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Abstract: The battery power state (SOP) is the basic indicator for the Battery management system
(BMS) of the battery energy storage system (BESS) to formulate control strategies. Although there
have been many studies on state estimation of lithium-ion batteries (LIBs), aging and temperature
variation are seldom considered in peak power prediction during the whole life of the battery. To fill
this gap, this paper aims to propose an adaptive peak power prediction method for power lithium-ion
batteries considering temperature and aging is proposed. First, the Thevenin equivalent circuit model
is used to jointly estimate the state of charge (SOC) and SOP of the lithium-ion power battery, and the
variable forgetting factor recursive least squares (VFF-RLS) algorithm and extended Kalman filter
(EKF) are utilized to identify the battery parameters online. Then, multiple constraint parameters
including current, voltage, and SOC were derived, considering the dependence of the polarization
resistance of the battery on the battery current. Finally, the verification experiment was carried out
with LiFePO4 battery. The experimental results under FUDS operating conditions show that the
maximum SOC estimation error is 1.94%. And the power prediction errors at 20%, 50%, and 70%
SOC were 5.0%, 8.1% and 4.5%, respectively. Our further work will focus on the joint estimation of
battery state to further improve the accuracy.

Keywords: lithium-ion battery; peak power prediction; state estimation; parameter identification

1. Introduction

With the progress of new energy technology and the demand for environmental
protection, the electric vehicle industry has developed rapidly in recent years [1]. Compared
to gasoline powered vehicles, electric vehicles cause less environmental pollution and have
the advantages of high efficiency and low noise [2]. Battery management system (BMS)
technology is one of the most critical technologies in electric vehicles. BMS can monitor the
battery status and ensure safety operation [3]. The battery energy storage systems (BESSs)
composed of lithium batteries is also used in the micro-grids using Renewable Energy
Source (RES) [4–6].The state of charge (SOC), state of health (SOH), and state of power (SOP)
of lithium-ion batteries are the basic indicators for BMS to develop strategies for controlling
new energy vehicles and BESS [7]. However, due to the changing operating conditions and
working environment of electric vehicles, the electrochemical reaction mechanism inside
the batteries is complex [8]. Therefore, how to accurately obtain the internal state of these
batteries has become a key factor for the reliable operation of BMS.

Among various electrochemical energy storage devices, power lithium-ion batteries
have the advantages of high power density, high voltage, and long service life compared
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to other batteries. The positive electrode materials of power lithium-ion batteries include
LiFePO4, LiCoO2, ternary lithium material, and so on. The negative electrode of a battery
is generally made of graphite material [9]. SOP describes the maximum power that lithium-
ion batteries can release or absorb over a period of time, which can be used to determine
whether the power battery can meet the power requirements of electric vehicles during
acceleration and climbing, or whether the battery can recover energy to the maximum
extent during braking, thereby avoiding overcharging or discharging of the battery pack
during operation and extending its service life [10]. I It should be noted that SOP cannot
be directly measured through sensors on the battery, as it will vary depending on factors
such as battery operating temperature, battery SOC and SOH [11]. For power lithium-ion
batteries, the power that can be released or absorbed is limited by the internal resistance. In
addition, the working temperature environment and aging of the battery can also affect the
power supply capacity. Therefore, accurately identifying the model parameters of batteries
under different operating conditions is of great significance for power prediction.

At present, the major methods for estimating SOP include characteristic maps (CM),
machine learning based methods, equivalent circuit model (ECM) based methods [12].
The method based on feature mapping utilizes the correlation between battery power,
battery parameters, and working state. The SOP of the battery under different SOCs,
temperatures, and other conditions is obtained offline through experimental methods such
as HPPC testing [13] or constant power testing [14], and the SOP corresponding to the
previous working state is searched in practical applications. However, due to the fact
that the performance of batteries is related to their aging and working history, and there
are countless working states of batteries in practical applications, the adaptability of this
method is relatively poor.

Based on machine learning methods, a black box model is constructed using a large
amount of data to predict SOP. Ref. [15] uses Feedforward neural network (FFNN) to
model the polarization resistance and terminal voltage of the battery, proposed a method
for long-term prediction of SOP that combines the advantages of black box models and
equivalent circuit models. A model-based extreme learning machine algorithm is proposed
to predict the temperature, voltage and SOP of the battery in Ref. [16], and the main
advantage is that the influence of battery temperature variations in long-term on battery
power prediction is considered. The use of machine learning algorithms can eliminate
the step of parameter recognition, but requires a large amount of experimental data and
computational complexity.

ECM based SOP estimation methods were first proposed by Plett et al. [17]. These
methods simulate the state of a battery during operation through a battery model, and
then set constraints based on battery characteristic parameters such as voltage, current,
and SOC to calculate the maximum charging or discharging power of the battery under
these constraints. The accuracy of these methods depends on whether an accurate battery
model can be established and whether model parameters can be accurately identified. A
first-order Thevenin equivalent circuit model was used and the SOC of the battery was
estimated using the UKF method in Ref. [18]. The battery parameters were updated using
the adaptive parameter estimation method, and the SOP was estimated under voltage
and SOC constraints. Ref. [19] takes the open circuit voltage (OCV) in the model as a
function of temperature, aging factors, and hysteresis effects to better describe the actual
operating characteristics of the battery. Ref. [20] used a novel polarization voltage model
(NPV) based on electrochemical principles. The polarization voltage model starts from
the electrochemical mechanism of the battery and describes the polarization voltage of
the battery as a function of current. NPV can better express the dynamic characteristics of
the battery, but it can only describe the process of polarization voltage variation when the
current flows unidirectionally and is not suitable for working conditions with changes in
current direction. The fractional order battery model used to estimate SOP in Ref. [21] has
a clear physical significance compared to the circuit equivalent model, and can reflect the
dynamic characteristics of lithium-ion batteries. In the lower SOC range, the state estimation
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is accuracy using a fractional order battery model, but identifying the parameters of the
fractional order model is more complex compared to the equivalent circuit model. After
establishing a battery model, the parameters of the model must be identified before using
it. The methods for obtaining parameters of battery models are mainly divided into offline
identification and online identification. The offline parameter identification of ECM is
usually obtained through HPPC tests [22]. For fractional order models, particle swarm
optimization algorithm is used to identify their parameters in Ref. [21]. Online parameter
identification updates the model parameters in real-time through the collected voltage,
current and other information. The methods used for online parameter identification
include Dual Kalman Filter algorithm (DEKF) [23], extreme searching algorithm [24], and
Improved Adaptive Forgetting Factor Recursive Least Squares algorithm (IAFFBCRLS)
Method with Bias Compensation [25].

Based on existing research, the problems in battery power prediction are as follows:
(1) It is necessary to obtain battery parameters under different aging and temperature states
through a large number of experiments, which requires a large amount of preliminary
work. (2) The polarization internal resistance of the battery will change with the current
rate, which will result in large prediction error without online parameters identification.

Most existing research focuses on offline parameter identification, with seldom little
consideration given to the influence of temperature and aging on parameters. To achieve
adaptive power prediction for temperature and aging effects, in this paper, the Thevenin
equivalent circuit model of the battery is established, and the parameters of the battery
model are identified online using the least square algorithm based on variable forgetting
factor (VFF-RLS) and extended Kalman filter (EKF). Real time reflection of battery aging and
environmental temperature during battery operation as the basis for adaptive battery power
prediction in the battery model reduces the workload of battery testing experiments. At
the same time, the dependence of battery polarization resistance on current was considered
in power prediction, which improved the accuracy of battery power prediction.

The reason for considering the effects of temperature and aging is that aging accom-
panies the entire life cycle of the battery, and the change in internal resistance is more
significant throughout the entire life cycle. Secondly, the electrochemical reactions inside
the battery are complex and easily affected by temperature. Low temperature increases
internal resistance, while high temperature accelerates aging. After aging, it also mani-
fests as an increase in internal resistance. Therefore, this paper focuses on the impact of
temperature and aging on power prediction.

The reminder of this paper is organized as follows. Section 2 introduces battery
modeling and parameter identification methods. Section 3 introduces the SOP estimation
method. Section 4 presents the experimental results and discussion. Section 5 concludes
the whole paper.

2. Battery Modeling and Parameter Identification
2.1. Battery Equivalent Circuit Model

The battery model is the foundation of state estimation and prediction, and the ECM
is widely used due to its simple structure and easy parameter identification. The model
can more accurately describe battery performance when the order of ECM is higher. But
at the same time, the computational complexity will also greatly increase. Taking the
complexity of the calculation and the accuracy of the model into account, this paper
selects the most widely used Thevenin equivalent circuit model, considering factors such
as model effectiveness and complexity. The model circuit is shown in Figure 1. In the
model, Uoc(SOC) is the open circuit voltage of the battery, which can be expressed as a
function of SOC; R0 is the ohmic internal resistance of the battery; Rp is the polarization
internal resistance of the battery; Cp is the polarization capacitance of the battery; Up is the
polarization voltage; IL is the current flowing through the battery. Here, it is specified that
the charging current is positive, and Ut is the terminal voltage of the battery.
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Figure 1. Thevenin equivalent circuit model.

According to Kirchhoff voltage law (KVL) and Kirchhoff current law (KCL), the
relationship between capacitor voltage and current, the electrical characteristics of the
Thevenin equivalent circuit model in the continuous time domain can be described as:{ .

Up = − Up
RpCp

+ IL
Cp

Ut = UOC(SOC)−Up − ILR0

(1)

SOC is usually calculated by the ampere hour integration method, as shown in
Equation (2), where Q is the nominal capacity of the battery, η is the coulombic efficiency
of the battery, and SOC0 is the initial SOC of the battery, t is the duration of the charging
and discharging process.

SOC = SOC0 −
∫ t

0 η ILdt
Q

(2)

Combined with the ampere time integration method, the Equation (3) of state and
output Equation (4) of the Thevenin equivalent circuit model can be obtained:[ .

Up

S
.

OC

]
=

[
− 1

RpCp

0

][
Up

SOC

]
+

[
1

Cp
η
Q

]
IL (3)

Ut = UOC(SOC)−Up − ILR0 (4)

The state space equation and output equation after discretization using the Euler
method are shown in Equations (5) and (6), where ∆t is the sampling period.

[
Up(k + 1)

SOC(k + 1)

]
=

[
e
−∆t

RpCp

1

][
Up(k)

SOC(k)

]
+

[
Rp(1− e

−∆t
RpCp )

η∆t
Q

]
IL(k) (5)

Ut(k + 1) = UOC(SOC)(k + 1)−UP(k + 1)− R0 IL(k + 1) (6)

The relationship Uoc(SOC) between OCV and SOC can be fitted using the function as
follows [26]:

UOC(SOC) = K0 + K1SOC + K2SOC2 + K3SOC3 + K4SOC4 + K5SOC5 + K6ln(SOC) (7)

In the Equation (7), K0~K6 are coefficients obtained by fitting the OCV-SOC curve
through software. The method for obtaining the OCV-SOC curve is introduced in Section 4.2.

2.2. Online Identification of Model Parameters

The reaction mechanism inside the battery changes with the aging of the battery
and the temperature of the working environment. In order to reflect the changes in the
internal mechanism of the battery in real time, the Variable Forgetting Factor-Recursive
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Least Squares (VFF-RLS) algorithm is used to identify various parameters in the Thevenin
model online.

Recursive Least Squares (RLS) is an identification method that seeks the optimal
matching of battery equivalent circuit model parameter values while ensuring the minimum
sum of error squares. VFF-RLS algorithm utilizes an iterative recursive method to update
the model parameters of the battery. When the identified system is in operation, the last
estimation result is modified based on the newly introduced measurement data. At the
same time, a forgetting factor is introduced to reduce the impact of historical data, estimate
new battery model parameters, and update the forgetting factor to improve the algorithm’s
dynamic tracking ability to parameter changes.

In Formula (8), U(s) is the sum of the voltage on the polarization internal resistance and
the ohmic internal resistance. Calculate the frequency domain transfer function between
U(s) and IL(s) as shown in Equation (9). The discrete domain transfer function obtained by
z-transformation of Equation (9) is shown in Equation (10). In Formulas (10) and (11), τ1 is
the time constant, a1~a3 is the coefficient of the intermediate variable, Ts is the sampling
time. Further, the battery parameters can be obtained as shown in Formula (12).

U(s) = Ut(s)−UOC(SOC) (8)

G(s) =
U(s)
IL(s)

= R0 +
Rp

τ1s + 1
(9)

G(z) = a2+a3z−1

1−a1z−1 (10)


a1 = e−Ts/τ1

a2 = R0 + 1/Cp
a3 = −R0e−Ts/τ1

(11)


R0 = − a3

a1

Cp = 1
a2−R0

Rp = − TS
Cplna1

(12)

Therefore, the model can be represented as follows, where y(k) is the output quantity
and h(k) is the observation vector, θ(k) is a parameter vector:

y(k) = U(k)

y(k) = h(k)Tθ(k)

h(k) = [U(k− 1), IL(k), IL(k− 1)]T

θ = [a1, a2, a3]
T

(13)

The VFF-RLS algorithm process is as follows:

(1) Parameter initialization. θ̂LS represents the parameters identified by VFF-RLS, I0 is
the identity matrix, P is the covariance matrix, δ is a constant:{

θ̂LS(0) = 1
δ [1, 1, 1, 1, 1]T

P(0) = δI0
(14)

(2) Calculate estimation error e(k):

e(k) = y(k)− hT(k)θ̂LS(k− 1) (15)
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(3) Calculate gain matrix K(k), among λ It’s a forgetting factor (0 < λ ≤ 1):

K(k) =
P(k− 1)h(k)

λ + hT(k)P(k− 1)h(k)
(16)

(4) Update Covariance matrix P(k):

P(k) =
1
λ
[I0 −K(k)hT(k)]P(k− 1) (17)

(5) Parameter estimation:

θ̂LS(k) = θ̂LS(k− 1) + e(k)K(k) (18)

(6) Update forgetting factor:

λk = 1− e(k)e(k)

1 + K(k)TP(k)K(k)
(19)

In addition, polarization resistance Rp will decrease with the increase of current when
the SOC of the battery is constant, and there is a dependence on current. During the online
parameter identification process, the battery is in a low current condition, while in power
prediction, the current flowing through the battery is relatively large. If the dependence of
polarization resistance on the battery current is not considered, it will lead to inaccurate
SOP estimation.

The fitting relationship between the polarization resistance of the battery and the
current is shown in Equation (20) [27]:

Rp = Rb + k · ln(|IL|+1)
|IL|

(20)

In the Formula (20), Rb and k are the fitting coefficients of polarization internal re-
sistance Rp with respect to current. Discharge tests were conducted on the battery under
50% SOC state using pulse currents of different magnification, and Rp of the battery was
identified using the least squares method. Table 1 shows the polarization internal re-
sistance of the battery obtained through pulse testing at different current rates, where
IR= ln(|IL|+1)/|IL|.

The relationship between the polarization resistance Rp and IR at 50% SOC is shown
in Figure 2.

By fitting, it can be obtained that the coefficients Rb =1.79 and k = 0.0139 in Equation (20).
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Table 1. Polarization internal resistance Rp under different currents.

Current 4 20 40 60 80 100 120

IR (lnA/A) 0.402 0.152 0.0928 0.0685 0.0549 0.0461 0.0399
Rp (mΩ) 7.16 4.67 3.11 2.58 2.24 2.32 2.35

3. Battery State Estimation and Power Prediction
3.1. SOC Estimation Method

In order to predict the power of the battery, the first step is to obtain the SOC of the
battery. In this study, the Extended Kalman filter (EKF) algorithm is used to estimate the
SOC of the cell. Kalman filter is an algorithm that uses the Equation of state of a linear
system to optimally estimate the minimum mean square error of the system state through
the system input and output observation data. For nonlinear systems such as batteries, the
equation of state and observation equation are usually linearized. At this time KF algorithm
is converted into EKF algorithm. The process of EKF algorithm is as follows:

(1) For state variable x̂+0 assign initial value, Assign initial value to error covariance
matrix P+

0 , Q0 and R0. Qk−1 is the process excitation noise covariance matrix of the
state vector; Rk−1 is the observation noise Covariance matrix of the state vector.

Prior estimation of state variables, x̂−k is prior estimation of state variable:

x̂−k = f (x̂+k−1, uk−1) (21)

Prior estimation of error covariance matrix, P−k is prior estimation of error covariance
matrix, Ak is the system matrix:

P−k = Ak−1P+
k−1AT

k−1 + Qk−1 (22)

(2) Calculate Kalman gain Kk:

Kk = PkCT
k (CkP−k CT

k + Rk−1)
−1

(23)

(3) Posteriori estimation of state variables,x̂+k is posteriori estimation of state variable:

x̂+k = x̂−k + Kkek (24)

(4) Posteriori estimate of the error Covariance matrix, P+
k is prior estimation of error

covariance matrix:
P+

k = P−k −KkCkP−k (25)

Combined with the Equation of state expression of the battery, the coefficient matrices
Ak, Bk and Ck in the EKF algorithm are:

Ak =

[
1 0

0 e−
∆t
τ1

]

Bk =

 − η∆t
Cn

R1

(
1− e−

∆t
τ1

)
Ck =

[
∂(UOC(SOC))

∂(SOC) −1
]

(26)

Combined with the equation of state expression derived from the battery model
in the previous section and the EKF algorithm, the estimated value of battery SOC can
be obtained.
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In this paper, a joint estimation algorithm of EKF and VFF-RLS is used to estimate
the battery state. Firstly, the parameters in the ECM are identified online through the
VFF-RLS algorithm using the voltage and current information obtained from real-time
measurement and the SOC information obtained from the last estimation, and then the
coefficient matrices in the Equation of state are updated using the identified parameters to
improve the accuracy of SOC estimation. The structural diagram of the joint estimation
algorithm is shown in Figure 3.
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3.2. Battery Power Prediction Method

State of Power (SOP) refers to the maximum charging or discharging power of a battery
over a period of time in its current state, without violating the preset constraints of battery
current, voltage, SOC, or power. Based on the ECM, this paper proposes a battery peak
power prediction method based on online parameter identification and state estimation.
The power that a battery can continuously provide is related to its terminal voltage, SOC,
and its own charging and discharging capacity. Therefore, the power prediction method
proposed in this paper mainly considers three constraint conditions: terminal voltage
constraint, SOC constraint, and current constraint.

3.2.1. Voltage Constraint

Assuming that the input or output current I of the battery is constant within L sampling
periods, the state matrix in the battery equation of state and the parameters in the input
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matrix are constant, the battery state at the k + L sampling periods can be predicted from
the k sampling period, uk is input of the system:

Xk+L = AL
k Xk + (

L−1

∑
j=0

AL−1−JBk)uk (27)

Based on this, the voltage Up, k+L on the polarization internal resistance during the
k + L sampling period can be calculated:

Up,k+L = Up,k

(
e(
−∆t

τ )
)L
− IL,k

(
Rp

(
1− e(

−∆t
τ )
)L−1

∑
j=0

(
e(
−∆t

τ )
)L−j−1

)
(28)

By combining the fitting relationship between Rp and battery current in Formula (20)
and removing the exponential term in Formula (28), the terminal voltage Ut, k+L at the k + L
sampling cycle can be obtained:

Ut,k+L = Uoc,k+L −Up,ke(
−L∆t

τ ) − IL,k × (Rb + k× ln(|IL|+1)
|IL|

)×
(

1− e(
−L∆t

τ )
)
− ILR0 (29)

According to the expression of the battery terminal voltage Ut, k+L obtained from
Formula (28) after L cycles, assuming that the voltage is discharged to the lower voltage
limit or charged to the upper voltage limit after L cycles, the maximum current that the
battery can release within the predicted time can be calculated. In this paper, the Newton
iterative method is used to optimize the maximum current under voltage constraints, set
the optimization objective function as shown in Formula (29), and the algorithm flow chart
is shown in Figure 4.

f (IL) = Uoc,k+L −Up,ke(
−L∆t

τ ) − IL,k × (Rb + k× ln(|IL|+1)
|IL|

)×
(

1− e(
−L∆t

τ )
)
− IkR0 − 2.5 (30)
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Figure 4. Newton iterative method flow chart.

Among them, Uoc, k+L are the open circuit voltage of the battery at the end of the
predicted time, which can be obtained by combining the ampere hour integration method
with Uoc’s fitting function on SOC. In order to reduce the computational complexity of the
optimization calculation process and ensure the accuracy of the calculation, the calculation
of Uoc, k+L is achieved by expanding the Taylor formula on Uoc (SOC).

Uoc,k+L = Uoc,k − IL ×
ηL∆t

Q
× ∂Uoc(SOC)

∂SOC
∣∣SOC=SOCk (31)
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3.2.2. SOC Constraint

In practical applications, the SOC of the battery needs to be controlled within a
reasonable range according to the situation, in order to ensure the safe and reliable operation
of the power lithium-ion battery. During the battery discharge process, it should not be
lower than the specified SOCmin, during the charging process, it should not exceed the
specified SOCmax, to avoid overcharging and discharging the battery.

The maximum current of the battery during the predicted time can be calculated using
the ampere hour integration method, where Q represents the current capacity of the battery: Idis

L,SOC = SOCk−SOCmin
∆t/Q

Ich
L,SOC = SOCk−SOCmax

∆t/Q

(32)

In the equation, Ich,
L,SOC, Idis

L,SOC are the maximum charging and discharging currents
obtained under the battery SOC constraint conditions within the duration ∆t.

3.2.3. SOP under Multiple Constraints

The discharging or charging current with the smallest absolute value under various
constraints is selected as the maximum continuous current. Ich

min and Idis
max are maximum

battery charging and discharging current given by the battery manufacturer. Ich
L,V and Idis

L,V
is the maximum battery charging and discharging current under voltage constraint. Ich

L,min = min
{

Ich
min, Ich

L,SOC, Ich
L,V

}
Idis
L,max = max

{
Idis
max, Idis

L,SOC, Idis
L,V

} (33)

Uch
t,k+L and Udis

t,k+L represent the battery terminal voltage at the end of the prediction
window. Ich

L,min and Idis
L,max represent the maximum discharge and charging current of

the battery within the prediction window. The calculation formula for SOP is shown in
Equation (34). {

SOPch
L = Uch

t,k+L Ich
L,min

SOPdis
L = Udis

t,k+L Idis
L,max

(34)

In summary, this paper proposes a SOP prediction method based on online identifica-
tion parameters, which can update parameters in real-time to adapt to different working
environments and aging levels of batteries. It also considers the dependence of battery
polarization internal resistance on current and improves the prediction accuracy of SOP.

4. Experimental Verification
4.1. Experimental Subjects and Platforms

In this paper, the LFP battery with type IFP1780123PA is selected. The lithium-ion
battery used in the experiment is shown in Figure 5, and its main parameters are shown in
Table 2.
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Table 2. Battery technical parameters table.

Items Parameter

Working voltage 3.2 V
Nominal capacity 8 Ah

Charging cutoff voltage 3.65 V
Discharge cutoff Voltage 2.5 V

Maximum charging current 10 C
Maximum discharge current 30 C

Operating temperature range Discharge: 0~30 ◦C
Charge: −20~60 ◦C

In order to verify the accuracy of the battery peak power estimation method proposed
in this paper, a series of battery experiments were designed for experimental verification
in this chapter. The experimental platform used for the verification is shown in Figure 6.
The high-performance battery testing system Neware CT-4004 5 V 200 A can charge and
discharge batteries according to pre-set steps, voltage, and current. The device has a voltage
detection range of 0.025–5 V, a sampling accuracy of ±0.05%, a current setting range of
0–200 A, and an accuracy of ±0.05%.
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4.2. Battery OCV-SOC Curve

In this paper, the low current charging and discharging method is used to obtain the
OCV-SOC curve of the battery. During the charging and discharging process of the battery,
a current of 0.05 C is used. Due to the small ohmic potential and polarization potential
under low current charging and discharging conditions, they can be ignored. Therefore, it
can be considered that the terminal voltage at this point is an open circuit voltage. After
data processing, the two curves during charging and discharging are averaged to obtain
the OCV-SOC curve of the battery. The experimental results are shown in Figure 7.

4.3. Online Parameter Identification and SOC Estimation Results

The parameter identification of the equivalent circuit model for lithium-ion batteries
is the basis for state estimation. In order to verify the accuracy of the VFF-RLS algorithm in
online identification of battery model parameters, this paper conducted FUDS operating
conditions testing on the battery at 25 ◦C room temperature. The ohmic internal resistance
R0 and polarization capacitance Cp parameters identified using the VFF-RLS algorithm are
shown in Figure 8:
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Figure 8. Parameter identification results. (a) Polarization capacitance Cp. (b) Ohmic internal
resistance R0.

It can be seen that the ohmic internal resistance R0 of the battery increases as the
battery discharges, which will lead to a decrease of the battery power release ability. In
addition, the polarization capacitance increases with battery discharge.

The model terminal voltage calculated using online identification parameters and the
measured battery terminal voltage are shown in Figure 9, and the terminal voltage error is
shown in Figure 10.

Processes 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 9. Model output terminal voltage and measurement terminal voltage. 

 

Figure 10. Absolute error between model output voltage and measurement voltage. 

In Figure 9, it can be concluded that, the terminal voltage output by the model can 

approach the measured terminal voltage in a very fast time in the FUDS test, and ulti-

mately converge around the measured terminal voltage, indicating that the RLS algorithm 

has good convergence. In Figure 10, it can be concluded that the absolute error between 

the terminal voltage output by the model and the actual measured terminal voltage is 

relatively small, and the absolute error is within 15 mV for most of the entire process. 

The SOC estimation results obtained using the joint estimation algorithm and the 

SOC results and absolute errors obtained from FUDS testing experiments are shown in 

Figures 11 and 12: 

Figure 9. Model output terminal voltage and measurement terminal voltage.



Processes 2023, 11, 2449 13 of 18

Processes 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 9. Model output terminal voltage and measurement terminal voltage. 

 
Figure 10. Absolute error between model output voltage and measurement voltage. 

In Figure 9, it can be concluded that, the terminal voltage output by the model can 
approach the measured terminal voltage in a very fast time in the FUDS test, and ulti-
mately converge around the measured terminal voltage, indicating that the RLS algorithm 
has good convergence. In Figure 10, it can be concluded that the absolute error between 
the terminal voltage output by the model and the actual measured terminal voltage is 
relatively small, and the absolute error is within 15 mV for most of the entire process. 

The SOC estimation results obtained using the joint estimation algorithm and the 
SOC results and absolute errors obtained from FUDS testing experiments are shown in 
Figures 11 and 12: 

Figure 10. Absolute error between model output voltage and measurement voltage.

In Figure 9, it can be concluded that, the terminal voltage output by the model can
approach the measured terminal voltage in a very fast time in the FUDS test, and ultimately
converge around the measured terminal voltage, indicating that the RLS algorithm has
good convergence. In Figure 10, it can be concluded that the absolute error between the
terminal voltage output by the model and the actual measured terminal voltage is relatively
small, and the absolute error is within 15 mV for most of the entire process.

The SOC estimation results obtained using the joint estimation algorithm and the
SOC results and absolute errors obtained from FUDS testing experiments are shown in
Figures 11 and 12:
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Figure 11. SOC estimated and real values.

In Figure 11, it can be concluded that the estimated value of battery SOC obtained
through the EKF algorithm is very close to the actual value, indicating that the EKF wave
algorithm can quickly converge when estimating the state of charge of batteries. In Figure 12,
the maximum error after convergence is 1.94%, and the root-mean-square deviation is 0.677,
indicating that EKF algorithm has good battery state of charge estimation accuracy.
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4.4. SOP Prediction Verification

To obtain the reference value of power, an experiment is conducted. The fully charged
battery is first discharged to the set SOC point using a constant current of 1/2 C. After
standing for 2 h, the battery is discharged using a constant current and the time t taken to
discharge to the battery’s cut-off voltage is recorded. Adjust the discharge current according
to the magnitude of time t. Repeat the peak current test at least 5 times to ensure that there
are two times that are greater than the predicted time and two times that are less than the
predicted time. Perform more than 5 discharge tests on the battery at one SOC point, and
obtain the fitting curve of the battery discharge current and time through software fitting.
By fitting the curve, the peak discharge current reference value of the battery during the
predicted time can be obtained. The reference value of the battery peak power is obtained
by multiplying the peak discharge current by the battery terminal voltage at the end of
discharge. The experimental results of reference values at 70%, 50%, and 20% SOC are
shown in Table 3.

Table 3. Pulse current experiment at 70%, 50%, 20% SOC.

SOC (%) Discharge Current (A) Discharge Time (s)

70

129 115
127 117
124 119
120 124
117 126
115 129

50

120 105
110 107
105 114
103 116
100 125
95 138

20

45 85
42 100
40 113
38 122
36 132
34 144
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By fitting the above data, the maximum discharge current reference values of each
SOC point battery can be obtained, as shown in Figure 13. When the battery SOC is 70%,
the maximum discharge current reference value corresponding to a discharge time of 120 s
is 123 A. When the battery SOC is 50%, the maximum discharge current reference value
corresponding to a discharge time of 120 s is 101.6 A. When the SOC of the battery is 20%
and the discharge time is 120 s, the corresponding maximum discharge current reference
value is 38.4 A.

On the basis of identifying the model parameters using the VFF-RLS algorithm and
estimating the SOC using the EKF algorithm, the peak power prediction method based
on multi parameter constraints proposed in this paper is validated under FUDS operating
conditions. Considering the actual usage of the battery, the lower SOC limit of the battery
is set to be 5%. The prediction results of peak current and power based on multi parameter
constraints are shown in Figures 14 and 15, with a prediction duration of 120 s and a test
temperature of 25 ◦C.
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From the experimental results, it can be seen that for power prediction with a duration
of 120 s, voltage constraints play a major role in the first half of the FUDS condition testing,
while SOC constraints play a major role in the latter half. Battery discharge is limited by
terminal voltage conditions in areas with higher SOC, while battery discharge is limited
by SOC in areas with lower SOC. When the SOC of the battery is 70%, the predicted peak
current is 117.4 A, with a relative error of 4.5%; When the SOC of the battery is 50%, the
predicted peak current is 101.6 A, with a relative error of 8.1%; When the SOC of the
battery is 20%, the predicted peak current is 40.34 A, with a relative error of 5.0%. The
experimental results demonstrate the effectiveness of the battery peak power estimation
method proposed in this paper under multiple constraints.

5. Conclusions

In order to accurately predict the power of lithium-ion batteries online, this study uses
the VFF-RLS algorithm and EKF algorithm to jointly estimate the parameters and SOC
of the battery. Based on the results of parameter identification and SOC estimation, the
battery power prediction under multiple constraint conditions is carried out.

This study avoids extensive preliminary experiments and improves the adaptability of
power prediction methods considering battery aging and different temperature conditions,
according to the real-time current, voltage and the online identified battery parameters. In
addition, the dependence of battery polarization resistance on battery current is considered,
which improved the accuracy of power prediction. By using the EKF algorithm for SOC
estimation, SOP can be accurately calculated under the constraints of current, voltage,
and SOC, with high estimation accuracy and low computational complexity. Finally, the
proposed power prediction method is validated under FUDS operating conditions. Results
show that the maximum estimation error of SOC is 1.94%, and the power prediction errors
at 20%, 50%, and 70% SOC are 5.0%, 8.1%, and 4.5%, respectively.

The experimental results show that the adaptive power prediction method proposed
in this paper has good accuracy and can avoid a large amount of preliminary experimental
work. Our future work will focus on the effect of SOH on SOP, and study joint estimation
of SOH, SOC, and SOP to further improve the accuracy of battery state estimation.
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