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Abstract: The energetic potential of the seed shell of the Neem plant (Azadirachta indica) was investi-
gated using proximate analysis, Higher Heating Value (HHV), thermal analysis (TG-DTG and DSC)
in inert and oxidative atmospheres, and X-ray fluorescence (XRF). The results of ash (3.80% ± 0.44),
volatile matter (81.76% ± 1.30), fixed carbon (14.44% ± 1.74), and estimated HHV (18.791 MJ/kg:
average value) are compatible with other biomasses already used as fuels in the bioenergy industry.
Thermograms showed three main degradation events in synthetic air and two in nitrogen, attributed
to the moisture, release of volatile materials, and decomposition of hemicellulose, cellulose, and
lignin. The elements positively detected by the XRF were Ca, K, S, P, Fe, Ti, Zn, Rb, and Sr.

Keywords: Neem; proximate analysis; bioenergy; alternative source; plant biomass; TG; XRF

1. Introduction

It is incontestable that society is increasingly dependent on energy [1]. Thus, alterna-
tive sources are necessary to address the growing demand for new technologies that need
a significant amount of energy to be developed [2–4]. Alternatives to energy demand are
biofuels that present a reduction in greenhouse gases, possess less pollution in their produc-
tion line, possibility the integrated use, and characteristics compatible with conventional
fuels [5–11].

Among possible feedstocks for biofuel production is the Neem tree (Azadirachta indica),
which already has some applications in the bioenergy sector, such as charcoal (trunk),
briquettes (leaves and stem bark), and biodiesel (oil extracted from seeds) [12–16]. Neem
is a plant native to India and the adjacent regions, which has adapted to the climate of
northeastern Brazil, allowing local production and a possible application as feedstock for
biofuel production [17,18]. Several researchers have also studied the Neem tree, evaluating
its medicinal, antiseptic, and insecticide properties [19]. In addition, the oil extracted from
the seed has been used in personal care items, insect repellent, and pesticides [20–22].

Some studies show that Neem seed kernel contains about 45% of oil [19], composed
of oleic acid (50–60%), palmitic acid (13–15%), stearic acid (14–19%), linoleic acid (8–16%),
and arachidic acid (1–3%), showing potential for the production of biodiesel and biol-
ubricants. Furthermore, many chemicals have been identified from the seeds [23], and
Saleem et al. (2018) [24] reported the presence of other beneficial compounds in the whole
Neem tree, including its flowers, bark, twigs, gum, sap, and leaves. For example, Neem
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leaf and seed formulations exhibit antibacterial properties, antifeedant activities, roles in
lowering fecundity, ovicidal and larvicidal activities, growth inhibition properties, and
repellence activities against insect vectors [22,25].

After Neem seed oil extraction, a cake is formed [26], and an extract also can be
obtained when the cake is extracted with solvent [27]. These byproducts can be further
processed, crystallized, emulsified, and mixed with solvents for use in processes based on
Neem compounds [28–30]. Regarding Neem leaves, Rao and Murugan (2023) [31] report
that their natural extracts have been used in cosmetic formulations, insect-repellent soaps,
and lubricant production. Moreover, they have proven therapeutic properties and healing
benefits, being considered a traditional remedy to treat several health problems [32]. Thus,
the Neem tree is recognized by the National Academy of Science, USA as ‘A tree for solving
global problems’ [33].

For energetic applications, some authors have used parts of the Neem tree, such as leaf
waste, as feedstock for gasification [34]. Kumar et al. (2021) [34] evaluated the energetic
potential of Neem leaf waste using proximate and elemental analyses and Higher Heating
Value. The results showed better than rice husk and coal, indicating that it can be applied as
biofuel for cooking and in small-scale industries. Due to its low sulfur concentration, Neem
leaf waste has the potential to satisfy human needs without harming the environment,
ensuring energy security and sustainability. However, the energetic potential of the seed
shell of the Neem plant has not been explored. Thus, aiming for the integrated harnessing of
the tree and contributing to the area of renewable energy, the authors developed this work.

In the solid fuel class is the briquette, a prominent alternative to energy generation [35,36].
Briquettes can be produced from residual biomasses or mixed with them and used to generate
thermal energy in furnaces and boilers [37,38]. The property of each biomass contributes to
the quality of the mixture and is based on moisture content, total solids, ash, volatile matter,
and fixed carbon [39,40].

Moisture, volatile matter, ash, and fixed carbon contents compose the proximate
analysis, which is essential to the biofuel evaluation [41]. Furthermore, total solids can
be determined and assist in the indication of better mixing of biomasses for briquettes
production [42].

Thermal analysis is one of the techniques most used to investigate the thermal behavior
of lignocellulosic biomass [43–46]. In thermogravimetry (TG), data are collected by the
progress of mass change versus temperature, and the thermogram can be used to obtain
the volatile matter and ash quantities as well as the differences in thermal response due to
varying proportion of the hemicellulose, cellulose, and lignin [47]. Differential scanning
calorimetry (DSC) allows one to measure the thermal properties of biomass by establishing
the between temperature and physical properties and determining the enthalpy associated
with the process of interest [48].

The inorganic elemental analysis of biomass is essential for increasing its utilization as
biofuel, and X-ray fluorescence (XRF) spectrometry is an attractive method for this evalua-
tion. Morgan et al. 2015 [49] inferred that the XRF method could be used to estimate the ash
yield from biomass combustion and considered for general use in industrial laboratories.
Biomass characterization through XRF allows the detection of ash-forming compounds
and corrosive elements that can deteriorate the equipment used in thermal conversion
processes [50].

Thus, the work shows the analysis of the energetic potential of the seed shell of
the Neem plant (Azadirachta indica) as potential biomass for the future production of
briquettes. For this, moisture, volatile matter, ash, fixed carbon, and total solid contents
were determined, and the results were compared with other biomasses published in the
literature. In addition, the thermal behavior of biomass was analyzed by TG-DTG and
DSC using nonisothermal conditions in synthetic air and nitrogen atmospheres, and the
inorganic elemental analysis by X-ray fluorescence (XRF).
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2. Materials and Methods
2.1. Materials

The fruits were collected in January 2021, Fortaleza-CE-Brazil, geographical
coordinates—Latitude: 2◦31′51′′ S and Longitude: 44◦18′24′′ W. Figure 1 shows the steps
for the preparation of the Neem seeds.
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Figure 1. Steps for the preparation of the Neem seeds.

After collection, Neem fruits were screened (2nd step) for branches, leaves, and
separation of other impurities. In sequence, the sieve operation removed sand and other
dirt (3rd step), and then fruits were stored in plastic bags and taken to the drying stage
(4th step), in which they were exposed to the sun for 60 days. Cores and shells were
obtained from dried fruits (Figure 2).
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Figure 2. Neem seed: core and shell.

The separation of the shell and core was carried out using a large sieve. To facilitate
the process, it was necessary to hydrate the seeds to obtain the core and a fibrous mass
(Figure 3). Subsequently, the materials were subjected to sun-drying again.
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2.2. Proximate Analysis

Moisture and total solid contents were determined following NBR 16550 (Equations (1)
and (2)) [51]

Moisture (%) =

(mSi −mS f

mSi

)
× 100 (1)

Total Solids (%) =

(mS f

mSi

)
× 100 (2)

where: mSi = mass sample as received (g) and mSf = mass dry sample (g).
For the procedure, we used 1.0 g of sample and a drying oven at temperature of

105 ± 3 ◦C for 2 h. The experiment was repeated until mass was constant.
For analysis of ash content, we used approximately 1.0 g of the sample and a muffle

furnace at a temperature of 575 ± 25 ◦C for 4 h (Figure 4). The content was calculated using
Equation (3) (NBR 16550 [51]).

Ash (%) =

(
mAsh
mS f

)
·100 =

(
mAsh·100

mSi·TS(%)

)
·100 (3)

where: mAsh = mass of total ash (g); mSf = mass dry sample (g); mSi = mass sample as
received (g); and TS(%) = total solid percentage.
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Volatile matter content was determined following ASTM D3175-20 [52], using approx-
imately 1.0 g of dry sample and a muffle furnace at 950 ◦C for 7 min; see Figure 4. The
content was calculated by Equation (4).

Volatile Matter (%) =

[(
mi −m f

m f −mc+l

)
·100

]
−M(%) (4)

where: mi = initial mass of porcelain crucible with lid plus sample (g); mSf = final mass of
porcelain crucible with lid plus sample (g); mc+l = mass of porcelain crucible with lid (g);
and M(%) = moisture percentage.

The fixed carbon content was calculated by Equation (5), following the methodology
proposed in ASTM D3172-13(2021)e1 [53].

Fixed Carbon (%) = 100− Ash(%)−Volatile Matter(%) (5)

The Higher Heating Value was estimated using the proximate analysis results
(Equations (6)–(12)) [54–59].

HHV
(

MJ
kg

)
= 0.3536·Fixed carbon(%) + 0.1559·Volatile Matter(%)− 0.0078·Ash(%) (6)

HHV
(

MJ
kg

)
= −17.507 + 0.3985·Volatile Matter(%) + 0.2875·Fixed carbon(%) (7)

HHV
(

MJ
kg

)
= −2.057− 0.092·Ash(%) + 0.279·Volatile Matter(%) (8)

HHV
(

MJ
kg

)
= 0.1905·Volatile Matter(%) + 0.2521·Fixed carbon(%) (9)

HHV
(

MJ
kg

)
= 0.196·Fixed carbon(%) + 14.119 (10)

HHV
(

MJ
kg

)
= 157.34·(Volatile Matter(%) + Fixed carbon(%)) + 4243.97 (11)

HHV
(

MJ
kg

)
= 0.365·Fixed carbon(%) + 0.131·Volatile Matter(%) +

(
1.397

Fixed carbon(%)

)
+

(
328.568·Volatile Matter(%)

10283.138+0.531·(Fixed carbon(%))3·Ash(%)−6.863·(Fixed carbon(%))2·Ash(%)

) (12)

where: HHV = Higher Heating Value
(

MJ
kg

)
.

2.3. Thermal Analysis

The thermal analyses were performed in a NETZSCH STA 449 F3 Jupiter®–Thermal
Analysis System. The parameters were: sample mass of 20 mg, temperature range of
25–800 ◦C, nitrogen, and synthetic air (20% oxygen and 80% nitrogen) atmospheres with
a flow rate of 50 mL min−1 and heating rate of 10 ◦C min−1. The plots of mass loss
versus temperature and flux heat versus temperature were generated using the NETZSCH
Proteus® software (version 5.2.0).

2.4. X-ray Fluorescence (XRF)

The energy-dispersive X-ray fluorescence (XRF) spectrometer was the EDX 7000 equipped
with a rhodium tube from Shimadzu Corporation (Japan), operating with the PCEDX Navi
software from Shimadzu (https://www.shimadzu.com/an/sites/shimadzu.com.an/files/

https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/9766/jpq214001.pdf
https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/9766/jpq214001.pdf
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pim/pim_document_file/applications/application_note/9766/jpq214001.pdf, accessed on
12 April 2023). The conditions were excitation of 20 kV, 100 µA, a collimator of 10 mm,
atmosphere of He, a filter of Al (25 µm thickness), the integration time of 800 s, chlorine
line Ka of 2.62 KeV, energy peak integration range of 2.55–2.82 KeV. A 31 mm (diameter)
polyethylene cell, sealed with a polypropylene film (5 µm thickness), was used to hold the
sample. The X-ray beam focused on the bottom window of the cell. The biomass sample
(about 100 mg) was directly introduced in the polyethylene cell without previous preparation
and placed into the automatic sampling carrousel. Background (BG) correction was made by
measuring the integrated intensity of the range over the auto-BG line.

3. Results

The results of the proximate analysis of the Neem seed shell and other biomasses from
the literature for comparison [60–64] are shown in Table 1.

Table 1. Proximate analysis of the Neem seed shell and other biomasses from the literature.

Biomass Moisture (%) Ash (%) VM (%) FC (%) References

Neem seed shell 12.68 ± 0.16 3.80 ± 0.44 81.76 ± 1.30 14.44 ± 1.74 This work

Neem
leaves 10.4 7.41 92.59 24.82 [60]

Neem
wood 7.33 0.46 82.29 17.25 [61]

Coconut shell 7.32 1.42 69.21 30.09 [62]

Sugarcane bagasse 7.94 2.15 82.72 15.12 [63]

Eucalyptus wood 9.03 0.54 86.73 12.73 [64]
VM = volatile matter, FC = fixed carbon.

Figure 5 shows the results of the proximate analysis of the Neem seed shell.
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Table 2 presents the average values of the Higher Heating Value (HHV, MJ/kg) es-
timated by Equations (6)–(12) [54–59] for the biomasses coconut shell [62], sugarcane
bagasse [63], and eucalyptus wood [64].
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Table 2. Average values of the Higher Heating Value (HHV, MJ/kg) estimated by Equations (6)–(12) [54–59]
for the biomasses coconut shell [62], sugarcane bagasse [63], and eucalyptus wood [64].

Biomass HHV, MJ/kg

Coconut shell 19.864

Sugarcane bagasse 19.156

Eucalyptus wood 19.422

The results of the thermogravimetric (TG-DTG ) and DSC curves of the seed shell of
the Neem plant (Azadirachta indica) are presented in Figures 8–10.
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Table 3. Results of TG-DTG of the Neem seed shell in the atmosphere of synthetic air and nitrogen.

Synthetic Air

Event Tonset/◦C Tpeak/◦C Tendset/◦C Mass Change %

1 57.8 97.3 135.2 12.35

2 243.2 282.2 357.3 47.20

3 414.3 329.1 733.6 36.17

Nitrogen

Event Tonset/◦C Tpeak/◦C Tendset/◦C Mass Change %

1 54.9 95.0 137.2 12.67

2 241.8 332.5 355.1 50.03
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Table 4. Results of DSC of the Neem seed shell in the atmosphere of synthetic air and nitrogen.

Synthetic Air

Event Tonset/◦C Tpeak/◦C Tendset/◦C ∆H, J/g

1 67.1 102.7 142.5 291.5 (endo)

2 244.8 338.1 377.1
7636 (exo)

3 424.0 704.3 723.7

Nitrogen

Event Tonset/◦C Tpeak/◦C Tendset/◦C ∆H, J/g

1 64.5 100.4 143.3 318.6 (endo)

2 250.0 339.1 358.6 554.4 (exo)

Figure 11 and Table 5 show the XRF emission spectrum and elements detected for the
Neem seed shell.
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Table 5. X-ray fluorescence analysis: elements detected (%) in the Neem seed shell.

Element Result cps/uA

Ca 44.263% 72.2786

K 39.801% 90.9664

S 8.770% 25.1407

P 4.172% 5.7994

Fe 1.806% 13.1290

Ti 0.672% 1.4425

Zn 0.244% 3.8564

Rb 0.156% 6.3434

Sr 0.116% 5.3164
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4. Discussion

Neem seed shell showed a moisture content of 12.68% (±0.16), which is higher than
the results found by Fernandes [60] and Santana et al. [61] in their respective studies with
the leaves (10.4%) and wood (7.33%) of the Neem. According to Motta et al. [68], in energy
applications it is possible to work with a moisture content of around 15%. Quirino et al. [69]
presented in their study the moisture contents of various lignocellulosic biomasses between
10.4 and 25.8%. The biomasses of coconut shell [62], sugarcane bagasse [63], and eucalyptus
wood [64], used in this work for a comparative purpose, showed moisture contents between
7.32% and 9.03% (see Table 1). Thus, the Neem seed shell showed a moisture content
compatible with other biomasses used as fuel. However, it is essential to point out that
high moisture reduces the combustibility of the material, and the principal process of using
biomass for energy generation is by direct combustion; it is necessary to maintain the
moisture content below 25% [42,66,67,70,71].

Regarding the total solid content, the Neem seed shell obtained a value of 87.85 ± 0.16%,
which was applied in the ash content calculation, with the result of 3.80 ± 0.44%. Accord-
ing to Motta et al. [68] and Quirino et al. [69], which evaluated the leaves and wood of
the Neem, ash contents were 7.41% [60] and 0.46% [61], respectively. For the biomasses
coconut shell [62], sugarcane bagasse [63], and eucalyptus wood [64], the ash contents
reported were 1.44%, 2.15%, and 0.54%, respectively. Like moisture, a high ash content
also impacts the Higher Heating Value of biomass [72] and causes ignition and combustion
problems [65–67,73]. O ponto de fusão das cinzas dissolvidas pode ser baixo, o que causa
problemas de incrustação e escória. The melting point of dissolved ash can be low, which
causes incrustation and slag problems. Combustion efficiency is also affected by the ash
content, because if combustion does not occur properly, it will require more oxygen for the
material to burn completely. Among the combustion technologies available for the use of
biomass, fluidized bed combustion is the best suited for burning a low-quality fuel with a
high ash content and low HHV [65]. According to ash content, Neem seed shell is suitable
for energy use compared to other biomasses reported in the literature.

Regarding volatile matter content, the Neem seed shell presented a value of 81.76 ± 1.30%.
According to data from the literature [Motta et al. [68] and Quirino et al. [69]], the leaves and
wood of Neem have values of 92.59% and 82.29% (see Figure 6), respectively. The other
biomasses, coconut husk [62], sugarcane bagasse [63], and eucalyptus wood [64], showed
results between 69.21% and 86.73%. The volatile matter content is closely related to the
energy used in biomass ignition; a high value facilitates the process and the initial stages of
combustion [41]. Additionally, too fast an ignition could result in the quick burning of the entire
material. The volatile matter content of the Neem seed shell was compatible with biomasses
used as fuels [65,69].

For the fixed carbon content, the value 14.44 ± 1.74% was obtained (see Table 1). As
for Neem leaves and wood, Motta et al. [68] and Quirino et al. [69] found values of 24.82%
and 17.25% (see Figure 6), respectively. For the coconut shell biomass [62], sugarcane
bagasse [63], and eucalyptus wood [64], the values of 30.09%, 15.12%, and 12.73% were
reported, respectively. According to Marafon et al. [67], the fixed carbon content is directly
proportional to the lignin content, extractives, and biomass density. Thus, a high FC(%)
increases the calorific value and, consequently, the production of energy [74,75]. According
to the results, Neem seed shell has the potential for use as fuel, compatible with other
biomasses reported in the literature [65].

For the Higher Heating Value (HHV), which represents an important parameter to
evaluate the energy efficiency of fuels [76], results were obtained for the Neem seed shell
in order of 16.949 MJ/kg to 20.404 MJ/kg (see Figure 7), depending on the equation used
(see Materials and Methods). HHV refers to the energy released during the complete
burning of fuel, assuming that all vapor produced in the combustion is condensed and
heat is recovered [70,71,77]. In biomass, HHV varies according to species, moisture content,
density, age, and other characteristics [78–82]. The authors used seven equations based
on proximate analysis to estimate the HHV of the biomasses. The results for the Neem
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shell, leaves, and wood are shown in Figure 7, and those for the coconut shell, sugarcane
bagasse, and eucalyptus wood are in Table 2. Among Neem biomasses, leaves showed the
highest value. This behavior may be due to differences in organic fractions of the materials;
according to Smith et al. [83], Neem leaves have a low carbohydrate content (O-alkyl
carbon), a high alkyl-C value, and in FTIR analysis showed pronounced signals at 2920, 2852,
1640, and 1512 cm−1, indicating asymmetric C-H stretches, symmetric C-H stretches, amide
I-aromatic ring modes, and aromatic skeletal vibration of lignin, respectively. Comparing
the HHV results of reported biomasses, sugarcane bagasse presented an average value of
19.156 MJ/kg. This biofuel is already used in Brazil and applied in cogeneration plants
in the sugar and alcohol sector [84]. Furthermore, sugarcane bagasse is a renewable
alternative to fossil fuels, contributing to greenhouse gas emissions reduction [85,86].
Coconut shell and eucalyptus wood also showed average values of HHV of 19.864 MJ/kg
and 19.422 MJ/kg, respectively. This information represents the importance of biomass for
energy purposes and verifies that the HHV of Neem seed shell is within standards already
used in the industry.

According to TG-DTG curves of the Neem seed shell (Figures 8 and 9), there are three
main degradation events in synthetic air and two in nitrogen. In the oxidative atmosphere,
the first event represents the moisture loss (57.8–135.2 ◦C), the second represents the mass
loss attributed to the release of volatile materials (243.2–357.3 ◦C), and also the decompo-
sition of hemicellulose, cellulose, and partial degradation of lignin [43,45,47,48], and the
third event represents the decomposition of cellulose and the lignin (414.3 and 733.6 ◦C).
In the nitrogen atmosphere, the first event represents the moisture loss (54.9–137.2 ◦C),
and the second represents the mass loss attributed to the release of volatile materials and
decomposition of hemicellulose, cellulose, and partial degradation of lignin (241.8 and
355.1 ◦C) [43,87]; see Table 3. According to Yang et al. (2007), the degradation zone of the
hemicellulose occurs between 220 and 315 ◦C, the cellulose between 315 and 400 ◦C, and
the lignin between 160 and 900 ◦C [88]. For Saikia and Bardalai (2017), the differences in
biomass thermograms were due to the variation of proportions of hemicellulose, cellulose,
and lignin with traces of minerals and extractives [89], and degradation regions were
220–315 ◦C for hemicellulose, 315–400 ◦C for cellulose, and above 450 ◦C for lignin.

In DSC curves, the first endothermic event was associated with water evaporation
(synthetic air 67.1–142.5 ◦C and nitrogen 64.5–143.3 ◦C). According to Kozlov et al. (2021),
differential scanning calorimetry allows the evaluation of the effect of evaporation on the
deviation of the sample temperature from the heating gas temperature [90]. The subsequent
events in the oxidative atmosphere can be attributed to the decomposition of hemicellulose,
cellulose, and lignin [91]. The energy involved in each event can be seen in Table 4.

X-ray fluorescence is an analytical tool for quantitative elemental analysis of many
elements, such ash-formers (e.g., Na, Mg, Al, Si, P, S, K, Ca, Mn, and Fe), and those which
can cause adverse effects on the environment (e.g., S, Cl) [49]. Given the increase in the
utilization and trade of biomass, the quantitative elemental analysis by XRF is essential
information that allows us to evaluate the contaminants, dirt, type, and origin of biomass.
The results of the Neem seed shell are shown in Table 5, and the elements with higher
percentual were Ca, K, S, and P. According to Vassilev et al. (2010) [92], it is commonly
accepted that the concentration and behavior of elements such as Ca, Cl, K, Na, P, S, Si,
and heavy metals can cause technological and environmental problems during biomass
processing, including combustion. However, studies with other solid fuels indicate that the
occurrence of these problems can be connected to the abundance and behavior of modes of
element occurrence in biomass and its products [93–95]. Thus, systematic studies about
the elements of biomass and their products are in the initial investigation stage and need
more assessment for further clarification. The element quantities and order of abundance
detected in the Neem seed shell are compatible with other biomasses used as biofuel [92].
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5. Conclusions

The moisture content of the Neem seed shell showed values closely established range
for biomass used as biofuel, which can be indicated as an option for energy purposes. This
parameter also indicates that biomass will present an efficient energy generation. Ash
content showed a low value suggesting a characteristic favorable to the increase of HHV.
Low moisture and ash contents reinforce that Neem seed shells can present positive results
if applied as fuel. The volatile matter and fixed carbon contents also were compatible with
other biomass used as fuels. Higher Heating Value showed results closely aligned with
sugarcane bagasse, a consolidated biomass already used in energy generation in Brazil,
whose capacity in operation corresponds to 70.5% of the total thermoelectric plants, that is,
2440 MW, according to data from the 2030 National Energy Plan of the Ministry of Mines
and Energies. The thermograms revealed compatible behaviors with other biomasses pre-
senting the main events attributed to the devolatilization and degradation of hemicellulose,
cellulose, and lignin. The degradation of lignocellulosic components involved the highest
energy (DSC: oxidative atmosphere). Finally, in XRF analysis, the element quantities and
order of abundance detected following the other organic raw materials applied to bioen-
ergy production. All results reinforce the energetic potential of the Neem seed shell and
demonstrate yet another application. It is also worth noting that the Neem seed shells
can be used in a mixture with other residual biomass for briquette production, further
improving its fuel performance.
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