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Abstract: Injecting CO2 into tight oil reservoirs is a potential approach for enhanced oil recovery
(EOR) and CO2 sequestration. However, the effects of different pore-scales on EOR are poorly
understood, and this has a significant impact on recovery. In this paper, a pore size correction
model based on X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) was
developed in order to establish the relationship between the pore radius and the transverse relaxation
time. Different pore-scales are divided according to the cumulative distribution characteristics of
the transverse relaxation time (T2). CO2 flooding and huff-n-puff experiments were conducted to
investigate the dynamic displacement behaviors in different pore-scales. The results indicate that
there are three pore-scales: micropores (T2 < 0.3 ms), intermediate pores (0.3 ms < T2 < 100 ms), and
macropores (100 ms < T2). However, there are also pseudo-sweep pores (PPs), equilibrium pores
(EPs), and sweep pores (SPs) in the intermediate pores, depending on whether crude oil has been
produced. Interestingly, the pressurization process causes some crude oil in the large pores to be
squeezed into small pores. The recovery of CO2 huff-n-puff (19.75%) is obviously lower than that of
CO2 flooding (51.61%). Specifically, it was observed that the micropores (−8%) and the pseudo-sweep
pores (−37%) have a negative impact on oil recovery, whereas all pore-scales exhibit positive effects
during CO2 flooding. In addition, it was found that the critical pore radiuses of CO2 flooding and
huff-n-puff were 2.61 ms (0.15 µm) and 25 ms (1.5 µm), respectively, in the experiments, and that
there is also more oil remaining in the macropores and the sweep pores during CO2 huff-n-puff.
These results provide a deeper understanding of the displacement behaviors of different pore-scales
in tight oil reservoirs.

Keywords: tight oil reservoir; CO2; NMR; pore-scales; EOR

1. Introduction

Tight oil reservoirs play an increasingly important role in the oil industry due to their
great development potential [1–3]. In the last decade, the development of horizontal well
and volume fracturing technologies has been of great significance for tight oil produc-
tion [4,5]. However, the recovery of tight oil reservoirs is usually less than 10 percent of the
original oil in place (OOIP) [6]. Therefore, an economic and effective enhanced oil recovery
(EOR) method is urgently required. Numerous laboratory experiments and field trials
show that CO2 can significantly improve oil recovery in tight oil reservoirs due to its good
injectivity, its viscosity reduction, its lower minimum miscibility pressure (MMP), and its
strong ability to both dissolve and expand crude oil [7–9]. Moreover, injecting CO2 into oil
reservoirs is a win–win method, as it can not only produce more oil but also increase CO2
sequestration [10–12]. At present, the methods for CO2 injection into reservoirs mainly
include CO2 flooding and huff-n-puff [13–15].

The EOR mechanism of CO2 huff-n-huff primarily includes dissolved gas drive and
diffusion, while convection caused by pressure difference is the main mechanism in the
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process of CO2 flooding. CO2 huff-n-puff mainly includes three processes: pressuring,
soaking, and depletion. During the process of pressuring, convection has a negative
impact on EOR [16], and this negative mechanism is often overlooked by researchers.
Regarding the second process, diffusion and mass transfer mainly occur during the process
of soaking [17,18]. Regarding the third process, similar to primary recovery, a solution gas
drive is the main mechanism during the process of depletion [19]. At the same time, the
pore size distribution in the reservoir is significant for EOR. CT scanning [20], mercury
injection capillary pressure (MICP) [21,22], and NMR [23,24] are all important techniques
that are used to characterize the distribution of pore characteristics. CT scanning is also a
non-destructive method and favored by many researchers [25,26]. In recent years, there has
been increased interest in exploring methods for determining the relationship between pore
radius and transverse relaxation time, and these methods can be broadly divided into two
types: one is to obtain the conversion coefficient by comparing the peak between the pore
radius and the T2 [27], and the other is to obtain the conversion coefficient by matching the
pore radius distribution curve and the T2 spectral curve [28,29]. However, the pore radius
distribution obtained by CT scanning is greatly affected by the resolution. Hence, in this
work, the relationship between pore radius and T2 is obtained by fitting the pore volume
distribution curve and the T2 accumulation curve with different T2 starting values.

Numerous researchers have conducted extensive studies on the various factors that
impact recovery during CO2 injection [29,30]. Sun et al. quantified the influence of different
factors on CO2 huff-n-puff, and the results showed that the order of importance is CO2
diffusivity, the number of cycles, injection time, injection rate, and, finally, soaking time [31].
Yu et al. and Ding et al. showed that the lower limit of permeability to CO2 huff-n-
puff is 30 mD [32,33]. Xiang et al. confirmed that CO2 injection volume is an important
factor affecting recovery [34]. However, Ma et al. determined that excessive CO2 injection
may cause lower recovery [35]. Different injection methods have their own advantages
and disadvantages. Compared with CO2 huff-n-puff, CO2 flooding can achieve higher
recovery [36]. However, CO2 huff-n-puff is a useful and efficient method for solving CO2
breakthrough, especially for tight oil reservoirs with fractures [37–40]. The size of the pores
has a significant impact on recovery, and it is the crude oil within a specific pore space that
can be produced [41]. The contribution of different pore sizes to recovery showed that the
oil was mainly produced from the macropores in the process of CO2-EOR [42]. However,
the effective pore radius under different CO2 injection methods is still not properly known.
Likewise, the dynamic recovery characteristics of crude oil with different pore sizes during
CO2 huff-n-puff have not been thoroughly studied.

As a case study, monitored use of low-field nuclear magnetic resonance (NMR), CO2
huff-n-puff, and flooding (10 MPa, 348.15 K) were implemented in order to study the
utilization mechanism from a pore-scale perspective in tight oil reservoirs. A pore size
correction model based on CT and NMR was built to convert the transverse relaxation time
to the pore radius. Different from traditional NMR T2 distribution analysis, a thorough
T2 cumulative integral distribution analysis was applied in order to identify the different
pore-scales, and we also conducted a quantitative evaluation of the different pore-scales
on the contribution to recovery. The results of this study will increase understanding of
different pore-scale behaviors of CO2 injection in tight oil reservoirs.

2. Experiments
2.1. Core Samples and Fluids

The oil used in the experiments was obtained from the Changqing Oilfield, Northwest
China. The density and the viscosity of the oil were 846.9 kg/m3 and 5.15 mPa.s (at 75 ◦C
and 0.101 Mpa), respectively. The compositional analysis used a gas chromatograph–mass
spectrometer of the dead oil, as shown in Figure 1, and it was found that the proportion
of intermediate hydrocarbon components in crude oil was high. The CO2 with a purity
of 99.9% that was used in the experiments was obtained from the Huatongjingke Gas
Company. The core samples used in the experiments were collected from a tight oil
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reservoir: the Changqing Oilfield. The cleaned cores were dried in an oven at 100 ◦C for
48 h. Then, gas permeability and porosity measurements were conducted in order to study
the basic properties of the core samples, which are listed in Table 1.
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Table 1. The basic properties of core samples used in the experiments.

Core Length, cm Diameter, cm Permeability, mD Porosity, % Experiments

#1 7.93 2.51 0.40 15.43 Flooding
#2 8.07 2.50 0.39 15.82 Huff-n-puff

2.2. Experimental Setup

The schematic diagram of the experiment is shown in Figure 2. The main devices
include the ISCO pump (Model 100DX, Teledyne CO., Ltd., Thousand Oaks, CA, USA),
the core holder, and a low-field NMR measurement system manufactured by Niumag
Corporation Ltd. in China. The magnetic field strength and the frequency were 0.22 T
and 12 MHz, respectively. Other devices used in the experiments include an incubator, a
back pressure pump, a confining pressure pump, intermediate containers, valves, etc. The
temperature was set at 348.15 K.

The detailed experimental steps are as follows:

(1) Sufficient saturation: Place the core into the holder and then set the experimental
temperature at 348.15 K. Adjust the injection mode of the pump to a constant speed
of 0.1 mL/min. During injection, the confining pressure is 3~5 MPa higher than the
upstream displacement pressure. When the oil flows out of the downstream pipeline,
increase the back pressure to 10 MPa. Turn off all of the switches and the ISCO pump
when the system pressure is stable. Then, the core is aged for 48 h. After this, carry out
NMR scanning and 2D nuclear magnetic imaging on rock samples in order to obtain
the T2 spectrum curve and 2D crude oil distribution images before CO2 injection.

(2) CO2 flooding: Repeat steps (1) for core sample #1, set back pressure to 10 MPa, set
injection speed to 0.1 mL/min, and carry out constant speed CO2 flooding. When no
crude oil is produced at the output end, the experiment is finished. Then, record the
final crude oil distribution by NMR.

(3) CO2 huff-n-puff: Repeat the steps in (1) for core sample #2. Turn off the downstream
switch and set the pump mode to constant pressure 10 MPa injection. When the
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system pressure is stable, close the upstream and downstream switches and then soak
for 4 h. Then, slowly turn on the upstream switch. Carry out NMR scanning when no
crude oil is produced. Repeat the above steps for 4 cycles.

(4) Import the relevant data into the NMR analysis system for data analysis.
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2.3. Different Pore-Scale Fitting Correction Model

Here, a pore correction model was built to convert the transverse relaxation time to
the pore radius based on the results of the CT and the NMR tests. As shown in Figure 3,
we performed CT scanning of core sample #2 in order to obtain the pore characteristics.
The results showed that the diameter of the pores is mostly less than 5 µm and that the
minimum pore radius that CT scanning can identify is 1.14 µm. Then, the results were
statistically analyzed in order to obtain the proportion of different pore sizes, and finally,
the cumulative proportion curve of pore sizes was obtained. Although the resolution of the
CT scanning needs to be improved, this method has been proven to be effective.
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Transverse relaxation time (T2) in the NMR tests can be determined by Equation (1) [43]:
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T2,bulk
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where T2,surface, T2,bulk, T2,diffusion are the surface relaxation time, the bulk relaxation time,
and the diffusion relaxation time, respectively. Because of the uniform magnetic field
and the bulk relaxation time are much greater than T2, T2,bulk and T2,diffusion are usually
neglected. Thus, T2 can be expressed as follows [44]:

T2 = T2,sur f ace =
V

ρtS (2)

where ρt is the surface relaxivity, m/ms; S is the surface area, µm2; and V is the pore
volume, µm3.

If the pore structure is simplified as a standard spherical structure or a columnar
structure, the ratio of the surface area to the volume can be expressed as follows:

S
V = Fs

r (3)

where Fs is the shape factor of a pore, and r is the pore radius, µm.
Combining Equations (2) and (3), we can obtain the following:

T2 = T2,sur f ace =
r

ρt Fs
= r

Cr (4)

where Cr is the conversion coefficient between the pore radius and the relaxation time.
According to Equation (4), the transverse relaxation time is proportional to the pore

radius. However, due to the complex pore structure of the rock in the oil reservoirs, it is
difficult to measure ρt and Fs accurately. We can also obtain the cumulative distribution
curve of different pore sizes by CT scanning, but the starting point of the curve is related
to the resolution of the CT scanning. We use Q1 to represent the cumulative distribution
function of the pore sizes that were obtained by CT scanning, and we use Q2 as a function of
cumulative amplitude by NMR. The specific relationship is shown in Equations (5) and (6):

Q1 = f1(r) (5)

Q2 = f2(T2) (6)

where f 1 is the functional relationship between the cumulative distribution and the pore
size, and where f 2 is the functional relationship between the cumulative of T2 spectrum
and T2. According to Q1 = Q2, we can deduce the value of Cr, and we can establish the
relationship between T2 and r (T2 > 10 ms).

Figure 4a shows the T2 spectrum curve of saturated core #2. It is shown that there are
two peaks, which indicate the two types of pores in the core sample. The area surrounded
by the amplitude and the relaxation time reflects the amount of oil in the pores [45], and
the area for the different ranges of T2 can thereby be obtained. Due to the influence of the
resolution, the initial value of the cumulative distribution of the pore sizes obtained by
CT scanning is a certain value. Therefore, we need to set the different starting value of
the transverse relaxation time, as shown in Figure 4b. According to the fitting results of
the pore cumulative distribution curve and the T2 spectrum cumulative distribution map,
the relationship between the pore radius and the relaxation time is obtained, as shown in
Figure 5, and the conversion coefficient is 0.059 when T2 is greater than 10 ms.
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3. Results and Discussion

Pore types are typically classified into micropores and macropores based on the
relaxation time of the minimum between the peak values, as shown in Figure 6a. The
results show that the crude oil in the macropores is basically completely produced and that
the crude oil in the micropores is partially produced during the process of CO2 flooding,
and these results are basically consistent with the conclusions drawn by many scholars [41].
Thus, we can gain a deeper understanding through the integral analysis of the amplitude
of the T2 spectrum. The cumulative amplitude reflects the accumulation of crude oil in
the core, which can more clearly distinguish the production of oil in different pore-scales.
Figure 6b shows that less crude oil is produced from micropores (T2 < 12.6 ms), while
the recovered oil basically comes from macropores. At the same time, the cumulative
amplitude after CO2 displacement is higher than the initial value when T2 < 2.61, and this
is due to the increase in pressure during CO2 injection, which squeezes some of the crude
oil in the macropores into the micropores. We call this phenomenon “squeezing”.

Figure 7 shows the 2D images of core sample #1 before and after CO2 flooding. The
amount of crude oil is described by the brightness of the images [46]. Comparing these
images, we can find that the remaining oil in the core is fairly non-uniform after CO2
flooding. The remaining oil is mainly distributed at the end of the core sample, and the
recovery is higher at the core inlet. This is probably a consequence of gas breakthrough
during CO2 flooding. We can also see that the sweep volume decreases gradually along the
direction of the CO2 flooding.
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Figure 8 shows that the crude oil in the macropores and the micropores is gradually
recovered during CO2 huff-n-puff. During the first cycle, the crude oil in different pores
was redistributed, and the crude oil in the macropores was then produced. By comparing
the T2 spectral distribution after the first cycle, it is shown that that the peaks of the
macropores and the micropores gradually shift to the left and down and that the variation
in the macropore is larger. This reflects the fact that the crude oil in the macropores is
preferentially unlocked during CO2 huff-n-puff and that the micropores are gradually
recovered with the increase in cycles. Overall, the results indicate that the first three cycles
usually produced most of the oil in the core [47]. Simultaneously, it can also be observed
that the trough amplitude of the T2 spectral curve increases gradually, primarily due to the
fact that the oil in the micropores needs to flow into the large pores. Compared with the
injection schemes, the squeezing phenomenon in CO2 huff-n-puff is more obvious.

Figure 9 shows the recovery of the different cycles and the different pore-scales. The
results highlight that the recovery of the four cycles of CO2 huff-n-puff is 19.75% and that
the main contribution of the recovery is produced from the macropores during the first
cycle. With the increase in the cycle, the recovery of the macropore gradually decreased.
However, it should be noted that micropores still have great potential. The main reason for
this is that CO2 only contacts with micropores through the end face of the core during the
early cycles, and CO2 obtains more opportunities to come into contact with the oil in the
micropores when some of the oil in the macropores is recovered [48].
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Figure 10 shows the distribution of the oil at different cycles. During the early stage,
the crude oil at the injection end of the core is mainly produced. The remaining oil increases
with the distance from the inlet increasing, and this is because the mass transfer and the
diffusion between the CO2 and the crude oil require a long period of time [49]. At the same
time, we found that the residual oil at the core inlet increased in the later cycles. During
the CO2 huff-n-puff process, it is worth noting that both CO2 injection and oil production
occur at the same end, which means that the flow of the oil is a countercurrent process.
The crude oil flows from the micropores to the macropore by mass transfer, and it then
mechanically migrates to the production end. The process of countercurrent leads to some
oil accumulating at the injection end.

The cumulative amplitude of different cycles is shown in Figure 11. Based on the
distribution of oil at different cycles, the different pores are classified into macropores
(T2 > 100 ms), intermediate pores (0.3 ms < T2 < 100 ms), and micropores (T2 < 0.3 ms).
Crude oil in the macropores and intermediate pores is produced first, while crude oil in the
micropores is basically unrecovered. Interestingly, the intermediate pores are further divided
into pseudo-sweep pores (0.3 ms < T2 < 10 ms), equilibrium pores (10 ms < T2 < 25 ms), and
sweep pores (25 ms < T2 < 100 ms) according to the effective production of crude oil. The
crude oil in sweep pores can be gradually recovered with the increase in the cycles. Under
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the process of repeated pressurization, the crude oil in the pseudo-sweep pores cannot be
produced effectively. The results indicate that when T2 is less than 10 ms, the crude oil is
basically locked, as indicated in Figure 11.
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The crude oil distribution characteristic in the different pore-scales is shown in
Figure 12. Comparing the changes of crude oil in the different pore-scales, it can be found
that the micropores and the pseudo-sweep pores occupy a larger pore volume in tight
reservoirs, followed by the sweep pores, the macropores, and the equilibrium pores, and the
volume of the sweep pores is about twice that of the macropores. With the increase in cycles,
the crude oil in the sweep pores and the macropores is gradually produced. However, the
oil in the equilibrium pore and the pseudo-sweep pore remains basically unchanged, or
even has a tendency to increase. It is possible that some of the crude oil in the larger pores
is squeezed into the equilibrium pores during pressurization. Comparing different CO2
injection schemes, it can be found that more oil is produced from the equilibrium pores, the
sweep pores, and the macropores during CO2 flooding.

Figure 13 shows the contribution of different pore-scales in each cycle during CO2
huff-n-puff. It is shown that the oil mainly comes from the sweep pores and the macropores
and that the contribution of the sweep pores is much higher than that of the macropores,
and this is because the sweep pores occupy a larger pore volume in tight reservoirs, as
shown in Figure 12. In the first cycle, the negative contribution of the micropore and the
equilibrium pore is obvious, and it is −28% and −95%, respectively. The main reason for
this is that part of the crude oil in the macropores and the equilibrium pores is squeezed into
the smaller pores during pressurization. In the later cycles, the oil in the equilibrium pores
and the pseudo-sweep pores exhibits complementary processes. At the same time, we also
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found that the contribution of the micropores is 51% in the fourth cycle, which is mainly
due to the diffusion and extraction of crude oil in the micropores. The contribution of the
macropores decreases first and then increases, while the contribution of the sweep pores
decreases gradually, and this is because a small portion of the crude oil in the small pores
(i.e., the micropores and the intermediate pores) flows backwards into the macropores.
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Figure 13. Different pore-scale contributions for each cycle during CO2 huff-n-puff.

The recovery of CO2 huff-n-puff is 19.75% while the recovery of CO2 flooding is 51.61%,
as shown in Figure 14. After the first cycle of CO2 huff-n-puff, the crude oil is redistributed.
The lower limits of the pore diameter of the crude oil that is effectively produced by CO2
huff-n-huff and flooding are 25 ms and 2.61 ms, respectively. The slope of the T2 spectrum
accumulation distribution curve in the late stage of CO2 huff-n-puff is obviously greater
than that of CO2 flooding (K1 > K2), which reflects the fact that there is less residual oil
after CO2 flooding. The difference of recovery between CO2 flooding and huff-n-puff is
mainly caused by the equilibrium pores, the sweep pores, and the macropores.
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Figures 15 and 16 show the contribution and recovery of the different pore-scales
examined in this study. Regarding the contribution of the different pore-scales, the results
show that the sweep pores and the macropores are the main pores that provide oil. It is
worth noting that the contribution of the pseudo-sweep pores and the equilibrium pores
under the two injection schemes is different. The results also show that the micropores
(−8%) and the equilibrium pores (−37%) both have negative effects on the recovery during
CO2 huff-n-puff, and that the main contribution to the recovery comes from the sweep
pores (88%) and the macropores (57%). At the same time, the sweep pores are important
for CO2-EOR and their contribution is higher than that of the macropores, and the main
reason for this is that the volume of the sweep pores is about twice that of the macropores,
as shown in Figure 12.
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Figure 16 shows that the oil in the macropores is mostly recovered (96%) and that most
of the crude oil in the sweep pores is recovered (86%) during CO2 flooding, while only a
small part of the crude oil in the equilibrium pores and the pseudo-sweep pores is recovered.
Strangely, the recovery of the equilibrium pore was −120%. It can be speculated that part
of the oil in the equilibrium pores was recovered during depletion, but due to repeated
pressure changes, some of the oil in the macropores was squeezed into the equilibrium
pores. At the same time, the pressure increases rapidly in the macropore during the process
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of pressurization, which leads to a larger pressure difference between the macropores and
the smaller pores (i.e., the intermediate pores and the micropores), and that more crude oil
thereby flows into the smaller pores due to the pressure difference. Therefore, the injection
pressure during CO2 huff-n-puff will have a great impact on oil recovery, and we can
conclude that the squeeze phenomenon is a significant factor that contributes to the low
recovery observed during CO2 huff-n-puff. At the same time, the accumulation of crude oil
caused by the countercurrent cannot be ignored. The EOR mechanism of CO2 huff-n-puff
and flooding is briefly described in Figure 17.
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4. Conclusions

In this paper, CO2 flooding and huff-n-puff experiments were carried out in order to
understand the recovery of different pore-scales. Based on CT scanning and NMR tests, the
relationship between the T2 spectrum and pore radius was established. According to the
cumulative distribution characteristics of the T2 spectrum, different pore-scales are divided.
The recovery and contribution of the different pore-scales was also compared in this paper.
Our main conclusions are as follows:

1. The oil recovery of CO2 flooding and huff-n-puff were 19.75% and 51.61%, respectively.
The lower limits of the crude oil effectively produced by CO2 huff-n-huff and flooding
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were 25 ms (1.5 µm) and 2.61 ms (0.15 µm), respectively. The displacement efficiency
of CO2 flooding was higher than that of CO2 huff-n-huff.

2. According to the distribution of residual oil in different pore sizes, pore types can
be divided into macropores, sweep pores, equilibrium pores, pseudo-sweep pores,
and micropores. In the process of CO2 huff-n-puff, the crude oil in the pseudo-sweep
pores cannot be effectively recovered, and the crude oil in the sweep pores is gradually
produced with the increase in cycles.

3. The contribution of the production mainly comes from the macropores and the sweep
pores. Repeated pressurization and depletion during CO2 huff-n-puff causes the
squeezing phenomenon, which has a negative impact on recovery.

In order to fully understand pore-scale displacement behaviors, we will study the
influence of different factors on recovery in the future, such as fracture parameters, rock
types, and injection and production parameters.
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