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Abstract: Hydraulic fracturing is a crucial method in shale oil development, and predicting pro-
duction after hydraulic fracturing is one of the challenges in shale oil development. Conventional
methods for predicting production include analytical methods and numerical simulation methods,
but these methods involve many parameters, have high uncertainty, and are time-consuming and
costly. With the development of shale oil development, there are more and more sample data on the
geological parameters, engineering parameters, and development parameters of shale oil hydraulic
fracturing, making it possible to use machine learning methods to predict production after hydraulic
fracturing. This article first analyzes the impact of different parameters on initial production and
recoverable reserves based on field data from Chang-7 shale oil in the Ordos Basin of China. Then,
using the Particle Swarm Optimization (PSO) algorithm and the Gradient Boosting Decision Tree
(GBDT) algorithm, machine learning models for initial production and recoverable reserves are
established. The Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive
exPlanations (SHAP) explanation methods are used to explain the models. The study found that
initial production is highly correlated with parameters such as the number of fracturing stages and
fracturing fluid volume, while recoverable reserves are significantly related to parameters such as
well spacing, area, and reserver-controlled. The PSO-GBDT model established in this study has
an accuracy of over 85% and can be used for production prediction and subsequent parameter
optimization research. By comparing the LIME and SHAP local explanation methods, it is shown
that different explanation methods can obtain reasonable and credible local explanation results. This
article establishes a high-precision shale oil well production prediction model and two model inter-
pretation methods, which could provide technical support for shale oil well production prediction
and production analysis.

Keywords: shale oil; hydraulic fracturing horizontal wells; machine learning productivity prediction
model; PSO-GBDT; explainable algorithm

1. Introduction

With the further development of shale oil extraction in the United States, many coun-
tries around the world have followed the trend of shale oil development and have achieved
corresponding results. China has relatively limited crude oil resources and high external
dependence, so efficient development of unconventional energy sources, mainly shale oil,
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is one of the most effective ways for China to alleviate its energy shortage and improve its
energy structure [1].

Hydraulic fracturing is a very important production enhancement method in shale oil
development [2]. The fracturing technology of horizontal wells in different development
stages is a necessary condition for achieving efficient development of shale oil [3]. Reason-
able fracturing parameters are one of the key factors determining the success or failure of
unconventional oil reservoir development.

Forecasting production of fractured horizontal wells and optimizing fracturing pa-
rameters is one of the frontier topics in reservoir numerical simulation [4]. The fracturing
parameter optimization model is generally based on the production equation to optimize
the fracturing parameters. Fractured horizontal well production forecasting methods can be
roughly divided into two categories: the first category is conventional forecasting methods,
mainly including mathematical model-based analytical methods, and numerical simulation
methods based on seepage theory. Analytical methods mainly use mathematical methods to
solve established production formulas. Numerical simulation methods mainly use numeri-
cal simulation software to establish a model, and predict the production based on history
fitting. However, in the process of completing traditional fracturing production evaluation
and forecasting research using analytical and numerical simulation methods, the analysis
of the factors affecting production is an indispensable and important step. Computer
simulation can be used to simulate the design of reservoir physical properties, fracturing
construction and transformation parameters, and the production dynamic parameters [5].
However, the relationships between these parameters are complex and not a simple func-
tion. Traditional reservoir evaluation simulate models are complex to calculate and take a
long time, resulting in inaccurate parameter simulation. It is difficult to make a clear and
concise functional relationship characterization of the above parameters, which leads to the
inability of models established by traditional methods to complete the tasks of fracturing
production prediction and parameter optimization [6]. The second category is production
prediction methods based on machine learning. For the production data collected from the
oilfield, machine learning algorithms are used to establish corresponding prediction models
to achieve production prediction. Applying machine learning methods can efficiently solve
the problem of data preprocessing, greatly improving the quality of on-site data analysis.
Based on machine learning methods, it is possible to diagnose the main controlling factors
of production and predict single-well production after fracturing, directly optimizing the
design of on-site construction parameters, and improving single-well production.

With the widespread application of hydraulic fracturing in unconventional oil and gas
reservoirs, it has become possible to obtain a large amount of geological parameters, frac-
turing engineering parameters, development parameters, and productivity parameters [7].
The application of machine learning-based unconventional hydraulic fracturing horizontal
well productivity main control factor analysis, the productivity prediction model, and
fracturing optimization model have been increasingly used [8].

For example, Fan Yilong et al. [9] collected data on construction conditions and
production aspects from 800 wells in the Sudong gas field to establish a dataset, and
then used the multiple linear regression algorithm to analyze various parameters and their
standard errors and develop a parameter optimization plan based on this. Wang Hongliang
et al. [10] used oilfield production history data, considering production indicators and
their influencing factors and production changes, and constructed a production forecasting
model using long short-term memory neural networks (LSTM) to predict production
during the high water-cut period in the oilfield. Compared with fully connected neural
network (FCNN) models and traditional water flooding methods, this model produced
more accurate predictions. Costa et al. [11] trained an artificial neural network system and
applied neural network models and genetic algorithms to mimic high-fidelity numerical
models to successfully predict oil well production, solving the problem of historical fitting.
Luo et al. [12] used random forests, Lasso regularization, and other methods to analyze
the main factors affecting production, selecting the six most important variables from
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geological parameters, reservoir modification parameters, and production parameters.
They established an annual oil production prediction model based on a four-layer deep
artificial neural network and completed parameter sensitivity evaluation through the
model, optimizing production, and completing big data analysis of about 2000 hydraulic
fracturing horizontal wells in the Bakken shale oil field. Liang and Zhao [13] established
a production model based on the random forest method using data from 1069 hydraulic
fracturing horizontal wells in the Eagle Ford shale gas reservoir.

Table 1 summarizes some examples of current domestic and foreign research on
fracturing parameter optimization [12,14-19]. From a survey of the current domestic and
foreign research status, it is found that machine learning methods related to fracturing
parameter optimization are mainly focused on shale gas, with relatively few studies on shale
oil, and even fewer studies on machine learning-based fracturing parameter optimization
for Chinese shale oil reservoirs. This paper proposes a machine learning-based production
forecasting method for shale oil development and conducts interpretability analysis on the
model to clarify the main control factors of each well’s production and the impact of each
parameter on the production of different wells.

Table 1. Current status of research.

Time Author Data Methods Importation Objectives Research Block Accuracy
" atic dato, completion, Marcellus Shale O
2016 Esmaili 3700 Data-driven hydraulic fracturing data, Forecast Well and Gas, 97.18%
[14] technology . production Southwestern
production rates, and P .
- . ennsylvania
operational constraints
Random Forest, . .
Recursive Feature Formatlor} p;e_siure, p0r0051ty,
2019 L_uo G 2061 Elimination, reservoir thic ness, Toc, Forecast production Bakken Shale Oil 60.00%
[12] Tian'Y L thermal maturity,
Lasso Regularization .
. and brittleness
Analysis
Hydraulic Formatlon.p arameters, well Predicted production, Data on 22 oil fields
2020 D . structure, field and layer IDs, . X . oo o
= uplyakoz 5500 Fracturing ; fracturing design in Western Siberia, 64.80%
[15] all HF design . o .
Database optimization Russia
parameters
2020 Formation parameters, Production,
[16] Wu Hua 137 RF, BP, XGBoost reservoir parameters, and Fracturing parameter Weiyuan block 79.00%
fracturing parameters optimization
2020 Li Juhua Formation parameters, Predicted gas well Fuling Shale Gas o,
196 RF - . - 72.30%
[17] etal. reservoir parameters production Field
2021 Yan Ziming 186 XGBoost, DNN, SVR Formatlgn parameters, Predicted recovery Fuling _Shale Gas 85.30%
[18] reservoir parameters Field
Ma Xianlin, Train:
2022 Zhou ANN, SVM, Formation parameters, Horizontal well 67 OO"/.
Desheng, 598 RF, GBDT reservoir parameters, and prediction, model Surig Gas Field East R
[19] C . . ) . Test:
and Cai SHAP Explanation fracturing parameters interpretation o,
Wenbin 58.00%

This paper builds on the previous research and uses the parameters of the Chang 7
shale oil fracturing horizontal well and fracturing construction parameters as input for the
machine learning model, with the production parameter as the model output, to carry out
machine learning model training. The PSO combined with machine learning algorithm
is used to establish and optimize the initial production and estimated ultimate recovery
model. At the same time, we use two different interpretable methods (LIME, SHAP) to
analyze and explain the production prediction model.

The main structure of this paper is as follows: Section 1 introduces the research
status of machine learning-based unconventional hydraulic fracturing horizontal well
productivity models. Section 2 introduces the machine learning algorithms, optimization
algorithms, and model interpretation methods used in this study. Section 3 presents the
workflow and research content of this paper. Section 4 combines the data from 89 wells in
the Chang 7 shale oil formation to conduct correlation analysis, establish and optimize the
initial productivity, and estimate ultimate recovery models, and uses the LIME and SHAP
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methods to provide local and global explanations for the models. Section 5 concludes
the paper.

2. Methodology
2.1. GBDT (Gradient Boosting Decision Tree)

GBDT is an iterative decision tree based on the boosting method, which combines
gradient boosting and decision trees. By using an additive model (i.e., a linear combination
of basis functions) and continually reducing the residual generated during training, it
achieves the algorithm of classifying or regressing data.

The boosting tree is a machine learning algorithm that trains multiple weak learners
using forward distribution algorithm, where each weak learner is constructed using the
CART regression tree. These weak learners are then combined using an additive model
to form a strong learner [20]. In GBDT, there is a connection between each weak classifier.
The next weak classifier in GBDT is trained using the gradient of the loss function of the
previous weak classifier, so that each iteration moves towards the direction of reducing the
loss, ultimately resulting in an optimal solution [21].

The boosting tree model can be represented as an additive model with decision trees
as base learners, with the specific formula:

M

fx) = fu(x) =} hn(x;am) )

m=1

Among them, h, (x; ;) denotes the mth decision tree, M denotes the number of base
learners, and a;, indicates the parameters of the mth learner, such as the number of leaf
nodes, the depth of the tree, and so on.

First initialize: fy(x) =0

The model in step m is: fi (x) = fi—1(x) + hpn(x; am)

Solved by minimizing the empirical risk, i.e., the loss function:

M
= argming Y L(yi; fm(x:)) ©)
m=1

L() is the loss function, and the commonly used loss functions for regression are
MSE, absolute loss, Huber loss, and quantile loss. The loss functions commonly used for
classification are exponential loss and logarithmic loss.

GBDT can be used for regression problems and compared to logistic regression, which
can only be used for linear regression, GBDT can be used not only for linear regression
and nonlinear regression, but also for dichotomous problems (set the threshold value, and
greater than the threshold value is a positive case, and vice versa is a negative case) [11],
which has strong applicability.

Advantages: high accuracy, both for classification and regression tasks; can handle
nonlinear data; can handle both discrete and continuous values; and uses some robust loss
functions that are insensitive to outliers. For example, the Huber loss function and quantile
loss function.

Disadvantage: Since the next learner needs to fit the residuals of the previous learner,
it must be executed in a walk-through fashion and cannot be parallelized, which also leads
to a particularly slow speed when processing large data. Therefore, the later XGBoost and
LightGBM are both based on GBDT but with improvements in parallelism.
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2.2. PSO (Particle Swarm Optimization)

Particle Swarm Optimization (PSO), also known as the bird swarm algorithm, is an
evolutionary algorithm [12]. Similar to the simulated annealing algorithm, it starts from a
random solution and iteratively searches for the optimal solution by evaluating the quality
of the solutions with fitness function. However, it is simpler than genetic algorithms and
does not have the “crossover” and “mutation” operations. Instead, it seeks the global
optimal by following the current best solution found. PSO is a parallel algorithm [13]
that uses massless particles to simulate birds in a flock, with particles having only two
properties: velocity and position. The velocity represents the speed of movement, while
the particle represents the direction of movement [15]. This algorithm is highly valued for
its ease of implementation, high precision, and fast convergence, and has demonstrated its
superiority in solving practical problems.

The main process of the algorithm is as follows:

Step 1: Set the initial positions and velocities of the particles randomly, and also set
the iteration times.

Step 2: Calculate the fitness value of each particle.

Step 3: For each particle, compare its fitness value with the fitness value of the best
position it has ever experienced, and if it is better, set it as its current personal best position.

Step 4: For each particle, compare its fitness value with the fitness value of the global
best position experienced by all particles, and if it is better, set it as the current global
best position.

Step 5: Use the velocity and position formula to optimize the velocity and position of
the particles, updating their positions.

Step 6: If the termination condition (usually the maximum number of iterations or the
minimum error requirement) is not met, return to step 2.

The process is demonstrated more graphically through Figure 1.

| Particle population initialization |

l

—'| Calculate individual fitness |

l

| Update particle velocity and position |

l

| Boundary processing |

l

Maximum number of
iterations reached

Output optimal value

Figure 1. PSO flow chart.

Advantages: The PSO algorithm does not have crossover and mutation operations. It
relies on particle velocity to perform the search, and only the optimal particle transmits
information to other particles during the iterative evolution, resulting in a fast search speed.
The PSO algorithm has memory, and the historical best position of the particle swarm can
be remembered and transmitted to other particles. The number of parameters to be adjusted
is small, the structure is simple, and it is easy to implement in engineering. The use of real
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number encoding is determined directly by the solution of the problem, and the number of
variables in the problem solution is directly used as the dimension of the particle [22].

Disadvantages: The PSO algorithm lacks dynamic adjustment of the particle speed,
which can lead to falling into local optima and result in low convergence accuracy and
difficulty in convergence. It cannot effectively solve discrete and combinatorial optimization
problems. The algorithm requires parameter tuning, and how to choose suitable parameters
for different problems to achieve optimal results is a challenge. PSO cannot effectively
solve some problems described by non-rectangular coordinate systems [22].

2.3. Machine Learning Model Interpretability

Interpretability refers to the degree to which the reasons for the output decisions can be
understood. Model interpretability refers to the understanding of the internal mechanisms
of the model and the interpretation of the model results [23]. The higher the interpretability
of a machine learning model, the easier it is to understand the reasons for the decisions or
predictions obtained.

When solving machine learning problems, data analysts tend to focus on model
performance indicators such as accuracy, precision, and recall. However, these metrics
only explain a part of the model’s predictive decisions. Over time, due to concept drift
caused by various factors in the environment, the performance may change. Therefore,
understanding what factors lead a model to make certain decisions is extremely important.
Interpretability mainly refers to understanding the features, classification, and prediction
indicators, and then understanding why a machine learning model makes certain decisions
and which features play the most important role in the decision-making process. This
helps us determine whether the model makes sense or not. Interpretability provides more
transparency, explains why a model makes certain decisions, and can help us establish a
certain level of trust in these machine learning models over time.

Interpretability mainly has the following characteristics:

(1) Importance: Understanding “why” can help us gain a deeper understanding of the
problem, data, and reasons why the model may fail.

(2) Classification: Interpretability of data before modeling, interpretability of the model
during the modeling stage, and interpretability of the results during the running stage.

(3) Scope: Global interpretability, local interpretability, model transparency, model
fairness, and model reliability.

(4) Evaluation: Intrinsic or post-hoc, model-specific or model-agnostic, local or global.

(5) Features: Accuracy, fidelity, usability, reliability, robustness, and universality.

(6) Human-friendly interpretation: The degree to which humans can understand the
reasons for the decision-making and the degree to which people can continuously predict
the model results.

The relationship between the interpretability of a model and its predictive power is
shown in Figure 2, where the weaker the predictive power of the model, the more likely it
is to be interpreted.

A NN(E. G. Deep Learning)
P g

sVvMs @
@ Boost and Ensemble

@ Random Forest

@® KNN
@ Decision Tree

Logistic Regression @

Predictive Power

Linear Regression

Interpretability

Figure 2. Classification of model interpretability.
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Model interpretability can be divided into two categories: intrinsic interpretability
and post-hoc interpretability. Intrinsic interpretability means that the model, such as
linear models, parameter models, or tree-based models, is interpretable by its nature.
Post-hoc interpretability means that interpretable methods, such as feature importance or
partial dependence plots, are applied to black-box models (ensemble methods or neural
networks) after they are trained. Depending on the scope of interpretability, it can be
divided into global interpretability and local interpretability. Global interpretability refers
to the interpretation between the entire model from input to output, which can obtain
general rules or statistical inferences and understand the influence of each feature on the
model. Local interpretability explains how the prediction result will change when the input
value of a sample or a group of samples changes [24]. Different model interpretability
methods have specific interpretability scopes, such as the LIME method that is mainly used
for local interpretability, and the SHAP model, which can be used for both local and global
interpretability, as well as for the interaction between different parameters.

2.3.1. LIME (Local Interpretable Model-Agnostic Explanations)

LIME was proposed by Marco Ribeiro and others in 2016 as a tool to help us un-
derstand how complex black box models make decisions. It is a model-agnostic machine
learning interpretability method that can be applied to explain any type of model, including
neural networks, XGBoost, random forests, and more. It can also be applied to various
types of data, including tabular data, text data, image data, and so on [25].

LIME has three main characteristics:

(1) It only provides local explanations for the model, not global explanations, and
explains each sample locally.

(2) It constructs simple interpretable models locally to predict and explain
important features.

(3) It explains the relationship between the current input features and the predicted
result, without including the abstract features generated during complex model training.

Based on the principle of the LIME algorithm, Figure 3 shows the specific flow
schematic of the LIME model.

Input Output
Data Black Box Model Prediction

LIME

Decision

Figure 3. Schematic diagram of the LIME model.

For the black box model that needs to be explained, a sample point of interest is
selected, and new samples are generated by perturbing it. Depending on the scope of the
area around the sample point of interest, samples within the area are selected, and the black
box model is used to predict their values. A new dataset is thus obtained, and a linear
model is trained on it, which provides a good local approximation of the black box model.
By using an interpretable model, we can understand the local decision-making behavior of
the black box model [26].

Denote x € R? the sample to be interpreted, first, select the more important d’ dimen-
sional features, and x becomes x’ € R? after removing the unimportant components.

A new sample point, z/, is generated by perturbation near x’, and the new sample
points forms a new dataset, Z'. The sample points are recovered into samples z € R after
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adding the removed feature components. 7ty (z) is defined as the similarity of the samples
before and after perturbation, which is calculated as follows:

2
7x(z) = exp (— D(x ) > 3)

o2

where D(x, z) is the distance formula, which will be defined differently for different sample
types, usually L2 parametric distance when it is image data, and cosine similarity when it
is text data.

Denoting f as the complex model to be explained and g as the simple model, the
objective function to measure the difference between the two models is shown below:

E(x) = Lme(2) (f(2) —g(2) 2+ Q(g) @)

z,z!

where Q)(g) is the complexity of model g. When g is a line regression model, the model
complexity is the number of weight coefficients is not zero.

E[f(x)] represents the expectation of all samples f(x), which is the mean value of
the model prediction on the incoming data set. f(x) represents the Oth sample, and the
magnitude of the f(x) value is the prediction of the Oth sample. Assuming that the i-th
sample is x;, the j-th feature of the i-th sample is x; ;, the model’s predicted value for that
sample is y;, and the baseline (usually the mean of the target variable for all samples) of the
entire model is yy,s., then the SHAP value obeys the following equation:

Yi = Yoase + f (xi1) + f(xi2) + T+ f(xir) ©)

where f (x;_;) is the SHAP value of x; ;. Intuitively, f (x;,1) is the contribution value of
the first feature in the i-th sample to the final prediction value y;. When f (x;1) > 0, the
feature boosts the prediction value and also has a positive effect; conversely, the feature
gives a lower prediction value and has a negative effect. That is the contribution of each
feature to the first prediction.

2.3.2. SHAP (Shapley Additive Explainable)

The SHAP model can explain the model to determine whether known conditions have
a positive or negative effect on the final prediction [27]. SHAP is an ex-post interpretation
method, where the core idea is to calculate the marginal contribution of features to the
model output and then interpret the “black box model” at both global and local levels. The
relationship between the SHAP algorithm and the model is shown in Figure 4.

Model Black Box Model

SHAP Explanation

Figure 4. Schematic diagram of the Sharply model.

The SHAP model is mainly applied to calculate the feature SHAP values of individuals;
the absolute value of the SHAP values of each feature of all individuals is summed or
averaged to be the overall feature importance. The multicollinearity problem is solved by
considering the effects of individual variables along with the effects of groups of variables
and the possible synergistic effects between variables [27].
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SHAP represents the SHAP value interpretation as an additive feature imputation
method, and SHAP interprets the predicted value of the model as the sum of the imputed
values of each input feature [27]:

M
g(Z) =20+ )_ 9z 6)
=1

where g is the explanatory model, z’ € {0,1 }M indicates whether the corresponding feature
can be observed (1 or 0), this should be for unstructured data (e.g., text, images), and the
features of each instance of structured data can be observed (including missing, which
is also information about the feature being observed). M is the number of input features
that, ©; € Ris the imputed value (Shapley value) for each feature, and @ is the constant
that explains the model (this value is actually Ex(f(X)) from the previous introduction
of Shapley values, i.e., the predicted mean of all training samples). The input to the tree
model must be structured data, and for the instance x, z’ should be a vector of all values of
1, 1i.e., all features that can be observed, so the formula simplifies to:

M
g(x') =@y + Z@j ()

j=1

The SHAP value is calculated by defining f.(S) = E(f(x)|xs), where S is the set of
possible subsets of the input features (the union v mentioned by the Shapley value) and
E(f(x)|xs) is the conditional expectation value of the subset S of the input features (the
val function mentioned by the Shapley value) [27]. The predicted values are obtained
by calculating E(f(x)), as explained in Figure 5. It can be seen that the SHAP value
assigns the imputed value of each feature as the expected change in the model prediction
when adjusting the value, interpreting the prediction of the model f for the samples
{x1 =a1,x = ay, x3 = a3, x4 = as} as the sum of the effects, @, of each feature that
introduces the conditional expectation.

Elf(x)]  E[f(x) 1] flz)  E[f(z) |z1,22] E[f(z) | 1,22, 3]
l l l l 1
r— N s
. v (03] - L
Po @2 " ——p
o

Figure 5. Four input variables to calculate the SHAP method.

3. Workflow

The main steps for applying machine learning to establish a production prediction
model for shale gas hydraulic fracturing horizontal wells are shown in Figure 6.

(1) Data collection: The data includes the main factors affecting production and
evaluation indicators for horizontal well production. The factors affecting production
mainly include geology and hydraulic fracturing construction parameters, and production
parameters can be initial production, decline rate, and estimated ultimate recovery.

(2) Data preprocessing: First, data filtering is performed to remove missing data,
reduce dimensionality, and perform standardization processing. Then, the processed data
is divided into an 80% training set and 20% test set or 70% training set and 30% test set.

(3) Machine learning modeling: A machine learning model is built using the training
data, and the accuracy of different models [28] is compared to select the optimal method
for establishing a production prediction model.

(4) Production prediction model optimization: The accuracy of the production pre-
diction model is evaluated using the test set. Based on the evaluation indicators, the
optimization model is used to further improve the prediction accuracy of the model and
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the machine learning production prediction model with the highest prediction accuracy is
selected [29].

(5) Model interpretation: Based on the optimal production prediction model, LIME and
SHAP methods are used to perform global and local explanations of production predictions.

Data collection

|

[ Data process: cleaning and normalization

|

Correlation and sensitive study

|

{ PSO-based machine learning model

|

Interpretation foe deep learning model

)

Figure 6. Hydraulic fracturing model interpretation and optimization process.

4. Results and Discussion
4.1. Work Zone Overview

The Ordos Basin is located at the junction of Shanxi, Gansu, and Ningxia, with its
reservoir structure belonging to the combination of the east-west structures and part of
the Paleozoic of the North China Basin. The study area (a shale oil reservoir of Chang 7
in the Ordos Basin) shown in Figure 7 is located in the secondary structural unit of the
Yishan Slope, which is in the southwest of the Ordos Basin. The study area has abundant
reserves and broad development prospects, but the overall development level is relatively
low. As of the end of 2020, the predicted reserves of the block were 3.13 million tons,
and the remaining untapped third-level reserves were 5.20 million tons (predicted to be
3.05 million tons).

Age Formation | Member Lithology | Thickness | Sedimentary Facies
Chang1 [ 100-240 Fluvial-lacustrine-
=_=" swamp
120-160
Chang 3 120-135
Fluvial-lacustrine
Chang 4+5 90-100
Chang 6 =——=ir—1 80-110
Triassic | Yanchang
Chang 7 =1 85-110 Deep lake
Chang8 |m= 60-80
— Lacustrine
Chang 9 EE 90-120
e
Chang 10 TTC 200-320 | Fluvial
oo
BEl Mudstone =1 siit mudstone [==1 Argillaceous siltstone
[====] Fine grained sandstone [ Siltstone — Coal
x| raigbﬁs';sn%'ai“ed === coarse grained sandstone

Figure 7. Ordos basin location, studied area, and regional stratigraphy [30].
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From 2011 to 2012, horizontal well pilot tests were carried out in the Chang 7 oil
reservoir in Longdong, and two horizontal wells (NP1 and GP43-57) were put into pro-
duction that year. The length of the horizontal section was 1021.5 m, and the horizontal
well encounter rate of the oil layer was 92.7%. The initial daily oil production per well was
79.164 STB, with a comprehensive water content of 41.9%. In 2013, the Z230 area began
to develop and build production using a combined deployment of horizontal wells and
directional wells. Mainly using a five-point and seven-point well network, the average
length of the horizontal section was 813 m, and the horizontal well encounter rate of the oil
layer was 92.7%, with a planned production of 2,199,000 STB. Starting from 2014, the long
horizontal section and natural energy development were deployed, with an average length
of 1100 m, and a planned production of 901,590 STB.

Currently, the reservoir heterogeneity in the study area is strong, and the effectiveness
of fracturing varies greatly. Low-liquid or high-water cut wells with low efficiency have
appeared in some areas, which hinders the overall efficient development of the oilfield.

As shown in Figure 8, the number of horizontal wells has increased year by year
from 2013 to 2020, and the production increased significantly between 2013 and 2015. The
production was relatively low in 2016 and 2017, and increased significantly from 2018 to
2019, but decreased by October 2020.

As shown in Figure 8, the number of newly opened horizontal wells decreased year
by year from 2013 to 2016, and the average initial production gradually increased. From
2016 to October 2020, the number of newly opened horizontal wells increased year by year,
and the initial production reached its peak in 2017 before gradually decreasing.

As shown in Figure 9, the trend changes in the parameters of horizontal well fracturing
in the study area from 2013 to 2018 are shown. The scale of fracturing has been increasing
year by year in recent years.

Research Block Deve]opment Status Research Block Development Status

30 200 14 s Number of nNew Horizontal Wells 0
2 = Production 12 =@=—Initial Production 60 o
~ " A = 3
ME =®= Cumulative Horizontal Wells 150 g = 1 50 =
S » s g R
Z bt = S
o g ] 40 .8
<) N k=] S
= 15 100 ' & s
2 £ B o6 0z
b= T = H
) £ - Z
& k| g 4 20 ©
N g
5 E El
’ ¢ 2 105
4

0 0 0 - 0

2013 2014 2017 2018 2019 2020.10 2013 2014 2015 2016 2017 2018 2019 2020.10
Years Years
(a) (b)

Figure 8. Map of horizontal well data in the study block: (a) Plot of production and total number of
horizontal wells over years; (b) Plot of initial production and total number of New horizontal wells
over years.
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Figure 9. Trend of fracturing construction parameters: (a) Plot of displacement and fracturing section
over years; (b) Plot of sand volume and fluid volume over years.

Based on the current situation, machine learning algorithms are used to analyze the
factors affecting initial production and estimate ultimate recovery, and to determine the
influencing parameters and their degree of influence. This can help to understand the trends
in production and make more accurate predictions for future production in the study area.

4.2. Data Analysis
4.2.1. Data Collection and Analysis

The collected raw data mainly includes 89 segmented multi-cluster fractured horizon-
tal wells in the Chang 7 shale oil reservoir in the Ordos Basin. Among them, 14 geological
parameters and 8 engineering parameters were used as the input for production evaluation,
and the output are initial production and estimated ultimate recovery (EUR). The specific
parameters are shown in Table 2.

Table 2. Productivity impact parameters.

Type Parameters

Input Parameters

Well Distance, Row Spacing, Area, Reserves Abundance,
Controlled Reserves, Oil Layer Length, Poor Oil Layer,
Geological parameters Drilling Encounter Rate of Oil Layer, RT (Resistivity),
AC (Acoustic time difference), SH (Shale volume),
@ (Porosity), K (Permeability), So (Oil saturation)

Horizontal Section, Fracturing Section, Single Well Ground
Engineering Parameters Fluid Volume, Single Well Sand Proportion, Single-stage
Sand Volume, Sand Ratio, Single-stage Volume

Output parameters

Production Dynamic Parameters Initial Production, EUR (Estimated ultimate recovery)

Descriptive analysis of the data is an important step in the machine learning model-
ing process. Graphical descriptions were used to analyze the data from the screened 89
horizontal wells, and histograms of the distribution of capacity impact parameters and
target parameters are shown in Figure 10. The distribution zones of specific geological and
engineering parameters are shown in Tables 3 and 4.
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Table 3. Geological parameters distribution.
Distributions
Parameters
Percentage of Wells Spilt Point Percentage of Wells
RT 20% 50 O'm 80%
Controlled Reserves 60% 50 x 108 m3 10%
Oil layer length 60% 1000 m 60%
AC value 80% 2201/V 20%
Porosity 25% 0.1 75%
So 7% 0.5 93%
SH 35% 0.15 65%
Permeability 99% 0.5md 1%
Area 99.5% 2 0.5%
thli}“(;gf Zri‘fg;r:rer 35% 80% 65%
Reserves Abundance 50% 44 50%
Poor oil layer 85% 1000 15%
Table 4. Engineering parameters distribution.
Distributions
Parameters
Percentage of Wells Spilt Point Percentage of Wells

Fracturing section 70% 20 30%
Singﬁgvsglﬁfﬁznd 60% 20,000 m? 40%
propartion of wells 3% 2000 m? 2%
Horizontal section 90% 2000 m 10%
Single-stage volume 48% 10 m3/min 52%
Sand ratio 77% 20% 23%
Row spacing 55% 200 m 45%

Target parameters: Recoverable reserves are mainly below 50,000 m?, and 13% are
larger than 50,000 m?. Initial production is unevenly distributed between 0 and 10 m3/d,
with a few wells larger than 10 m?/d.

4.2.2. Correlation Analysis

As shown in Figure 11, for the analysis of the linear relationship between the model
input parameters and EUR, the linear regression R? refers to the correlation coefficient,
which responds to the proportion of the total variation in the dependent variable that can
be explained by the independent variable through the regression relationship; the larger
the R?, the higher the correlation, and when R? is 0, it indicates a non-linear correlation
between the two. EUR was nonlinearly correlated with SH and showed linear correlations
with other characteristic parameters in general, among which row spacing, permeability,
porosity, and area were strongly correlated, and the drilling encounter rate of the oil layer
and reserves abundance were weakly correlated.

This article applies the Pearson correlation coefficient method to reflect between differ-
ent parameters and target parameters. The Pearson correlation coefficient is a statistical
measure used to reflect the degree of linear correlation between two variables. The cor-
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relation coefficient is represented by r, where n is the sample size, and the observations
and means of the two variables are taken into account. The absolute value of r describes
the degree of linear correlation between two variables, where a larger absolute value of
r indicates a stronger correlation. The absolute value of r is defined as the quotient of
the covariance and standard deviation between two feature variables. Its scope of appli-
cation is as follows: the two features have a linear relationship and both are continuous
data; the observations of the two features appear in pairs and are independent of each
other. The correlation strength between different parameters changes with the range of
the correlation coefficient, where 0.8-1.0 indicates an extremely strong correlation, 0.6-0.8
indicates a strong correlation, 0.4-0.6 indicates a moderate correlation, 0.2-0.4 indicates a
weak correlation, and 0.0-0.2 indicates a very weak or no correlation.
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Figure 11. Cont.
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Figure 11. Correlation analysis between input parameters and EUR.

As shown in Figure 12, the geological parameters of initial production are moder-
ately correlated with the horizontal section and single well ground fluid volume, weakly
correlated with single well sand proportion, fracturing section, and single-stage volume,
and very weakly correlated with the single-stage sand volume and sand ratio. The engi-
neering parameters of estimated ultimate recovery are weakly correlated with resistivity
and controlled reserves, and very weakly correlated with the oil layer length, acoustic
time difference, porosity, So, SH, and permeability, indicating that the initial production is
strongly correlated with engineering parameters.
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Figure 12. Initial production Pearson correlation coefficient.

As shown in Figure 13, the geological parameters of the estimated ultimate recovery
are moderately correlated with the area and controlled reserves, weakly correlated with
resistivity, permeability, So, oil layer length, and acoustic time difference, very weakly
correlated with porosity, drilling encounter rate of oil layer, and reserves abundance, and
negatively correlated with SH. The engineering parameter of estimated ultimate recovery
is moderately correlated with row spacing, indicating that the estimated ultimate recovery
is strongly correlated with geological parameters.
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Figure 13. EUR Pearson correlation coefficient.

4.3. Machine Learning Model Building

After data preprocessing and correlation analysis, selected geological and engineering
parameters used as input for the machine learning model, and the corresponding initial
production and estimated ultimate recovery were used as output for model training.

To ensure the largest possible coverage and no overlap between the training and
testing sets, the preprocessed data was randomly divided into a testing set (80%) and a
training set (20%). Three different machine learning models, XGBoost, LightGBM, and
gradient boosting decision trees, were established, and the PSO algorithm was used to
optimize the hyperparameters of the models.

The fitness function represents the accuracy of the model, and the fitness value was
optimized for EUR prediction after 100 iterations. The PSO algorithm mainly optimized
four parameters: N-estimators, learning rate, maximum depth, and Alpha. The number of
N-estimators refers to the number of decision trees, which is the number of data evaluations
and has a monotonic effect on the accuracy of the model. The larger the N-estimators, the
better the model, but after the N-estimators reach a certain level, the accuracy of the model
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does not increase, and overfitting may occur. The value of the learning rate needs to be set
within a certain range. A high learning rate can lead to unstable learning, while a too small
learning rate can increase training time. The maximum depth of the decision tree can be
applied to high-dimensional and low-sample-size data. Whether to increase the depth or
not should be judged based on the results. Alpha is the weight of the L1 regularization
term, which can be used to speed up the calculation in high-dimensional situations. Table 5
shows the range and optimal values of the four hyperparameters of the PSO algorithm
used in the experiment.

Table 5. The hyperparameters of PSO used in the experiment.

Learning

N_Estimators Rate ax_Depth Alpha
Default value 100 0.3 6 0.9
Value ranges 10-1000 0-1 1-100 0.5-0.95
Obtimal XGB 122 0.11 22 0.80
Pi‘ma Light GBM 453 0.19 14 0.33
values GBDT 848 0.30 2 0.51

Figures 14 and 15 show the comparison of prediction accuracy of initial production
and estimated ultimate recovery models established by GBDT, XGB, and Light GBM after
PSO optimization. The GBDT method improved the accuracy of the initial production and
estimated ultimate recovery models by 10.8% and 18% after PSO optimization. The XGB
models improved by 23.8% and 7.7%. The Light GBM models improved by 20.7% and
31.1%. The accuracy of all three models improved to varying degrees, with the training set
accuracy of the optimized initial production models being 99.7%, 96.1%, and 100%, and
the testing set accuracy being 86%, 76.7%, and 71.7%. For the estimated ultimate recovery
models, the training set accuracy was 98.7%, 99.7%, and 99.9%, and the testing set accuracy
was 90.1%, 77.5%, and 57.9%. Overall, the PSO-GBDT production prediction model had
the best accuracy after optimization.

Initial Production m train m test
100%
90%
80%
70%
3 60%
&
S 50%
(&)
2 40%
30%
20%
10%
0%
GBDT PSO-GBDT PSO- XGB Light GBM PSO- Light
Model GBM

Figure 14. Initial production model PSO optimization comparison.
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Figure 15. EUR model PSO optimization comparison.

According to Figure 16, the accuracy of the GBDT model before and after PSO op-
timization is shown. The horizontal axis represents the true value, and the vertical axis
represents the predicted value. The accuracy of the initial production model training set
is 99.7%, and the test set accuracy is 86.0%. The fitting accuracy of the estimated ultimate
recovery model training set is 98.7%, and the test set accuracy is 90.1%.
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Figure 16. PSO-GBDT model training schematic.
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4.4. Explanation of the Forecasting Model
4.4.1. Local Explanation

(1) LIME

The LIME model is a local interpretable model that trains on the production forecasting
model dataset. This model is weighted based on the proximity between the generated
and the real. Each feature is individually perturbed, and data is sampled from a normal
distribution that is determined by the mean and variance of the feature.

Based on the PSO-GBDT model of estimated ultimate recovery, an explanation of each
feature parameter is obtained. The explanatory bar chart in Figure 17 shows the degree
of influence of input parameters on different prediction results. Figure 17a shows the
explanatory results of Horizontal Well 1. Controlled reserves, drilling encounter rate of the
oil layer, area, reserve abundance, and RT have a positive impact on the prediction result
of this feature, while reserve abundance, row spacing, SH, and porosity have a negative
impact. The three parameters that have the greatest impact on this feature are So, controlled
reserves, and drilling encounter rate of the oil layer. Figure 17b shows the explanatory
results of Horizontal Well 54. Reserve abundance, row spacing, K, AC, and RT have a
positive impact on the prediction result of this feature, while So, controlled reserve, area,
SH, and porosity have a negative impact. The three parameters that have the greatest
impact on this feature are reserve abundance, So, and controlled reserves.

The results show that different feature parameters have different degrees of influence
on predicting EUR, and their correlations are uncertain and varied in size. This indicates
that the local interpretation results of the model are random and variable.

(2) SHAP

The local interpretability of SHAP focuses on explaining how a single prediction is
generated by analyzing each training data point and explaining the degree to which each
feature contributes to the final prediction.

Figure 18 shows the explanation of a specific prediction, where Figure 18a displays
the explanation results for Horizontal Well 1. The top five parameters that have the highest
impact on the prediction value are controlled reserves, area, reserve abundance, So, and RT.
The red bars show to what extent an input feature increases the prediction value. Controlled
reserves, oil layer length, and drilling encounter rate of the oil layer have a positive impact
and increase the prediction value. For example, oil layer length has a positive impact of
2217.42 m3 on the prediction value. The blue bars show to what extent an input feature
decreases the prediction value. Area, reserve abundance, So, RT, SH, permeability, row
spacing, and AC have a negative impact and decrease the prediction value to some extent.
For instance, So has a negative impact of 4655.5 m> on the prediction value. After being
influenced by multiple input features, the SHAP baseline value produces an output value,
which is the mean prediction value by the model is 25,312.36 m®.
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Figure 17. Local interpretation of recoverable reserve characteristics parameters: (a) Single-well LIME
waterfall plot of well 1; (b) Single-well LIME waterfall plot of well 54.
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Figure 18. Waterfall diagram for local interpretation of specific parameters: (a) Single-well SHAP
waterfall plot of well 1; (b) Single-well SHAP waterfall plot of well 54.
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Figure 18b shows the explanation results for Horizontal Well 54. The top five param-
eters that have the highest impact on the prediction value are controlled reserves, area,
reserve abundance, So, and RT. Controlled reserves, oil layer length, drilling encounter
rate of the oil layer, and porosity had positive effects on the predicted value and increased
the predicted value. Area, reserves abundance, So, RT, SH, permeability, row spacing, and
AC have a negative impact and decrease the prediction value to some extent. After being
influenced by multiple input features, the SHAP baseline value produces an output value,
which is the mean prediction value by the model is 25,312.36 m>.

After comparing the results of the explanations for two Horizontal Wells, 1 and 54,
using different methods, it was found that for Well 1, the top five features in terms of
influence according to LIME were So, controlled reserves, reserve abundance, RT, and row
spacing, while according to SHAP they were controlled reserves, area, reserve abundance,
RT, and row spacing. The only different features in the local explanations between the
two methods were So and area, while the other parameters were consistent. For Well 54,
the top five features in terms of influence according to LIME were So, reserve abundance,
controlled reserves, row spacing, and area, while according to SHAP they were controlled
reserves, area, reserve abundance, So, and RT. The only different features in the local expla-
nations between the two methods were row spacing and RT, while the other parameters
were consistent.

In summary, different interpretable methods based on the same PSO-GBDT production
prediction model can produce different interpretation results. In the process of computing
interpretable models, the calculation method for interpreting the black box model can have
different results. After comparing the results of LIME and SHAP explanations, it was found
that only one feature in the top five local explanation results was different, indicating that
the two methods have similar local analysis results and are credible. The difference in the
influence level of local explanation results is due to the different emphasis points in local
explanation. The LIME method focuses on the sorting and positive negative relationship
of the influence level, while the SHAP explanation focuses on calculating the size of the
SHAP value and analyzing how much impact it has on the prediction results, which can
have a certain impact on the influence level sorting of the model. In this case, the fact that
the influence parameters of the two methods are basically similar further demonstrates the
feasibility of interpretable methods.

Figure 19 shows how the changes in the local independent relationships of feature pa-
rameters affect the model output and the distribution of the feature value. It represents the
non-linear relationship between input feature parameters and estimated ultimate recovery,
using porosity, permeability, and So as an example to analyze the local dependence graph.

When porosity is less than 9%, the expected model value is very low. With the increase
of porosity, the predicted value rises rapidly until porosity reaches 12%, when the expected
model value reaches its highest level and remains constant. When the porosity value is
between 9% and 12%, the expected value fluctuates greatly, indicating that there are more
data in this stage, and it has a greater impact on the expected value prediction. When
permeability is less than 0.25, the predicted value is lower than the expected value. With the
increase of permeability, the expected value increases in a stepwise manner. The first step is
between 0.4 and 0.6, the second step is between 0.6 and 0.8, and the growth gradually slows
down when permeability is greater than 0.8. When So is between 40% and 50% and greater
than 65%, the expected predicted value is relatively high. This is a special case caused by
the small number of horizontal wells in this range. When So is between 50% and 60%, the
expected predicted value increases slowly. There is a fluctuation between 60% and 65%,
indicating that the predicted value increases with the increase of oil saturation. However,
due to the problem of the number of horizontal wells, there is a small-scale fluctuation.

4.4.2. Global Analysis

The SHAP method belongs to the class of post-factual explanation techniques, and its
core idea is to calculate the marginal contribution of each feature to the model output, and
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then explain the “black box model” from both global and local perspectives. Each predicted
sample produces a prediction value, and the SHAP value is the number assigned to each
feature in that sample.

Figure 20 shows the global explanation of the PSO-GBDT production prediction
model, which is the ranking of the feature importance of input parameters on the model.
The three parameters that have the largest impact on the estimated ultimate recovery
model are controlled reserves, area, and reserves abundance, which are sorted by the
absolute average value of their SHAP values. The top three parameters that have the
highest impact according to the Pearson correlation coefficient are row spacing, area, and
controlled reserves.

When comparing the results of the interpretable analysis using the SHAP method with
those of the parameter sensitivity analysis based on the Pearson correlation coefficient for
the PSO-GBDT model, it was found that the three parameters with the greatest impact on
estimated ultimate recovery were the same, indicating that the SHAP interpretation results
were correct. However, due to the use of the SHAP method to explain the production
prediction model, the degree of influence of some parameters may change during the
construction and optimization of the production model, resulting in some discrepancies
between the ranking of SHAP global explanation and the results of the sensitivity analysis.
Nevertheless, the fact that the SHAP global explanation can still produce results similar
to those of the Pearson correlation coefficient analysis after model prediction further
demonstrates the good trustworthiness of the SHAP global explanation.
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Figure 21 shows the distribution of SHAP values for the input parameters. Each
row represents a feature, and each point represents sample data, with the horizontal scale
representing the SHAP value, and the features sorted according to the average absolute
value of the SHAP value. Areas with more points indicate that there are a large number
of samples gathered there. Each data point in the figure represents a fractured horizontal
well, and the color represents the value of the variable, with blue to red indicating a low to
high variable value. Red features make the prediction value larger (positive correlation),
blue features make the prediction value smaller, and purple is close to the mean. Positive
(negative) SHAP values indicate that the parameter has a positive (negative) correlation
with estimated ultimate recovery, and the SHAP value characterizes the range of change
in the influence of each parameter on estimated ultimate recovery. For example, as the
controlled reserves of the reservoir increase, the SHAP value increases; as the area of the
reservoir increases, the SHAP value decreases, and different permeability values result in a
small range of variation in estimated ultimate recovery.
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Figure 21. Distribution of the SHAP values of influencing factors.
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As shown in Figure 22, the heatmap shows the distribution of clustered samples for all
instances. The horizontal scale represents each instance, while the vertical scale represents
the impact of each feature on that instance. The color describes the direction and strength
of the impact of each feature on that instance. The samples are displayed in a regular
order, such as those between 70 and 90 in the ranking, with the controlled reserves block
being very red, indicating that these samples are greatly affected by controlled reserves
in a positive way. Moreover, the sum of the sample’s SHAP values, f(x), is also greater
than the mean line. The area block gradually becomes blue, indicating that it is greatly
affected by area in a negative way. In the case where controlled reserves are constant, the
larger the oil-bearing area, the more difficult the reservoir development, the lower the
exploitation degree, and the smaller the estimated ultimate recovery. Controlled reserves
and area feature dimensions have significant SHAP sums and are high-quality samples.
The horizontal scale below is the sample sequence, and the f(x) above the horizontal scale
represents the deviation from the mean of the sum of each sample’s SHAP values. The
left side of the ordinates scale is the feature name, and the right side should be the feature
importance (the sum of SHAP dimensions). The colored stripe in the middle represents the
size of each sample’s SHAP value for each feature.
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Figure 22. Heat map of feature distribution.

5. Discussion and Conclusions
5.1. Discussion

The shale oil prediction model constructed in the study can be an important tool
used to assess and predict the potential reserves and production of subsurface shale oil
resources. The model integrates the theories and skills of multiple disciplines, such as
geology, geophysics, and engineering, to predict the production capacity of shale oil devel-
opment through detailed studies of underground formation structure, mineral composition,
pressure and temperature, and other factors.

Expanding to practical applications, the advantage of this research model is that it
can provide a detailed depiction of underground shale oil reservoirs, which can help oil
companies develop more effective exploration and development plans. In addition, this
model is able to predict the difference in oil reserves between wells, thus optimizing the
extraction strategy.

However, this model also has certain applicability and limitations. For example, due
to the complexity and uncertainty of geological conditions, the prediction results may have
certain errors. Therefore, when applying it, it is necessary to comprehensively consider the
knowledge and skills of multiple disciplines and combine them with the actual situation
to make reasonable corrections and improvements to the model. In addition, with the
continuous progress in neural network modeling technology and the accumulation of data,
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the shale oil prediction model will be continuously improved and refined to provide more
accurate and reliable support for shale oil exploration and development.

At the same time, there are the environmental issues associated with extracting shale
oil to ponder. In recent years, problems such as the triggering of earthquakes have led to a
growing opposition to shale oil and gas extraction. Therefore, shale oil and gas development
engineers should pay more attention to how to integrate with environmental engineering,
balance the scale between formation development and sustainable development, and create
an environmentally friendly reservoir development model.

5.2. Conclusions

Using wild data from Chang 7 formation in the Ordos Basin, this article built a
machine learning model and explainable models to address the lack of shale oil well
production prediction after hydraulic fracturing. Different machine learning algorithms
were introduced and compared for their accuracy, and the best method was selected to
establish production prediction model. The PSO optimization algorithm was used to
improve the model’s accuracy. On this basis, we used different methods analyze the
interpretability of the model. The following conclusions were drawn:

(1) Based on the analysis of field data of shale oil hydraulic fracturing horizontal wells
in the Ordos Basin from 2013 to 2018, the scale of horizontal well fracturing renovation in
the study area continued to increase, showing a linear correlation with the EUR overall.
The productivity of hydraulic fracturing horizontal wells is greatly affected by different
parameters, and the influencing factors and their degree of impact need to be clarified.

(2) According to Pearson correlation analysis, the initial production is moderately
correlated with the number of fracturing stages and fracturing injection fluid volume. It is
weakly correlated with the amount of sand volume, the length of the horizontal section,
the resistivity, and the controlled reserves. The estimated ultimate recovery is moderately
correlated with the spacing, area, and controlled reserves, and weakly correlated with the
resistivity, permeability, oil saturation, reservoir, and sonic transit time.

(3) We established different machine learning models based on the data analysis,
and the GBDT model with the highest accuracy was selected. The test set accuracy of
the prediction models for initial production and estimated ultimate recovery were 75.2%
and 72.1%, respectively. PSO optimization algorithm was introduced to further optimize
the model and improve its accuracy. The test set accuracy of the initial production and
estimated ultimate recovery production prediction models based on GBDT were increased
by 10.8% and 18%, respectively, after PSO optimization.

(4) LIME and SHAP were used to explanate the production for two horizontal wells, a
and b. It was found that the explanation results are reasonable and can be used for other
wells. Furthermore, the global explanation results of SHAP are basically consistent with
those of the Pearson correlation analysis.

(5) The established model, which consisted of a high-precision shale oil well production
prediction model and two model interpretation methods, could provide technical support
for shale oil well production prediction and production analysis.
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