusion coefficient and the
study of its temperature dependence (Figure 16). Figure 16 presents the water self-diffusion
coefficient described by the theory with accuracies of up to ~8%. Our calculations were
performed under the condition that the considered jump of a molecule to the neighboring
vacancy occurs much more rapidly than the local rearrangement of the overall environment.
According to the Frenkel hypothesis [192], the transition to the thermal motion of molecules
is associated with the clearly correct hypothesis of a weak change in the state of neighbors
when the considered molecule jumps. Assuming [31] an equilibrium distribution of its
neighbors would contradict the logic of the process: for a selected molecule to move, it is
necessary that its analogous neighbors are quickly attuned to the transition state of this
step. Many jumps of the neighbors are required for one jump of the considered molecule to
occur.
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By comparing the constructed theoretical curve with our experiment’s results [185],
we found the optimum value of parameter α for the water molecule energy parameters
from [193]: α = 0.65. (Note that the same experiment can also be approximated by molecular
dynamics [194].) The obtained good agreement testifies to the adequacy of the lattice model
and the validity of its assumptions. The α value above demonstrates the relatively low
activation energy that a water molecule must overcome during a jump in the course of this
reaction.

7.3. Kinetic Equations

The mathematical formulation of the second law of thermodynamics is written as the
inequality dS ≥ dQ/T, where Q is the amount of heat [20–22,111]. To calculate the change
in entropy during the transition processes between different initial and final states, it is
necessary to know the state of the system at two points (the equal sign refers to reversible
processes). The transition between initial and final states is described by kinetic equations,
which determine their key importance in modeling any technological processes [112].

Currently, kinetic theory at the atomic and molecular level in the lattice-gas model
(LGM) [66,68] can be used in almost the entire time range, from the characteristic times of
atomic vibrations to macroscopic, including equilibration times. The theory considers the
full set of elementary processes of movements of molecules and their chemical reactions
occurring in the system on the set of lattice sites. To construct the general structure of the
kinetic equations of the lattice model, we assume that the lattice sites are not equivalent
to each other. The nature of the inhomogeneity of the lattice sites is considered known
and constant over time. From a physical standpoint, the nonuniform distribution of
particles is due to both the interaction between the particles of the system and the possible
additional influence of external fields or interactions. The formulation of the problem
under consideration allows covering from a unified point of view a wide range of issues
related to the nonuniform distribution of particles at the gas–solid interface: the spatial
distribution of the particles on a uniform surface, the presence of ordering in them, changes
in the distribution of atoms of the solid adsorbed particles along the normal to the interface,
and the distribution of particles laterally interacting on the nonuniform surfaces and,
correspondingly, in any three-dimensional volume of the porous body. General ideas about
the construction of the kinetic equations in the LGM are described below in Appendix A.

The LGM provides a unified approach to modeling equilibrium and kinetic processes
in three states of aggregation. It uses a single set of energy parameters to describe different
stages of a multi-stage gross process both in kinetics and in the equilibrium state.

Many practically important circumstances, such as the presence of several hetero-
geneous phases in systems, the multistage nature of the overall process, the presence
of external fields, etc., lead to the complication of the structure of the kinetic equations.
Particularly important in this regard are the ratios of the relaxation times of the reactants
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in nonequilibrium states, which must be taken into account when modeling using kinetic
equations.

All these kinetic equations should be built based on the theory of non-ideal reaction
systems [66,106], taking into account all possible options for changing the potential func-
tions of intermolecular interaction. Accordingly, equations were adapted to describe the
processes in complex porous materials [68], in which phase and supercritical states are
realized. For these, their own equations of state and equations for dissipative coefficients
were also constructed. Such developments led to the creation of microscopic hydrodynam-
ics [68]. This describes the processes of porous systems, inside which chemical and/or
catalytic reactions take place in the fields of pore walls, in the presence of vapor and liquid
phases. In the same way, the LGM methods made it possible to develop approaches for
the formation of new phases [115] taking into account the microscopic description of their
interfaces (such processes are often implemented in SCF). New kinetic equations have also
been developed that reflect the consideration discussed above for differences in molecular
sizes [195] and the possibility of the presence of charged particles in reaction systems,
including electron transfer [196,197].

At present, the kinetic equations in the MGM have reached the general level of
describing all three-aggregate states from a unified position [115,196,198], starting from
the elementary stages of changing the position of particles in space and/or elementary
chemical transformations. This makes it possible to simulate many processes that are
implemented in SCFs, associated with a change in the phase state of materials and chemical
processes occurring in the SCF conditions. As an example, we can note the development
of the fundamentals of the process of swelling of polymer matrices [195]. In this work, a
molecular model for the sorption of low molecular weight molecules, accompanied by a
change in the volume of the polymer, is proposed. The kinetic equations make it possible
to relate changes in the local densities of the sorbate and fragments of polymer chains
to each other, although it should be noted that there is, up to now, no complete theory
of the swelling of polymers in SCFs. However, the analysis [170,173] of separated stages
shows that SCFs can rather strongly affect the state of the adsorbents and catalysts that can
qualitatively be observed in the studies of the combined effects of SCF–CO2 and ozone on
coke-like deposits on a surface of Pt–Re/γ-Al2O3 bimetallic reforming catalysts [199].

8. Conclusions

This review presents two levels of discussion on the modeling of SCF processes. The
traditional level reflects the specific modeling methods used to describe the physicochemical
characteristics of the systems under study, the rates of chemical reactions, and dissipative
coefficients. In this regard, LGM-based approaches are presented as universal modeling
methods for three-aggregate states of systems. A new level of discussion of the applicability
of the LGM is associated with the important circumstance of agreement with the second law
of thermodynamics when the models for calculating the rates of stages and the equilibrium
distribution of components must be consistent with each other. Otherwise, the models
will belong to different classes and their molecular parameters will not be preserved
when discussing different modes of the process, which makes it difficult to model gross
processes. It should be recalled that the historically known expressions for chemical
equilibrium according to Guldberg–Waage’s mass action law [34,35] and Langmuir’s
adsorption isotherms [200] (Section 3.2) were first obtained based on the Clausius second
law of thermodynamics.

In modeling real technological processes using existing methods discussed in the
Section 1, situations arise when two levels of models are used simultaneously: models
of non-ideal systems for describing the equilibrium properties of SCF and kinetic models
based on the law of mass action, i.e., models for ideal systems, which does not agree with
the second law of thermodynamics.

This review demonstrates the great potential of the LGM for modeling a wide range of
SCF processes, consisting of different elementary stages in the overall processes of chemical
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transformations and transport stages, which ensure self-consistency of the description of
the kinetics of these processes with equilibrium states in non-ideal reaction systems.

The first comparisons of different methods of molecular modeling (integral equations,
molecular dynamics methods, Monte Carlo, and LGM) already showed [201] that the LGM
is in no way inferior in calculating all thermodynamic characteristics (although it does
not give a continuum distribution of molecules inside the cell). It is difficult to give a full
account of the practical applications of the LGM (although some of this material is presented
in this review). The development of the statistical methods of the LGM [66,106] made it
possible to significantly enhance its capabilities, especially for highly inhomogeneous
systems (these are problems for phase boundaries, adsorption, and absorption). The
introduction of the modifications discussed in this review, taking into account the internal
motions of molecules inside the cells [133,134,139], formulated a unified approach to
describing the molecular distribution in three-aggregate systems [115]. New developments
in the LGM make it possible to perform calculations with more complex multiparticle
potentials. Today, joint calculations are available for these using quantum-chemical methods
for determining the energy of intermolecular interactions [66,106,154,202], including those
with the Coulomb potential [197,203]. The statistical substantiation of initially purely
empirical potential functions of the type (10) obtained in the LGM allows one to operate
with molecular potentials, similar to all other methods of statistical physics. This makes
it possible to search for the parameters of potential functions from the solution of inverse
problems by describing the experimental data more quickly and more accurately due to
the significant gain in time when using the LGM methods. In particular, the parameters of
the “excluded” volume fraction, the cell size, and the vibrational contribution of molecules
introduced into the LGM operate only on the properties of potential functions and do not
have additional parameters.

Mathematical models developed in the LGM correspond to all times of realization
of processes, including their relaxation stages in all three-aggregate systems and reaching
equilibrium distributions according to the second law of thermodynamics. In terms of
the computing speed, LGM is at least 2–4 orders of magnitude faster than the molecular
dynamics method and its accuracy is not inferior to it.

It should be noted that, up to now, modeling based on the LGM has been carried out
for the simplest molecular mixtures; however, its extensions make it possible to switch
to more complex systems that have more complex phase diagrams and distinct physico-
chemical properties, including those containing both upper and lower critical points, as
well as systems in which there are diagrams without top and right borders. Models for
such equilibrium characteristics have been discussed earlier in the literature [118–122]
and recent developments in the MGM (Section 7) make it possible to generalize them
to the corresponding kinetic models, which will be consistent with the second law of
thermodynamics.

Modern approaches based on the LGM [66,68,106,115] can be applied, as well as the
thermodynamic approach [114,204], for any phases and from interfaces. They are actively
used to simulate many practically important processes in a wide range of pressure and
temperature changes. They describe the distribution of components of heterogeneous
systems and their phase diagrams, to model the chemical synthesis reactions, and so on.
With their help, one can calculate the processes of adsorption, catalysis, and growth of
crystals, and the processes of transport of molecules through various polydisperse materials
(porous bodies, membranes, and thin films), as well as consider the rheological properties
of molecular and other aspects of physical and chemical mechanics, etc.

An important advantage of the LGM is the extension of the theory of chemical transfor-
mations to non-ideal reaction systems, which takes into account the influence of interparticle
interactions and preserves the effects of correlation between interacting particles. This
makes it possible to eliminate the existing contradiction in the modeling of SC processes,
when the equations of state describe non-ideal mixtures, and the kinetic models are based
on the law of mass action for ideal systems or the dissipative coefficients are built on the
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basis of Boltzmann-type equations for rarefied gases. The kinetic equations in the LGM
give a self-consistent calculation of the equations of state and rates of elementary stages,
which satisfies the second law of thermodynamics. This fact is of strategic importance for
the organization of the correct modeling of SC processes.

Modeling methods with the help of LGM make it possible to (1) assess the processes of
absorption of SCF molecules by polymer matrices, (2) describe the processes of growth of a
new phase (nanosized particles in CSF) and analysis of their size dependences, (3) analyze
the effect of concentrations of SCF molecules, taking into account their influence on shifts
in equilibrium and changes in the rates of stages in bulk phases, (4) study the factors in
porous materials that affect the processes of chemical kinetics, and the growth of a new
phase inside pores and in near-wall regions under supercritical conditions, and (5) assess
the role of critical regions inside porous materials on SCF transfer processes of molecules
and their chemical transformations, etc.

Thus, for almost all modeling parameters, the LGM has the most significant potential
for describing SC states of fluids and processes with their participation in comparison
with all other existing methods of statistical physics in calculating both equilibrium and
nonequilibrium characteristics. This provides the basis for using the LGM approach for
practical applications to various technological SCF processes.
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Nomenclature

ai0 pre-exponential factor of the Henry constant for molecules of type i
dtr triple interaction parameter associated with its energy ε3
Di* partial self-diffusion coefficient for molecules of type i
Eij reaction’s energy of activation between i and j reagents
EA(ef ) effective activation energy of desorption
kB Boltzmann constant
kij rate constant of elementary reaction i + j→ products
kij

0 rate constant pre-exponential factor for elementary reaction i + j→ products
k1 and k2 reaction rate constants in the forward and backward directions
K equilibrium constant of the stage
M number of sites in the system
ni concentration of i-type molecules
Qi energy of i-particle bonding with the surface
Q amount of heat
Qs statistical sum of the system
P pressure
Pi partial pressure of i-type molecules

P({γf
i},τ)

probability of finding the system at the time τ in a state {γf
i}. For the sake

of brevity, this state is denoted as {I} ≡ {γf
i}

s number of occupation states of any cell or site
S entropy
Sm molecular property in flow
T temperature

tfh
ij = θfh

ij/θf
i function of the conventional probability of j particles being near i particles (fh

represents the numbers of sites containing these particles)
U internal energy
Uij rate of an elementary stage of a bimolecular reaction i + j→ products
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Uf
i(α) rate of the elementary single-site stage i↔ b with number α in the site f

Ufg
ij(α) rate of the elementary two- site stage i + jα ↔ b + dα with number α in two sites fg

V volume of the system
u contribution from the vibrational motion of molecules to energy parameters

Wα({I}→ {II})
probability of the elementary process αwhich resulted at time τ in the transfer of
the system from the initial state {I} to the final state {II}

xi = θi/θ mole fraction of component i among all molecules of the mixture.
z nearest neighbors of any site or cell

zfg*
the number of possible hops to nearest-neighbor sites g for the f th cell
along the direction in which the label moves

Z compressibility factor
α number of stages in the total process
αi activity coefficient of i-type reagents
αij* denotes the activity coefficients of ACs
αij = εij*/εij,
for simplicity
αij = α

is used for both reagents

γf
i variable determined the occupation state of site with number f (1 ≤ f ≤M)

by particle of type i (1 ≤ i ≤ s)
εij parameter of this interaction between ij pairs of neighboring particles

εij*
interaction parameter for reaction AC using i-type particles
and neighboring j-type particles

η shear viscosity coefficient
κ heat capacity coefficient
κD mean square displacement of particles in a solid in the harmonic approximation
λ average cell size
ΛAB

f g non-ideality function for the two-site stage
Λi

f non-ideality function for a one-site stage
µi chemical potential of component i
µi

0 chemical potential of the standard state for component i
ρ mean free path of a particle
θi concentration of particles type i in the (surface or bulk)) system
θ = ∑I = 1

s−1θi complete occupancy of a lattice system by all i components of the system, 1 ≤ i ≤ s − 1

θfh
ij probability of two particles i and j being on nearest neighboring sites f and h

(for homogeneous system θij, is the pair particle distribution function)
νi stoichiometric coefficient

Appendix A. Kinetics Equation in the LGM

A change in the state of a condensed phase, which we are modeling in the LGM by a
lattice structure at a molecular level, is associated with a change in the state of its individual
sites as a result of the realization of elementary processes. Fixation of the molecule in the
center of the cell corresponds to the state of its occupation. Mathematically, this event is
described by γf

i, where f is the cell number, 1 ≤ f ≤ M, subscript i denotes the state of
occupation of the cell with number f, 1 ≤ f ≤ s, and s is the number of the states of cell
occupation including a vacancy (M is the number of sites) [66]. For the two components
of the lattice systems (s = 2) of any site of the lattice structure corresponding to the one-
component system for which i = A or V (vacancies). If the site f contains an adsorbed
particle A, then γf

A = 1 and γf
V = 0; if the cell is free, then there is a vacancy, so γf

A = 0 and
γf

V = 1. The random variables γf
i are subject to the following relations:

∑s
i=1 γi

f = 1, and γf
i γf

j = ∆ij γf
i, where ∆ij is the Kronecker symbol, which means that

any site is unavoidably occupied by one, but only one, particle.
The state of the sites changes at the expense of two main types of elementary processes,

namely, the migration of the particles and their participation in chemical transformations.
In the first case, the particles change their position in space while remaining unchanged
in a chemical respect. In the second case, the particles transform into their other chemical
compounds without changing their position. The description of the process when a particle
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simultaneously changes its coordinates and partly changes its chemical nature by entering
into the composition of a complex or an intermediate does not virtually differ from the
description of the two basic types of processes.

We denote by {γf
i} = γ1

i, γ2
j, . . ., γM

n the complete set (or full list) of values γf
i of

all lattice sites, which uniquely determine the complete configuration of the locations
of the particles on the lattice at time τ, and, by P({γf

i},τ), the probability of finding the
system at this time in a state {γf

i}. For the sake of brevity, this state is denoted as {I} ≡ {γf
i}.

Let the common studied process consist of many stages and through α we denote the
number of elementary stages in the process. The master equation for the evolution of
the full distribution function of the system in a state {I}, due to the implementation of
the elementary processes α in condensed phases, has the following form (the so-called
Glauber-type equation) [66,163,205,206]:

d
dτ

P({I}, τ) = ∑
α,{I I}

[Wα({II} → {I})P({II}, τ)−Wα({I} → {II})P({I}, τ)], (A1)

where Wα({I} → {II}) is the probability of the elementary process α (the probability of
transition via channel α), which results at time τ in the transfer of the system from the
initial state {I} to the final state {II}. In Equation (A1) the sum is taken over the different
types of direct processes (index α) and all reversed processes {II}, in the state of occupation
of each site in the system changes.

If the elementary process occurs at one site, the lists of states of occupation of the
sites of the system {I} and {II} differ only for this site. Single-site processes are processes
associated with changes in the internal degrees of freedom of the particle, the adsorption
and desorption of non-dissociating molecules, and the reaction by the impact mechanism. If
the elementary process occurs in two neighboring lattice sites, then lists of the states {I} and
{II} differ in the conditions of occupation of these two sites. Two-site processes are exchange
reactions, adsorption, desorption of the dissociating molecules, migration processes by
the vacancy and exchange mechanisms, etc. The sum of the states {II} corresponds to the
change in states of occupation for all lattice sites. The interconnection of the states {I} and
{II} depends on the mechanism of the process that defines a set of elementary stages α.

Equation (A1) is written in the Markov approximation for which it is assumed that
the relaxation processes of the internal degrees of freedom of all particles are faster than
the process of changes of the state of occupation of different sites of the lattice system. The
transition probabilities Wα are subject to the condition of detailed balance:

Wα({I}→ {II}) exp(-βH({I})) = Wα({II}→ {I}) exp(-βH({II})), (A2)

where H({I}) is the total energy of the lattice system in the state {I}. In equilibrium, P({γf
i}, τ

→ ∞) = exp(–βH({γf
i}))/Qs; here, Qs is the statistical sum of the system [66]. Expressions

for Wα({I}→ {II}) are constructed with all the molecular features of the system taken into
account [68].

The large dimension of system (A1) does not allow it to be used to study the dynamics
of macroscopic systems by direct integration, so the kinetic equations are based on the
functions of distributions of a lower order through which the distribution functions of high
order are closed. To this end, instead of the full distribution function P({γf

i},τ), the evolution
of the system is described using a shortened method of defining it by time distribution
function (correlators) determined by

θi1 ...im
f1 ... fm

(τ) =< γi1
f1

. . . γim
fm

>=
s

∑
i1=1

. . .
s

∑
iN=1

m

∏
n=1

γin
fn

P({γi
f }, τ), (A3)



Processes 2023, 11, 2541 33 of 39

The closed system of equations for the first (θf
i = <γf

i>) and second (θfg
ij = <γf

iγg
j>)

correlations in the general form can be written as

d
dt

θi
f = ∑

α

[
Ub

f (α)−Ui
f (α)

]
+ ∑

h
∑

j
∑
α

[
Ubd

f h(α)−Uij
f h(α)

]
, (A4)

d
dt θ

ij
f g = ∑

α

[
Ubd

f g(α)−Uij
f g(α)

]
+ Pij

f g + Pji
g f ,

Pij
f g = ∑

α

[
U(b)j

f g (α)−U(i)j
f g (α)

]
+ ∑

h
∑
m

∑
α

[
U(cb)j

h f g (α)−U(mi)j
h f g (α)

] (A5)

where Uf
i(α) is the rate of the elementary single-site processes i↔ b (here h ∈ zf), Ufg

ij(α),
and α is the rate of the elementary two-site processes i + jα ↔ b + dα (h ∈ z) on the nearest
sites; the second term in Pfg

ij describes the stage i + m↔ b + c on neighboring sites f and h
(and the term of Pgf

ji describes the stages on sites g and h and similar stages on sites f and
h) [66,106]. All the rates of the elementary stages Uf

i(α) and Ufg
ij(α) are calculated in the

framework of the theory of absolute reaction rates for non-ideal reaction systems written
in the quasi-chemical approximation of the interparticle interaction. The rates of two-site
stages Ufg

ij(α) have the form of Equations (2) and (3), and the rates of single-site stages
Uf

i(α) in the QCA are expressed as

Ui
f (α) = ki

f (α)θ
i
f Λi

f (α), Λi
f (α) = ∏

h∈z( f )
Si

f h(α),S
i
f h(α) =

s

∑
j=1

tij
f h exp[β(ε∗ij(α)− εij)] (A6)

where Λi
f (α) is the non-ideality function. The functions tij

f h are defined in Section 2.2. For
Equations (A4) and (A5) we have the normalizing ratios (see also Section 2.2), which are
executed at any time.

Equations (A4) and (A5) describe elementary processes at the micro level. To move to
macroscopic transport equations, two levels are distinguished: local, which preserves the
written equations of chemical kinetics for a non-ideal reaction system, and macroscopic,
which describes the transport of molecules and their properties on the hydrodynamic
distance and time scales, which makes it possible to construct dissipative coefficients for
non-ideal systems. Transfer processes in the LGM correspond to the stage of displacement
of molecules in space through free sites (or vacancies), both for gas and for liquids and
solids.

From the kinetic theory, it follows [23–26] that the transport coefficients characterize
flows for small deviations from the equilibrium state of the system. We shall characterize
the state of the fluid in a bulk by concentration θ and temperature T. The equilibrium
distribution of the particles relative to each other will be calculated in the quasichemical
approximation taking into account the direct correlations between the interacting particles.
(Recall that the simpler mean-field approximation does not account for the correlation
effects and does not provide a self-consistent description of the equilibrium distribution of
the particles and the rates of elementary processes, so it cannot be used [66,106]).

To calculate the kinetic coefficients as usual [23,207,208], we select a plane in space 0
and consider the particle fluxes and the momentum and energy transferred by them. We
use the concept of the average speed of moving particles w. We draw two planes parallel to
plane 0 (with x = 0) at distances x = ±ρ, where ρ is the mean free path of a particle; then,
the properties of the particles Sm in these planes can be written as Sm(x = +ρ) = Sm(x = 0) ±
ρdSm/dx, where the symbol Sm means the concentration, the momentum (in the direction y,
for example) or the energy of the particles moving along the axis X. The flow of quantity
Sm through plane 0 consists of two oppositely directed movements of particles from the
planes x = ±ρ.

Two channels of transfer of momentum and energy operate in dense fluids. The first
is connected with the movement of the particles, as in the rarefied phase, and the other is
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determined by collisions between particles. The particle in question may not cross plane 0
if its path is blocked by other particles in sites on plane 0 or a particle in close proximity
on the other side of plane 0 prevents it from crossing a given plane. Both cases are not
considered by the elementary kinetic theory of gases and the kinetic theory of condensed
systems must be used [66,106].

In this way, the transmission of the property Sm through the selected plane is calcu-
lated, where Sm is modified by the following variables: (1) the number of molecules—for
calculation of self-diffusion coefficient Di* and mass transfer coefficients Dij, (2) the number
of impulses—for the calculation of the shear η and bulk viscosity ξ, and (3) the amount
of energy—for the calculation of the thermal conductivity κ. There are two channels of
transfer of the property Sm: η = η1 + η2, κ = κ1 + κ2: (1) the transfer of molecules via a
separated plane—the calculation of the coefficients Di*, Dij, η1, and κ1; (2) transfer of the
property (momentum and energy) through collisions—the calculation of the coefficients
η2, ξ, and κ2 [68]. The results of calculating the dissipative coefficients are also shown in
Figures 8–13.
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