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Abstract: Coal permeability data are critical in the prevention and control of coal and gas outbursts
in mines and are an important reservoir parameter for the development of coalbed methane. The
mechanism by which permeability is affected by gas pressure is complex. We used a self-developed
true triaxial seepage experimental device that collects lignite and anthracite coal samples, sets fixed
axial pressure and confining pressure, and changes gas pressure by changing the orientation of the
coal seam to study the influence of the gas pressure on the permeability of the coal seam under the
conditions of different coal types and different bedding orientations. Coal permeability decreased
rapidly and then decreased slowly and tended to be stable with the increase in gas pressure. This
conformed to the power exponential fitting relationship, and the fitting degree reached more than
99%. The comparison of the two anthracite coal samples showed that the sample’s permeability with
a bedding plane vertical to the seepage direction was significantly lower than that of the bedding
plane parallel to the seepage direction, indicating that gas seeped more easily along the bedding. The
sensitivity coefficient of permeability with the change in gas pressure was calculated. The analysis
showed that coal permeability was sensitive to changes in gas pressure during the low-pressure stage.
When the gas pressure was greater than 0.8 MPa, the sensitivity coefficient was significantly reduced,
which may have been related to the slow increase in the amount of gas absorbed by the coal seam
in the high-pressure stage. A theoretical calculation model of coal seam permeability considering
adsorption/desorption and seepage effects was proposed and then verified with experimental results
showing that the theoretical model better reflected the permeability characteristics of coal and
predicted its permeability. Using the finite element simulation software COMSOL, the extraction
efficiency of the coal seam gas under different gas pressure conditions was simulated. The results
showed that coal permeability and extraction efficiency decreased with an increase in gas pressure.
In the low-pressure stage, the reduction in the extraction efficiency was more evident than that in the
high-pressure stage.

Keywords: true triaxial seepage experiment; gas pressure; metamorphic degree; bedding direction;
permeability; extraction efficiency

1. Introduction

As an unconventional natural gas resource, gas has substantial potential and value for
exploitation. However, gas is a main factor in coal and gas outbursts, and its greenhouse
effect is 22-times greater than that of CO2. Coal seam gas extraction effectively reduces gas
emissions from coal mines and coal and gas outburst accidents [1]. Coal permeability is an
important parameter that affects the flow of coalbed gas and the efficiency of coalbed gas
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extraction. Many relevant experiments and theoretical and numerical simulations regarding
the factors influencing coal permeability have reached important conclusions [2–6].

In coalbed gas extraction, coal permeability is affected by effective stress, gas pressure,
gas adsorption/desorption characteristics, pore and fissure structure characteristics, and
slippage effects [7,8]. Under low stress conditions, the permeability of coal decreases with
the increase in effective stress [9]. The migration of gas in coal seams can be divided into
the diffusion of adsorbed gas in pores and the seepage of free gas in fractures. Gas affects
the pore structure of coal seams through adsorption expansion/desorption contraction,
thereby affecting the seepage of coal seam gas [10,11]. The influence of crack structure on
permeability is mainly manifested in factors such as crack size, connectivity, crack shape,
and ratio [12]. Regarding the relationship between gas pressure and coal permeability, the
main understandings in the literature are as follows: first, coal permeability decreases and
then increases with the decrease in gas pressure, the critical gas pressure of the inflection
point of coal permeability in different basins differs, and gas pressure and permeability
have a quadratic polynomial fitting relationship; second, the slippage effect has an evident
influence on coal permeability at the low-pressure stage, and the slippage effect is related to
the shape and size of fractures [13,14]. During the process of coalbed methane development
or gas extraction, with the continuous production of gas, the gas pressure in the coal
reservoir gradually decreases, resulting in dynamic changes in its permeability and affecting
extraction efficiency. Therefore, studying the dynamic law of coal permeability during gas
pressure changes is critical. The coal body exists in a three-dimensional stress state. During
coal mining disturbances, the influence of changes in stress and gas pressure on the fracture
and permeability of the coal body cannot be ignored. Therefore, in studying the influence
of gas pressure on coal permeability, the in situ stress state of coal in the ground should be
reduced as much as possible.

In this paper, the change in coal seam permeability with gas pressure was assessed
using a self-developed true triaxial stress-seepage test device under a fixed axial and
confining pressure. Next, a theoretical analysis and a comparison with experimental data
were conducted, and a mathematical model of the permeability change with air pressure
was proposed. Finally, the influence of gas pressure on gas extraction efficiency was
calculated using COMSOL.

2. Materials and Methods

The lignite coal sample was taken from 1−2 coal seam in the northern Shenmu mining
area of Shaanxi Province, China. The coal seam in the mining area has large thickness,
flat strata, and simple structure. The anthracite coal sample was taken from a No. 3 coal
seam in the Yangquan mining area of Shanxi Province, which is a stable middle-thick
layered coal seam. The coal seam structure is simple, and the soft coal is not developed
as a whole. Whole-coal samples were collected from the working face, crushed, placed
on plastic sheets, and sent to the laboratory. The coal samples were cut and ground into
cubic test pieces, each 100 × 100 × 100 mm. Three coal samples were used in the test:
one lignite and two anthracite coal samples labeled HM, WY1, and WY2, respectively.
Specifically, HM represents the lignite coal sample in which the bedding layer is parallel to
the gas seepage direction, WY1 represents the anthracite coal sample in which the bedding
layer is perpendicular to the gas seepage direction, and WY2 represents the anthracite coal
sample in which the bedding layer is parallel to the gas seepage direction (the same below).
The industrial analysis and Ro max values of the coal samples are listed in Table 1. The
maximum vitrinite reflectance values of the coal samples were 0.5, 2.6, and 2.5.
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Table 1. Industrial analysis and Ro max of the coal samples.

Coal Types
Industrial Analysis

Ro Max (%)
Mad/% Ad/% Vdaf/% FCad/%

HM 10.23 35.62 25.65 35.48 0.5
WY1 2.36 15.58 9.03 76.24 2.6
WY2 2.43 16.67 8.75 77.45 2.5

Note: Mad is moisture on an air-dried basis, Ad is ash on a dry basis, Vdaf is volatile matter on a dry ash-free basis,
and FCad is carbon on an air-dry basis; Ro max is the maximum reflectance.

Our research group independently designed and developed the true triaxial stress-
permeability test device used in this experiment (Figures 1 and 2). The experimental equip-
ment simulated the change law of the coal reservoir permeability in a true triaxial stress envi-
ronment by adjusting parameters, for example, the horizontal crustal stress, vertical crustal
stress, gas pressure, gas type, and temperature. The experimental results provided a refer-
ence for the prevention and control of coal and gas outbursts in coal mines, as well as techni-
cal support for the exploration and development of coalbed methane. The device was able to
adopt three coal sample sizes: 300 mm× 300 mm× 300 mm, 200 mm × 200 mm × 200 mm,
and 100 × 100 × 100 mm. This study used 100 mm × 100 mm × 100 mm coal samples.
The maximum confining pressure was 40 MPa, and the accuracy was ±0.1 MPa. The
measurement range of gas permeability was 0.001 mD–1000 mD.
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In the literature, coal samples were sealed with silica to prevent gas leakage along
their edges during the seepage tests [15]. However, when the axial or confining pressure
reached a certain level, the silicone sleeve was mostly cut off. Therefore, the development
of new sealing materials for this purpose has been ongoing. Copper exhibits good strength
and ductility. Under large confining or axial pressures, it can effectively seal coal samples
without crushing them, satisfying the experimental requirements. Therefore, this study
used a copper–rubber sleeve to seal the coal samples in the seepage test.

The prepared coal samples were placed in a triaxial pressure chamber according to the
operating instructions of the experimental device, and various auxiliary equipment were
installed. The axial and confining pressures were synchronously loaded to a preset value of
15 MPa by using force control. Next, 0.5 MPa CH4 was added via the air inlet, and the state
was unchanged until adsorption equilibrium was reached. The adsorption equilibrium
time was determined based on the experimental adsorption and desorption data. The
axial pressure and confining pressure were maintained such that they were unchanged.
Subsequently, the gas pressure was loaded one by one in the order of 0.5, 1.0, and 1.5 MPa
by adjusting the gas pressure valve. The corresponding data were recorded after each gas
pressure point reached the desorption balance, and the flow was stable.

To study the influence of coal quality and bedding orientation on coal permeability,
during this experiment, the lignite coal sample HM and the anthracite coal sample WY1

were placed vertically, and the vertical bedding plane was perpendicular to the inlet
seepage direction of CH4 (Figures 3 and 4). The anthracite coal sample WY2 was placed
vertically, and the vertical layer was parallel to the inlet seepage direction of CH4 (Figure 5)
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for comparison with the anthracite coal sample WY1 and to study the influence of bedding
orientation on coal permeability.

Processes 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

The prepared coal samples were placed in a triaxial pressure chamber according to 
the operating instructions of the experimental device, and various auxiliary equipment 
were installed. The axial and confining pressures were synchronously loaded to a preset 
value of 15 MPa by using force control. Next, 0.5 MPa CH4 was added via the air inlet, and 
the state was unchanged until adsorption equilibrium was reached. The adsorption equi-
librium time was determined based on the experimental adsorption and desorption data. 
The axial pressure and confining pressure were maintained such that they were un-
changed. Subsequently, the gas pressure was loaded one by one in the order of 0.5, 1.0, 
and 1.5 MPa by adjusting the gas pressure valve. The corresponding data were recorded 
after each gas pressure point reached the desorption balance, and the flow was stable. 

To study the influence of coal quality and bedding orientation on coal permeability, 
during this experiment, the lignite coal sample HM and the anthracite coal sample WY1 
were placed vertically, and the vertical bedding plane was perpendicular to the inlet seep-
age direction of CH4 (Figures 3 and 4). The anthracite coal sample WY2 was placed verti-
cally, and the vertical layer was parallel to the inlet seepage direction of CH4 (Figure 5) for 
comparison with the anthracite coal sample WY1 and to study the influence of bedding 
orientation on coal permeability. 

 

Figure 3. HM bedding plane is perpendicular to gas inlet direction. Note: The arrow stands for the 
gas seepage direction. 

Figure 3. HM bedding plane is perpendicular to gas inlet direction. Note: The arrow stands for the
gas seepage direction.

Processes 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 4. WY1 bedding plane is perpendicular to gas inlet direction. Note: The arrow stands for the 
gas seepage direction. 

 

Figure 5. WY2 bedding plane is parallel to gas inlet direction. Note: The arrow stands for the gas 
seepage direction. 

3. Results 
As shown in Figure 6, when the axial and confining pressures were constant, the per-

meability of the coal decreased gradually with an increase in the pore pressure. When the 
pore pressure increased from 0.5 to 0.8 MPa, coal permeability decreased rapidly. When 
the pore pressure increased from 0.8 to 1.5 MPa, coal permeability decreased slowly. Pos-
sible reasons for these findings are as follows: ① with the increase in gas pressure, the 
effective stress of the coal body decreased, and the opening of coal body cracks increased, 
increasing permeability; ② the adsorption and expansion deformation of the coal matrix 
increased with the increase in gas pressure, squeezing the fracture and reducing fracture 
width and coal permeability; ③ in the low-pressure region below 0.8 MPa, the slippage 
effect was significant, and the slippage effect gradually decreased with the increase in pore 
pressure [16–20]. The change trend in permeability with an increase in gas pressure 

Figure 4. WY1 bedding plane is perpendicular to gas inlet direction. Note: The arrow stands for the
gas seepage direction.



Processes 2023, 11, 2455 6 of 16

Processes 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 4. WY1 bedding plane is perpendicular to gas inlet direction. Note: The arrow stands for the 
gas seepage direction. 

 

Figure 5. WY2 bedding plane is parallel to gas inlet direction. Note: The arrow stands for the gas 
seepage direction. 

3. Results 
As shown in Figure 6, when the axial and confining pressures were constant, the per-

meability of the coal decreased gradually with an increase in the pore pressure. When the 
pore pressure increased from 0.5 to 0.8 MPa, coal permeability decreased rapidly. When 
the pore pressure increased from 0.8 to 1.5 MPa, coal permeability decreased slowly. Pos-
sible reasons for these findings are as follows: ① with the increase in gas pressure, the 
effective stress of the coal body decreased, and the opening of coal body cracks increased, 
increasing permeability; ② the adsorption and expansion deformation of the coal matrix 
increased with the increase in gas pressure, squeezing the fracture and reducing fracture 
width and coal permeability; ③ in the low-pressure region below 0.8 MPa, the slippage 
effect was significant, and the slippage effect gradually decreased with the increase in pore 
pressure [16–20]. The change trend in permeability with an increase in gas pressure 

Figure 5. WY2 bedding plane is parallel to gas inlet direction. Note: The arrow stands for the gas
seepage direction.

3. Results

As shown in Figure 6, when the axial and confining pressures were constant, the
permeability of the coal decreased gradually with an increase in the pore pressure. When
the pore pressure increased from 0.5 to 0.8 MPa, coal permeability decreased rapidly.
When the pore pressure increased from 0.8 to 1.5 MPa, coal permeability decreased slowly.
Possible reasons for these findings are as follows: 1©with the increase in gas pressure, the
effective stress of the coal body decreased, and the opening of coal body cracks increased,
increasing permeability; 2© the adsorption and expansion deformation of the coal matrix
increased with the increase in gas pressure, squeezing the fracture and reducing fracture
width and coal permeability; 3© in the low-pressure region below 0.8 MPa, the slippage
effect was significant, and the slippage effect gradually decreased with the increase in
pore pressure [16–20]. The change trend in permeability with an increase in gas pressure
demonstrated that the expansion deformation caused by the adsorption of gas on the coal
matrix played a leading role in the range of experimental gas pressures, and the inhibition
effect of adsorption expansion on permeability was always greater than the beneficial effect
of effective stress reduction on permeability growth. When the pore pressure reached a
certain value, the adsorption amount gradually reached saturation, and the reduction trend
in the permeability became flat. In addition, with the weakening of the slippage effect, the
permeability trend sharply decreased and then gradually decreased with the increase in
pore pressure.
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4. Discussion
4.1. Gas Pressure Sensitivity Analysis

In the quantitative exploration of the response of permeability to gas pressure, the
relative change in coal permeability caused by each reduction in unit gas pressure under
constant stress was defined as the sensitivity coefficient of permeability to gas pressure Cp:

Cp = − 1
k0
· ∂k
∂p

, (1)

where Cp is the gas pressure sensitivity coefficient, mPa−1; ∂k is the permeability change in
coal, µm2; ∂p is the change in gas pressure, mPa; and k0 is the initial permeability value,
indicating coal permeability when the gas pressure is 0.5 mPa.

Figure 7 shows the gas pressure sensitivity coefficient of coal sample permeability
under the experimental conditions of this study. The sensitivity coefficient and gas pressure
data were fitted in accordance with a power function relationship, and the degree of
fit was above 90% (Table 2). The sensitivity coefficient Cp decreased with an increase
in gas pressure, decreased faster before 0.8 mPa, and tended to be stable after 0.8 mPa.
According to the relationship between desorption amount and gas pressure, when gas
pressure was low, the increment of CH4 adsorption by coal particles was large [21–24]. In
addition, the slippage effect was more pronounced in the low-pressure region. Therefore,
the sensitivity coefficient Cp of the permeability to the gas pressure in the low-pressure
zone was relatively large. When the gas pressure was high, the increase in CH4 adsorption
by the coal particles tended to be stable, and the effect of matrix expansion on permeability
was small. Therefore, Cp was small in the high-pressure area. Also shown in Figure 7 is
that the sensitivity coefficient of the bedding plane perpendicular to the seepage direction
was greater than that of the bedding plane parallel to the seepage direction.
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Table 2. Fitting of sensitivity coefficient of coal permeability.

Coal Sample Fitting Equation Fit R2

HM Cp = 0.48095p−2.87622 0.91913
WY1 Cp = 0.60954p−2.47003 0.92759
WY2 Cp = 0.22574p−3.66777 0.93473

4.2. Mathematical Model of Coal Permeability
4.2.1. Mathematical Model

According to the literature, the volume deformation of coal owing to desorption or
adsorption has a linear relationship with the amount of gas adsorption [25–27]:

εV = ε×V, (2)

where εV is the deformation of gas adsorption or desorption; ε is the volumetric strain
coefficient, taking the value of 7.4 × 10−4 g/cm3; and V is the adsorption amount of gas.
The gas adsorption capacity V can be obtained from the Langmuir adsorption curve [28–30]:

V =
VL p

p + pL
, (3)

where V and VL denote the gas adsorption capacities at pressures p and pL, respectively.
Chikatamarl’s gas adsorption test shows that the volume strain of coal caused by gas

adsorption is proportional to the amount of gas adsorbed. According to rock mechanics,
the stress and strain of the deformation of the coal body absorbing gas can be expressed
as [31–34]

σi,j =
E

1 + v

(
εi,j +

v
1− 2v

εbδi,j

)
+ αpδi,j + KεVδi,j, (4)

where εV is the deformation of gas adsorption or desorption, which can be obtained from
Formula (2); E is Young’s modulus; υ is Poisson’s ratio; K is the bulk modulus of elasticity,
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with α = 1 − K/Ks, Ks being the modulus of the solid matrix. The bulk modulus K is
often several orders of magnitude larger than the pore bulk modulus Kp of coal, where δi,j,
the Kronecker delta, is zero when i 6= j and one when i = j, and the Einstein summation
convention is followed. The available permeability is [35–37]

k = k0exp
{
− 3

Kp
[(σ− σ0)− (p− p0)]

}
, (5)

where Kp is the pore bulk modulus, Kp = Kϕ, and p0 is the initial gas pressure.
The assumptions are that if εxx = εyy = 0 and α = 1, then σxx and σyy can be expressed as

σxx = σyy =
v

1− v
σzz +

1− 2v
1− v

p +
1− 2v
1− v

KεV . (6)

Change in stress (σ − σ0) can be expressed as

σ− σ0 =
2(1− 2v)
3(1− v)

[(p− p0) + K(εV − εV0)]. (7)

Substituting Formula (7) into Formula (5) and combining Formulas (2) and (3), we
obtained the mathematical model of the permeability change with gas pressure:

k = k0exp{ 3∆p
E

(1−2v) φ0
·
[

1+v
1−v −

2EεVL pL
3(1−v)(pL+p0)(p+pL)

]
}. (8)

4.2.2. Experimental Verification

By using the basic parameters of the experimental coal samples (Table 3), the theo-
retical model curves of the permeability of the three coal samples were calculated using
Formula (8) and compared with the experimental permeability data (Figures 8–10). The re-
lationship between the permeability value of coal and gas pressure conformed to the power
function, and the fitting degree R2 exceeded 99% (Table 4). The theoretical model and test
fitting curves exhibited a high degree of agreement. Coal permeability samples decreased
with the increase in gas pressure, and the rate of decrease was fast in the low-pressure
section of 0.8 MPa and slow in the high-pressure section of 0.8~1.5 MPa.

Table 3. Basic parameters of experimental coal samples.

Coal Sample Elastic
Modulus/GPa Poisson’s Ratio Initial

Permeability/mD Initial Porosity Adsorption Gas
Constant/m·t−1

Adsorption Gas
Constant/MPa

HM 1.5 0.35 0.04272 0.09 15.25 4.35
WY1 1.7 0.34 0.03834 0.06 24.31 3.89
WY2 1.6 0.35 0.03049 0.04 30.58 4.41

Table 4. Fitting of coal sample permeability and gas pressure.

Coal Sample Fitting Equation Fit R2

HM k = 0.01012p−1.83137 0.99402
WY1 k = 0.00931p−1.93214 0.99274
WY2 k = 0.00753p−1.97026 0.99962
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As shown in Figures 8 and 10 and Table 5, the theoretical values and experimental data
present the same change trend; the difference between the two was mainly concentrated
in the low-pressure area below 0.8 MPa, where the theoretical value was lower than the
experimental data. The reason for this may have been that the theoretical model did not
consider the slippage effect, which was more evident in the low-pressure region [38–42].
The maximum absolute error between the theoretical value and experimental data reached
0.00448 mD, and the maximum relative error reached 13.8%. However, overall, the data
demonstrated that the basic change trends in the theoretical values and experimental data
were consistent. Therefore, according to the basic parameters of the coal samples and
the theoretical permeability model, the corresponding permeability under a certain gas
pressure could be calculated. The permeability data obtained directly from the experiment
truly reflected the change in permeability with gas pressure. However, these experiments
only explained the permeability change rule of the experimental coal samples and not
coal samples from other places in the coal seam, which was not conducive to engineering
applications. Moreover, experimental coal samples were always limited, and testing
each location in the coal seam was impossible. The mathematical model of permeability
based on desorption–adsorption was critical to understanding the influence mechanism
of gas adsorption and gas pressure change on permeability from a microscopic level.
This specific expression was obtained using a direct empirical formula and mechanical
derivation and had a certain universality, but the key parameters in the mathematical
model remained unclear. Therefore, the permeability at different locations in the coal seam
could be calculated using this mathematical model.

Table 5. Error analysis between experimental data and theoretical value of permeability.

Coal Sample Pressure/MPa
Permeability/mD

Absolute Error/mD Relative Error/%
Experimental Data Theoretical Value

HM
0.50 0.03570 0.03248 0.00322 9.0
1.05 0.00944 0.00982 0.00038 4.0
1.55 0.00617 0.00532 0.00085 13.8

WY1
0.50 0.03582 0.03134 0.00448 12.5
1.01 0.00875 0.00961 0.00086 9.8
1.51 0.00648 0.00577 0.00071 10.9

WY2
0.50 0.03028 0.02830 0.00198 6.5
1.00 0.00737 0.00687 0.00050 6.7
1.50 0.00329 0.00299 0.00030 9.1

4.3. Numerical Simulation of Gas Extraction

COMSOL is a finite element analysis software that considers the coupling of multiple
physical fields and has achieved good application results in many fields. This study used
COMSOL to simulate the coupling of the mechanical field of coal reservoirs and the seepage
field of coalbed methane, considering the adsorption/desorption of coalbed methane on
the surface of coal seams, diffusion in pores, and the seepage process in fractures. The
simulated geometric modeling is a square area, with the length and width set to 40 m, the
height set according to the thickness of the coal seam at 6 m, and the drilling radius set to
0.1 m with reference to the actual parameters. The established geometric model is shown in
Figure 11. The various parameters for the simulation process refer to the onsite measured
values and results in the literature [43–46]. The parameter settings for each module are
listed in Table 6.
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Table 6. Simulation parameters of gas extraction.

Parameter Name Value [Unit] Describe

E 2650 [MPa] Elastic modulus of coal
ν 0.35 Poisson’s ratio of coal
ρ 1280 [kg/m3] Coal seam density
k0 0.035 [mD] Initial permeability
ϕ0 0.06 Initial porosity
µ 1.00 × 10−5 [Pa·s] Methane dynamic viscosity

VL 0.025 [m3/kg] Langmuir constant
PL 4 [MPa] Langmuir pressure

VM 22.4 [L/mol] Molar volume of methane under
standard conditions

R 8.413510 [J/mol/K] Gas state constant
T 293 [K] Sample temperature
M 16 [g/mol] Gas molecular mass of methane
Fx 15 [MPa] Confining pressure in X direction
Fy 15 [MPa] Confining pressure in Y direction
Fz 15 [MPa] Axial pressure in Z direction
r 0.1 [m] Borehole radius

p0 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 [MPa] Initial pressure
pb 0.08 [MPa] Suction negative pressure
t 10 [d] Adsorption time

A linear elastic model was adopted for the solid mechanics module of the simulation.
The left, front, and lower interfaces of the model were set as sliding boundaries; thus, the
normal upward displacement of the interface was zero. The right, rear, and upper interfaces
of the model were set as pressure boundaries, with a pressure of 15 MPa. They simulated
the X- and Y-axis stresses of the confining pressure in physical experiments and the Z-axis
stress of the axial pressure.

The gas diffusion process in the coal seam pores was simulated using general partial
differential equations. The diffusion source term f is represented by the following formula:

f = − VM(u− p)(u + PL)
2

tVLRTPLρ+ tϕ0VM(u + PL)
2 (9)

where u represents the gas pressure in the pore, and p represents the gas pressure in
the fracture.
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The seepage of coalbed methane in fractures was simulated using Darcy’s law. The
initial air pressures of the model were 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 MPa. The negative
pressure of the gas extraction hole was set to 0.08 MPa. Permeability k is a function of the
gas pressure, and its functional relationship was obtained by fitting the experimental data,
set according to the fitting function in Table 4. The expression is as follows:

k = 0.00931p−1.93214 (10)

The numerical simulation results showed (Figure 12) that the efficiency of coal seam
gas extraction gradually decreased with an increase in gas pressure. When the gas pressure
was 0.5 MPa, the daily gas production was approximately 6000 m3. When the gas pressure
increased to 1.5 MPa, the daily gas production decreased to 3000 m3. In addition, in the
low-pressure zone below 0.9 MPa, gas production changed slightly with each increment of
0.2 MPa of gas pressure. However, in the high-pressure zone above 0.9 MPa, gas production
changed significantly with each 0.2 MPa of gas pressure. This was also consistent with the
law that the permeability of the coal sample changed with the gas pressure obtained from
the experiment, i.e., the sensitivity coefficient to gas pressure was high in the low-pressure
area and low in the high-pressure area.
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5. Conclusions

The trend in coal permeability rapidly declined and then slowly declined with an
increase in gas pressure, which was in line with the power exponential fitting relationship,
and the fitting degree reached more than 99%. In the low-pressure area below 0.8 MPa,
the permeability sensitivity coefficient was high. In the high-pressure zone >0.8 MPa,
the permeability sensitivity coefficient was small and tended to be flat. In the same case
of coal type, the permeability of the coal sample with the bedding plane parallel to the
seepage direction was significantly greater than that with the bedding plane vertical to the
seepage direction. However, the variety rule of coal permeability with gas pressure was
not particularly related to the orientation of the seepage direction.

We established a mathematical model considering the relationship between perme-
ability and gas pressure during the adsorption/desorption and seepage processes. The
comparison and analysis of the experimental data and theoretical values demonstrated
that the mathematical model clearly reflected the trend in coal seam permeability changing
with the gas pressure. The maximum relative error between the theoretical value and
the experimental data reached 13.8%. However, from the overall data, the basic change
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trends in the theoretical values and experimental data were consistent. In combination
with the test parameters of coal samples, it can be used to predict coal permeability. In the
low-pressure section below 0.8 MPa, the theoretical values were generally smaller than the
experimental data, which may have been related to the slippage effect.

With an increase in gas pressure, coal permeability decreased, and the efficiency of
coal seam gas extraction decreased. The gas pressure increased from 0.5 to 1.5 MPa, and
the daily gas extraction rate of the coal seam decreased by approximately half. In addition,
the reduction rate of gas extraction efficiency in the low-pressure section was greater than
that in the high-pressure section.

The conclusion of this article is based on sample size, and the range during coalbed
methane extraction is relatively large, reaching a range of tens of meters. Sedimentary
factors and structural development can cause uneven properties of coal reservoirs, which is
different from ideal experimental conditions. However, this study can provide theoretical
reference for coal bed methane production overall.
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