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Abstract: Due to the complex underground environment, pumping machines are prone to producing
numerous failures. The indicator diagrams of faults are similar to a certain degree, which produces
indistinguishable samples. As the samples increase, manual diagnosis becomes difficult, which
decreases the accuracy of fault diagnosis. To accurately and quickly judge the fault type, we propose
an improved adaptive activation function and apply it to five types of neural networks. The adaptive
activation function improves the negative semi-axis slope of the Rectifying linear unit activation
function by combining the gated channel conversion unit to improve the performance of the deep
learning model. The proposed adaptive activation function is compared to the traditional activation
function through the fault diagnosis data set and the public data set. The results show that the
activation function has better nonlinearity and can improve the generalization performance of the
deep learning model and the accuracy of fault diagnosis. In addition, the proposed adaptive activation
function can also be well-embedded into other neural networks.

Keywords: deep learning; fault diagnosis; adaptive activation function; pumping unit

1. Introduction

The fault diagnosis of the pumping unit in the process of petroleum collection has
been a critical research topic. Due to the complex underground environment, during the
reciprocating movement of the sucker rod, there are many unknown factors that are prone
to result in the failure of the pumping machine and then form a safety hazard. Load (P)
and displacement (S) are the parameters generated when the donkey head of the pumping
unit moves up and down, and the closed curve formed by them is the indicator diagram. It
can reflect the influence of gas, oil, water, sand, wax, and other factors on the pumping unit
in real time [1]. If the pump is in the fault state for a long time, the wear of the pump will
be aggravated, and the service life of the equipment will be further reduced. Therefore, the
fault should be quickly and accurately detected so as to take corresponding fault tolerant
control measures to ensure the normal operation of the equipment [2,3].

The traditional method for fault diagnosis of a pumping unit is to measure the load
change with displacement at the suspension point, draw the suspension point indicator
diagram, and then diagnose the working condition of the pumping unit according to
the shape of the indicator diagram. The disadvantages of the traditional method are as
follows: first, the fault of the pumping unit is judged mainly by the method of manual
identification of indicator diagram, which has a great influence on human factors and
low recognition accuracy. Secondly, due to the large number and wide distribution of
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pumped wells, manual detection of faults is time-consuming and laborious. However,
given the complexity and high cost of pump units, there is less tolerance for performance
degradation, productivity decrease, and safety hazards; therefore, it is necessary to detect
and identify all potential faults rapidly [4,5]. This means that it is imperative to replace the
manual fault diagnosis of the pumping unit with a computer.

With the continuous progress of deep learning technology, using deep learning tech-
nology for fault diagnosis has become a new trend. For example, Convolution Neural
Network [6], Generation Adversarial Network [7], and Long Short Term Memory [8] et al.
show superior performance in fault diagnosis.

At present, the deep learning technology used in fault diagnosis of pumping units is
to classify the indicator diagram of different kinds of faults. Automatic features extracted
from raw data are an outstanding advantage of deep learning technology and will not
depend on the diagnostic knowledge of specialists [9].

In 2018, Y. Duan [10] proposed an improved Alexnet model to realize the automatic
recognition of indicator graphs and compared it with the current common neural network
model. In 2019, J. Sang [11] proposed a PSO-BP neural network algorithm aiming at the
problems of slow convergence and unstable results of the traditional BP neural network
algorithm; they designed the adjustment rules of the inertia weight and learning factor
of the PSO algorithm and adjusted the weight coefficient of the output layer and the
hidden layer of the BP neural network algorithm. In 2020, L. Zhang [12] used Freeman
chain code and differential code to extract the characteristics of dynamometer card data
of the pumping unit group. Then, a diagnosis model based on the BP neural network
was proposed, and the fault type of the pump group could be automatically identified
according to the dynamometer card. In 2022, H. Hu [13] proposed a model based on the
ResNet-34 residual network to identify the indicator diagrams, which added a residual
block structure to the traditional convolution neural network to establish a direct connection
between the upper layer input and the lower layer output and achieved the recognition and
classification of six power diagrams through parameter adjustment. In the same year, T. Bai
[14] proposed a fault diagnosis method based on a time series transformation generative
adversarial network (TSC-DCGAN).

Because of the complexity of the pumps’ working conditions, there are different shapes
of indicator diagrams in different working states. The indicator diagrams of different kinds
of faults are similar to a certain degree; thus, indistinguishable samples are produced.
This will lead to the poor generalization ability of deep learning models and difficulty in
navigating between indistinguishable samples. The function of the activation function is to
carry out the nonlinear transformation of data and solve the problem of the insufficient
expression and classification ability of the linear model. If the network is all linear trans-
formation, then the multi-layer network can be directly converted into a layer of neural
network through matrix transformation. Therefore, the existence of the activation function
can make the deep learning model perform better with the increase in the number of
layers. Therefore, we will propose a new activation function to improve the generalization
performance of the deep learning model so that the faults of the pumping unit can be
distinguished in a high dimensional space.

The calculation of the Sigmoid activation function is large, and the transformation
of the Sigmoid saturation region is slow. The derivation approaches 0, resulting in the
disappearance of the gradient. The output value of the Sigmoid function is always greater
than 0, which results in a slow convergence rate of the training model. The Tanh activation
function solves the zero-centered output problem, but the gradient disappearance problem
and the power operation problem still exist. Rectifying linear unit (ReLU) [15], which
has low computational complexity and fast convergence speed, can solve the problems
of gradient disappearance and gradient saturation; there is also the phenomenon of Dead
ReLU. In recent years, there have been many improved versions of ReLU (rectified linear
unit). To solve the Dead ReLU phenomenon, the negative part of ReLU is substituted for a
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non-zero slope, and Leaky ReLU (LReLU) [16] is proposed. Hence, LReLU is more inclined
to activate in the negative area.

In deep learning, the selection of activation function is generally determined according
to the specific situation, and there is no fixed choice. As the adaptive activation function
can be automatically adjusted to adapt to the network structure and practical problems,
it has been widely developed. Parametric Rectified Linear Unit (PReLU) [17] is also used
to solve the Dead ReLU phenomenon. The slope of the negative part can be obtained
by learning from the data rather than from defined fixed values. Therefore, PReLU has
all the advantages of ReLU in theory and is more flexible than Leaky ReLU. In 2017,
the Swish activation function was proposed. It has the characteristics of possessing a
lower bound, no upper bound, and being non-monotonic. It is very smooth with its
first derivative [18], and its performance is better than ReLU in many aspects. In 2021,
H. Hu [19] proposed a new scheme to explore the optimal activation function with greater
flexibility and adaptability by adding only a few parameters on the basis of traditional
activation functions such as Sigmoid, Tanh, and ReLU. This method avoids local minima by
introducing a few parameters into a fixed activation function. In the same year, M. Zhao [20]
used the specially designed subnetwork of Resnet-APReLU as an embedded module in
order to adaptively generate the multiplicative coefficient in nonlinear transformation.

Based on the above discussion, an adaptive activation function is designed with the
gated channel Transmission Unit module (GCT) [21]. Compared with the traditional activa-
tion function, the adaptive activation function can effectively avoid gradient disappearance
and Dead ReLU problems. Compared with the common adaptive activation function, the
designed adaptive activation function combined with the GCT module can obtain global
information through less computation, which further improves the performance of the
deep learning model. The main contributions are as follows:

1. We propose an improved adaptive activation function. Each layer of deep learning
generates different activation functions, improves the generalization performance
of the deep learning models, and has strong adaptability to different deep learning
models.

2. We apply the proposed activation function to the fault diagnosis of the pumping
unit so as to better extract features from the contours of the indicator diagram. The
proposed activation function improves the accuracy of fault diagnosis and has a
better search ability, which is verified and compared with AlexNet [22], VGG-16 [23],
GoogleNet [24], ResNet [25] and DenseNet [26].

3. The proposed activation function is extended to the public datasets CIFAR10, which
proves that the proposed activation function is suitable and universal.

The rest of this paper is organized as follows. In Section 2, we introduce the pumping
unit data set. In Section 3, we introduce the common adaptive activation function and
propose the composition of our adaptive activation function. In Section 4, the experimental
analysis and the discussion on the pumping unit failure data set and the public data set are
presented. In Section 5, we conclude the paper.

2. Experiment Design and Measurement
2.1. Introduction to Pumping Unit

At present, about 80% of oil wells in most oil fields in China use rod pumping equip-
ment, and the most widely used is the beam pumping unit [27]. The failure data set of
the pumping unit comes from the real data generated by the pumping unit operation in
a certain oil field in Northeast China. The pumping unit is a part of a rod pumping unit.
Rod pumping equipment is mainly composed of three parts: an oil pumping unit, a well
pumping pump, and a sucker rod. The rod pumping equipment is shown in Figure 1.

The pumping unit is driven by a motor, and through the reducer transmission system
and the execution system, the rod and the pump plunger are driven to move up and down
before, finally, the crude oil is lifted from the well to the surface. The operation of the
pumping unit is shown in Figure 2.
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Figure 1. Pumping machine equipment.

(a) Up stroke (b) Down stroke

Figure 2. The operation of the pumping unit.

2.2. Fault Types of Pumping Unit

The fault data set of the pumping unit consists of nine types of indicator diagrams:
normal, insufficient fluid supply, contains sand, piston stuck, gas influence, pump up touch,
pump down touch, double valve leakage, and pumping rod detachment. The following
details will be introduced:

1. Normal
The pump work diagram made by normal operation refers to the position shift of

the end suspension point relative to the lower dead point as the transverse setting
mark, the self-weight force of the rod, and the cumulative load received by the pump
plug as the longitudinal setting mark. Drawn in parallel quadrilateral shape.
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2. Insufficient fluid supply
The shortage of liquid supply is due to the insufficient amount of crude oil in the

well, and the plunger pump inhales a large amount of air while drawing crude oil
each time. As a result, a large amount of gas in the pump cannot be fully operated.

3. Contains sand
Because the well contains sand, the plunger creates an additional resistance in an

area during movement. The additional resistance on the up stroke increases the load
at the suspension point and on the down stroke at the same position. The increased
resistance reduces the load at the suspension point. Because the distribution of sand
particles in the pump barrel is not the same, its influence on the load varies greatly in
various places, so it will lead to severe fluctuations in the load in a short time.

4. Piston stuck
When the pump plunger is stuck near the bottom dead point, the rod is in a stretched

state during the up stroke and the down stroke since the whole stroke is actually
the process of elastic deformation of the rod; the well work diagram at this time is
approximately an oblique line.

5. Gas interference
Gas interference is a situation when the gas percent in the oil of the pumping well

is high while the crude oil percent is relatively low. This causes the pump barrel to
extract most of the gas, resulting in a significant difference between the actual load
and the theoretical load.

6. Pump down touch
When the anti-impact distance is too large, the piston running up is approaching the

upper dead point, and the continuous upward movement of the piston collides with
the moving valve, which leads to the sudden loading of the piston and the bunching
at the upper dead point.

7. Pump up touch
When the anti-impact distance is too small, it is attached to the lower dead point,

and the piston moves down and collides with the fixed Val, resulting in sudden
unloading of the piston and bunching at the lower dead point.

8. Double valve leakage
Double valve leakage refers to the situation where both the moving valve leakage

and the fixed valve leakage happen at the same time, and the leakage may be caused
by a combination of multiple faults.

9. Pumping rod detachment
The pumping unit’s power cannot be transmitted to the pump due to the detach-

ment of the sucker rod, resulting in the inability to extract oil.

The failure of the pumping unit will cause great economic losses and security risks.
Therefore, rapid and accurate fault diagnosis of the pumping unit is very necessary. The
fault diagnosis process in this paper is as follows: Firstly, the displacement and load data
of the pumping unit are collected by a wireless dynamometer. Secondly, the indicator
diagram of various faults is drawn from the collected data. Finally, the indicator diagram
is preprocessed, and then the indicator diagram is input into the deep learning model to
output the fault type. The fault diagnosis flow chart of the pumping unit in this paper is
shown in Figure 3.
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Figure 3. Fault diagnosis flow chart of the pumping unit.

3. Theoretical Analysis
3.1. Common Adaptive Activation Functions

The PReLU activation function is a further improvement on the fixed predefined slope
of LeakyReLU, which can be changed by backpropagation. It has better adaptability than
LReLU. The formula of the activation function is as follows:

f (x) = Max(x, 0) + δMin(x, 0) (1)

where x is the input, δ is the trainable multiplicative coefficient (i.e., slope). Each layer
has its own δ, which improves the nonlinear capability. In PReLU, δ in Equation (1) is the
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learnable parameter during training, but it is δ constant and cannot be adjusted during
testing.

The design of the Swish activation function is inspired by the Long Short-term Memory
neural network. The Swish activation function can prevent the gradient from gradually
approaching zero and leading to saturation during training. It plays an important role in
optimization and generalization. The formula of the Swish activation function is as follows:

f (x) = xSigmoid(ζx) (2)

where β is the learnable parameter or constant. When ζ = 0, the Swish activation function
becomes the linear function f (x) = x/2. When ζ = ∞, the Swish activation function
becomes 0 or x, which is equivalent to the ReLU activation function. Therefore, the Swish
activation function can be considered as a smooth function between the linear function and
the ReLU activation function.

Compared with ReLU, the Mish activation function is smoother at the origin [28]. The
formula is as follows:

f (x) = x tanh(In(1 + ex)) (3)

From Equation (3), the Mish Activation function has no upper limit, but only a lower
limit, which can ensure no saturated region; thus, there will be no vanishing gradient
during the training. At the same time, it has a faster convergence speed.

3.2. The Structure of Adaptive Activation Functions

The structure of adaptive activation functions is shown in Figure 4. The input of the
subnetwork is concatenated by the one-dimensional vector obtained from the two inputs.
The two inputs are positive features after separation and negative features after separation.
The separation of positive and negative features can highlight the key features. The
following calculation paths are GCT→GAP→FC→ Batch Normalization(BN)→ ReLU→
FC→ BN→ Sigmoid →Scales. The function of each layer is described in the following
section.

Figure 4. Graph of adaptive activation functions.

GCT combines normalization methods and attention mechanisms, which makes it
easy to analyze the relationships (competition or cooperation) between channels. As shown
in Figure 5, the GCT module introduces three trainable parameters α, β, and γ to evaluate
the communication channels. Among them, α helps embed the output adaptive ability,
while β and γ are used to control the activation threshold, which determines the behavior
of GCT in each channel. h and w are the dimensions of feature vectors, c is the number of
channels, and L2-norm is the normalization of L2.
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Figure 5. GCT structure drawing.

Global average pooling (GAP) can replace the fully connected (FC) layer to achieve
dimensionality reduction. In particular, it retains the spatial information extracted from the
previous convolution layers and pooling layers and can also strengthen the relationship
between categories and feature maps [29].

ReLU is selected as the activation function of FC in the first layer to reduce the
computational complexity and keep the gradient value within a reasonable range for
feature extraction. The formula is as follows:

f (x) =
{

x, x ≥ 0
0, x < 0

(4)

Then, we add the BN layer, which is a way to unify the scattered data and is similar to
normal data standardization. It is also a way to optimize the neural network. The data with
unified specifications can make it easier to learn the rules in the data for the deep learning
model [30] and can also solve the problem of vanishing gradient. The normalization is
described by the following formula:

µ =
1

Nbatch

Nbatch

∑
i=1

xi (5)

σ2 =
1

Nbatch

Nbatch

∑
i=1

(xi − µ)2 (6)

∧
x
i
=

xi − µ√
σ2 + ε

(7)

yi = ψ
∧
x
i
+ θ (8)

where xi and yi are the observed input and output of each Nbatch, µ represents the mean
of the input, σ2 represents the variance of the input, ε is a constant near zero and θ, ψ
are learnable parameters governing the scaling and shifting distributions. The activation
function of the second FC layer is Sigmoid, which can limit the output value during the
interval (0, 1) and prevent excessive slope from affecting the performance of the activation
function.

To summarize the above contents, the proposed adaptive activation function has
the ability to automatically learn complex features. Different nonlinear transformation is
applied to different inputs to improve the generalization performance of the deep learning
model, which will solve the problems in extracting the feature contour of the indicator
diagram and the sparsity of the indicator diagram in pumping unit fault diagnosis. The
following experimental simulation will verify the effectiveness of the designed adaptive
activation function.
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4. Experimental Simulation

This section mainly verified the performance of our activation function, which was
tested on AlexNet, VGG-16, GoogleNet, ResNet, and DenseNet. The structure diagrams of
these five networks are shown in Figure 6. Moreover, we compared our activation function
with the traditional activation functions such as ReLU, Sigmoid, Tanh, LReLU, and PReLU.

Figure 6. Network architectures of AlexNet, VGG-16, GoogleNet, ResNet, and DenseNet.

The experiment is mainly divided into two parts. The first part is the simulation of the
fault diagnosis data set of the pumping unit. This will prove that the proposed adaptive
activation function can extract the features of the indicator diagram and solve the sparsity
problem of the indicator diagrams. The improvement in fault diagnosis accuracy indicates
that indistinguishable samples are correctly classified. The second part is to verify the
superiority of the designed adaptive activation function on the public data set CIFAR10.

4.1. The Data Set of Pumping

Adaptive Moment Estimation (Adam) was used here, and the initial learning rate was
0.001. The epoch of training was no less than 200. The average accuracy of each model
is shown in Table 1. In the fault diagnosis data set of the pumping unit, the adaptive
activation function proposed in this paper has the greatest accuracy improvement in the
ResNet model. Compared to the traditional activation functions ReLU, Tanh, Sigmoid, and
LReLU, the average accuracy of the ResNet model with our activation function, respectively,
increased by 1.7%, 5.09%, 5.72%, and 2.54%. Compared to the adaptive activation functions
PReLU, Mish, and Swish, the average accuracy of the ResNet model with our activation
function, respectively, increased by 1.46%, 1.75%, and 1.56%.

The confusion matrix is a common index and visualization tool to evaluate the results
of the classification model, and it can judge the advantages and disadvantages of classifiers.
The rows of the matrix represent the true value, and the columns of the matrix represent
the predicted value. The confusion matrix can, respectively, count the number of the wrong
classification and the right classification and then display the results in a matrix. Figure 7
shows the confusion matrix of the five models for the pumping unit fault data set. It can be
seen that the designed adaptive activation function can effectively represent the mapping
relationship between the displacement and the load in the indicator diagram and extract
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the features of the indicator diagram; thus, those indistinguishable samples are correctly
classified. Taking GoogleNet as an example, the accuracy of each type of fault is given in
Table 2, proving that the proposed adaptive activation function can improve the accuracy
of each type of fault diagnosis.

Table 1. Classification precision of various activation functions for different models on pumping
machine fault diagnosis.

Methods AlexNet (%) VGG-16 (%) GoogleNet (%) ResNet (%) DenseNet (%)

Ours 97.91 ± 0.4997 97.57 ± 0.2658 99.13 ± 0.1941 97.82 ± 0.4061 97.52 ± 0.4706
ReLU 97.33 ± 0.5534 96.94 ± 0.9537 98.56 ± 0.3220 96.12 ± 0.6140 96.89 ± 0.0970
Sigmoid 94.51 ± 0.4930 96.41 ± 0.3567 96.17 ± 0.2831 92.14 ± 0.2145 94.17 ± 0.6584
Tanh 96.41 ± 0.3220 97.04 ± 0.4706 97.91 ± 0.3632 94.66 ± 0.3070 95.05 ± 0.4231
LReLU 97.48 ± 0.8209 97.14 ± 0.5405 98.74 ± 0.2830 95.28 ± 0.9029 96.36 ± 0.5091
PReLU 97.43 ± 0.6254 97.04 ± 0.3220 98.74 ± 0.6584 96.36 ± 0.5091 97.04 ± 0.3883
Mish 97.23 ± 0.6063 96.02 ± 0.6254 98.74 ± 0.2830 96.07 ± 0.3883 97.17 ± 0.1144
Swish 97.72 ± 0.3292 95.15 ± 0.8547 98.74 ± 0.1816 96.26 ± 0.3943 96.75 ± 0.5661

(a) AlexNet (b) VGG-16 (c) GoogleNet

(d) ResNet (e) DenseNet

Figure 7. The confusion matrix of the five models of the pumping unit fault diagnosis dataset.

Table 2. Diagnosis accuracy of various fault types in pumping unit in GoogleNet.

Fault Ours (%) ReLU (%) Sigmoid (%) Tanh (%) LReLU (%) PReLU (%) Mish (%) Swish (%)

Pump up touch 100 98 94 94 98 98 100 96
Pumping rod detachment 100 100 100 100 100 100 100 100
Insufficient liquid supply 100 100 98 98 100 100 98 97
Contain sand 100 100 100 100 100 100 100 100
Piston stuck 100 100 100 100 100 100 100 100
Gas influence 96 96 96 92 96 100 96 93
Double valve leakage 100 100 100 100 100 100 100 100
Pump down touch 100 96 96 98 96 96 96 96
Normal 100 100 100 100 100 100 100 100

4.2. CIFAR10

We used the CIFAR10 data set to conduct experiments and analyzed AlexNet, VGG-16,
GoogleNet, ResNet, and DenseNet models with our activation function and the traditional



Processes 2023, 11, 2540 11 of 13

activation functions. We augmented the data to reduce overfitting. The Adam was used
with an initial learning rate of 0.001. The epoch of training was no less than 200. The
average accuracy of each model is shown in Table 3, where the designed activation function
improves the performances of those. Among them, AlexNet, VGG-16, and DenseNet
have a good performance. Compared with the traditional activation functions ReLU, Tanh,
Sigmoid, LReLU, and adaptive activation functions PReLU, Mish, and Swish, our activation
function in the AlexNet model is improved, respectively, by 1.84%, 4.11%, 5.45%, 0.79%,
2.74%, 2.07%, 1.91%; our activation function in VGG-16 model is improved, respectively, by
3.1%, 4.54%, 4.45%, 0.48%, 2.02%, 3.94%, and 4.69%; our activation function in DenseNet
model is improved, respectively, by 1.88%, 5.1%, 9.63%, 1.07%, 0.61%, 0.37%, and 0.35%.
The above data indicate the superiority of the proposed activation function.

Table 3. Classification precision of various activation functions for different models on CIFAR10.

Methods AlexNet (%) VGG-16 (%) GoogleNet (%) ResNet (%) DenseNet (%)

Ours 91.10 ± 0.0445 93.86 ± 0.0406 90.35 ± 0.1070 91.73 ± 0.0231 92.30 ± 0.0681
ReLU 89.26 ± 0.0576 90.76 ± 0.0987 89.00 ± 0.0337 90.27 ± 0.0034 90.42 ± 0.0846
Sigmoid 85.65 ± 0.0365 89.32 ± 0.1127 87.23 ± 0.0485 88.06 ± 0.0835 82.67 ± 0.2110
Tanh 86.99 ± 0.2432 89.41 ± 0.0189 83.69 ± 0.0402 88.68 ± 0.0414 87.20 ± 0.0745
LReLU 90.31 ± 0.2147 93.38 ± 0.0414 89.70 ± 0.0527 91.24 ± 0.1059 91.23 ± 0.0684
PReLU 88.36 ± 0.0436 91.84 ± 0.0633 89.31 ± 0.0454 91.08 ± 0.0637 91.69 ± 0.0755
Mish 89.07 ± 0.0847 89.92 ± 0.0577 88.64 ± 0.0729 91.12 ± 0.7960 91.97 ± 0.0758
Swish 89.19 ± 0.0628 89.19 ± 0.0618 88.94 ± 0.1161 90.93 ± 0.0850 91.95 ± 0.0893

5. Conclusions

In this paper, a new adaptive activation function is designed and applied to five
models of neural networks. Specifically, the adaptive activation function improves the
negative semi-axis slope of the ReLU activation function by combining the gated channel
conversion unit to enhance the performance of the deep learning model. The activation
function in each layer of a neural network is unique; thus, the input signal of each layer has
a unique nonlinear transformation.

Therefore, compared with the traditional fixed activation function, our activation
function has a better nonlinear transformation ability, and it can be well-embedded into
five models. Through the fault diagnosis data set of the pumping unit, it is proven that our
activation function can effectively display the mapping relationship between displacement
and load in the indicator diagram, thus extracting the features of the indicator diagram
and solving the sparsity problem of the indicator diagrams. Indistinguishable samples are
correctly classified. Through the CIFAR10 dataset, the superiority and universality of our
adaptive activation function are verified.

In short, the proposed adaptive activation function increases the accuracy of fault
diagnosis and has a better generalization performance and search ability. Moreover, the
proposed adaptive activation functions also can be well-embedded into other models of
neural networks.

The pumping unit works in a complex environment in the field, and the data collected
should include environmental noise. In the future, we will study how to filter out the noise
by extracting the time domain and frequency domain information and then fuse the time
domain features and frequency domain features to improve the fault diagnosis accuracy of
the pumping unit and anti-noise performance.
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