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Abstract: The utilization of data-driven methods in chemical process modeling has been extensively
acknowledged due to their effectiveness. However, with the increasing complexity and variability
of chemical processes, predicting and warning of anomalous conditions have become challenging.
Extracting valuable features and constructing relevant warning models are critical problems that
require resolution. This research proposed a novel fused method that integrates K-means density-
based spatial clustering of applications with noise (DBSCAN) clustering and bi-directional long
short-term memory multilayer perceptron (Bi-LSTM-MLP) to enable early warning of abnormal
conditions in chemical processes. The paper applied the proposed method to analyze the early
warning using actual process data from Eastman Tennessee and the atmospheric pressure reduction
unit as an example. In the TE model and example, the root mean square error (RMSE) of this method
is 0.006855 and 0.052546, respectively, which is quite low when compared to other methods. The
experimental results confirmed the effectiveness of our approach.

Keywords: data-driven; chemical process; abnormal conditions

1. Introduction

Chemical processes can pose a significant risk to safety and efficiency due to their
potential for flammability, explosiveness, toxicity, and hazardous reactions. Abnormal con-
ditions generated during chemical processes can cause disturbances in multiple variables
that transmit across the entire process through logistics and equipment connections [1],
leading to numerous alarms and abnormal conditions. Therefore, monitoring and warning
of abnormal conditions are essential in the chemical industry to ensure plant safety and
efficiency [2]. Traditional monitoring techniques rely on pre-set alarm thresholds, but early
warning by simply lowering these thresholds can lead to an “alarm flood” [3]. The three
main types of abnormal working condition warning techniques currently in use are analyti-
cal model-based techniques, knowledge-based techniques, and data-driven techniques [4].
Knowledge-based methods analyze and reason using knowledge and experience, but ob-
taining knowledge and experience is more challenging [5]. Data-driven methods predict
changes in the data via mining. Analytical model-based methods require the establishment
of a rigorous scientific data model, and the process is more complex.

With the advent of plant distributed control system (DCS) systems, large amounts of
data require mining and analysis, making data-driven methods a hot topic for research
in abnormality monitoring and fault diagnosis. Data-driven methods are categorized
into statistical-based methods, artificial intelligence-based methods, and comprehensive
methods [6]. Statistical-based methods involve projecting high-dimensional data into low-
dimensional space, applying statistical principles to calculate information and statistics,
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and comparing these results to threshold values for analysis. Principal component anal-
ysis (PCA) [7], partial least squares (PLS) [8], independent component analysis (ICA) [9],
and Gaussian mixture model (GMM) [10] are examples of statistical-based methods that
have strong data processing capabilities but weak diagnostic and analytical capabilities.
Artificial-intelligence-based methods rely on machine learning and are categorized as super-
vised or unsupervised [11]. Supervised learning involves error minimization via training
input–output relationships, while unsupervised learning can mine data relationships with-
out example outputs. Decision trees [12], artificial neural networks [13], deep learning [14],
support vector machines [15], integrated learning [16], k-means [17], and autoencoders [18]
are all examples of AI-based methods. However, the stochastic nature of these models can
lead to over-reliance on data quality. Integrated approaches are more scalable by apply-
ing statistical principles to AI methods, with Bayesian networks [19] and hidden Markov
models [20] being examples of integrated approaches. Existing warning methods do not
consider the characteristics of unlabeled dynamic data, resulting in weak generalization
ability, poor stability, and limited effectiveness, accuracy, and early warning capabilities.

An investigation into the alarm systems of DCS systems in various chemical plants
reveals that the chemical process data captured typically lack classification labels. Man-
ually adding such labels would entail significant labor costs and be susceptible to errors
introduced by human factors. As a result, chemical process early warning researchers have
explored unsupervised learning methods. Among these methods, k-means, which is a
widely employed partitioned clustering algorithm, has demonstrated notable outcomes in
numerous applications owing to its fast convergence and simplicity [21–26]. For instance,
Cai et al. [27] put forth a new clustering method that combined k-means with the MDS
method to visualize the alarm vector and display results in a two-dimensional scatter
plot, resulting in the removal of redundant alarms and making the alarm system more
effective. Additionally, Zhang [28] and colleagues implemented an automatic hierarchical
warning function via the K-means algorithm and utilized an advanced diagnostic model
to achieve an intelligent diagnosis, successfully applying the model to axial flow fans.
Validation was performed, underscoring the importance of feature selection and clustering
in modeling and the potential of combining k-means with deep learning methods [29].
Nevertheless, a large number of studies have demonstrated that k-means and its related
improved algorithms are fundamentally reliant on evaluating the similarity of sample
points based on their distances from one another, resulting in an inability to differentiate
anomalies in local density differences and leading to significant misclassification of normal
data fluctuations. Moreover, for anomaly monitoring, the classical density-based algo-
rithm, density-based spatial clustering of applications with noise (DBSCAN), is regarded
as capable of identifying anomalous samples in the low-density regions of the sample
space [30–32]. Garg et al. [33] proposed a novel integration-based anomaly detection tech-
nique, Boruta-Firefly-aided partitioning DBSCAN (BFA-PDBSCAN), which utilizes locality
sensitive hashing (LSH) and k-distance graphs to address traditional problems of DBSCAN.
Furthermore, Zhu et al. [34] used the DBSCAN approach to filter and improve the validity
of the data acquired from monitoring and controlling wind turbine conditions through
supervisory control and data acquisition (SCADA) data. Given the stochastic nature of the
development of data features under abnormal states during the chemical process, further
investigation is required to determine the adaptive nature of clustering parameter selection.

Moreover, given the high applicability, learning ability, processing power, and ro-
bustness of unlabeled data from deep learning methods, researchers have made several
findings in this area [35–38]. Considering that most of the data collected during chemical
processes are dynamic and that traditional applications are prone to classifying them as
static data processing, researchers have turned their attention to the better dynamic data
processing capabilities of long short-term Memory (LSTM) networks for abnormal data
monitoring [39–41]. Ren et al. [42] improved the monitoring performance in the nonlin-
ear batch process by processing the LSTM encoder–decoder network. Zheng et al. [43]
combined system architecture evolution (SAE) with LSTM to extract low-dimensional



Processes 2023, 11, 2435 3 of 24

features and construct a pseudo-supervised model for online fault diagnosis. Bai et al. [44]
proposed a dynamic intra-principal component analysis (DiPCA) and LSTM-based chemi-
cal process key alarm variable prediction model, reducing the complexity of the original
prediction problem. Zhang et al. [45] combined LSTM with a ladder autoencoder (LAE),
using semi-supervised learning to utilize unlabeled data and facilitate fault localization,
resulting in a significant improvement in fault diagnosis performance. The research shows
the effectiveness of LSTM in the direction of chemical process early warning.

The unique characteristics of data in chemical processes, such as dynamic and unla-
beled features, pose challenges for early warning and trend prediction of abnormal data
development. This paper proposes a novel data-driven ultra-early warning method for
chemical processes to improve the sensitivity and accuracy of abnormal data detection. The
proposed method integrates two clustering methods, k-means and DBSCAN, to cluster
the alarm data and capture the temporal dependence in the data using a better-integrated
LSTM prediction method. Additionally, the multilayer perceptron (MLP) layer is fused
to learn the nonlinear relationship between the features and target variables. The main
contributions of this paper are as follows:

• It is suggested to develop a better pre-warning technique for abnormal working
conditions in chemical processes that can anticipate the direction of data in advance to
provide operators with more flexible processing time;

• The use of two data-driven fusion algorithms, the fusing of K-means and DBSCAN
into two clustering techniques, as well as Bi-LSTM and MLP, enhances the scientific
validity of the warning techniques;

• The experiments show how the proposed fusion data-driven technique for early warn-
ing of aberrant working conditions in chemical processes is reliable and sophisticated.

Section 2 outlines the methodology for developing the fused data-driven early warning
method for chemical processes, which includes pre-processing, clustering, and prediction
parts, and introduces the related models, including K-MEANS, DBSCAN, LSTM, and MLP.
In Section 3, the application of the early warning method is demonstrated using specific
examples based on a TE model and a normal pressure-reducing device in a petrochemical
plant. The conclusions are presented in Section 4.

2. Methodology

The present study introduces a novel fused data-driven early warning method to
identify and predict abnormal working conditions in chemical processes, as depicted in
Figure 1. To begin with, the original data undergo a pre-processing stage that includes
cleaning, missing value imputation, and normalization. Next, the pre-processed data
undergo a clustering stage using K-means and DBSCAN algorithms. Finally, the clustered
data are fed as input to the Bi-LSTM-MLP model for prediction and warning output. The
outlined approach is visualized in Figure 1, providing a clear and concise representation of
the proposed method.
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in Chemical Processes.

2.1. Data Pre-Processing Layer

The data pre-processing layer involves the critical step of data cleaning, which entails
identifying and addressing issues such as missing values, outliers, and errors in the dataset.
Following this, the data undergo feature scaling, where the normalization method is
adopted, utilizing the equation as follows:

xi
(normal,j) =

xi(t, j)− xi
jmin

xi
jmax − xi

jmin
, (j = 1, 2, · · · , n) (1)

xi
average =

1
n ∑n

j=1 xi
(normal,j) (2)

where xi(t, j) is the original data and xi
(normal,j) is the normalized data.

The subsequent step in the data preprocessing layer is feature selection. The normal-
ized data are used as input, and a sliding time window is employed to map the series from
a one-dimensional space to a higher-dimensional space. The historical neighborhood of a
specific moment is divided into multiple time windows, and 15-dimensional time domain
features are extracted from each window, which include maximum, minimum, peak, peak-
peak, mean, variance, mean square, mean square amplitude, square root amplitude, mean
amplitude, peak indicator, waveform indicator, pulse indicator, margin indicator, and cliff
indicator. A sliding window of width ω is set in the historical time neighborhood [T + 1, t]
for time point t with a sliding factor δ = 1. The method fragments the s monitoring data
using a sliding window to extract the 15-dimensional time-domain features within a total
of (T − ω + 1) time windows. This results in the creation of an associated measurement
point feature space X = [X1, X2, · · · , X15] which describes the changes in data within
the window. The number of individual measurement point samples is N = T − ω + 1.
This process establishes the correlation between a moment of the process and its value in
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the time neighborhood and satisfies the sample number requirement in the subsequent
clustering detection.

The proposed method utilizes principal component analysis (PCA) to reconstruct
the feature space and eliminate noise and redundant information. By mapping high-
dimensional data to low-dimensional space, this method is capable of retaining the most
important features while discarding irrelevant data. Specifically, PCA is applied to the
15-dimensional time-domain feature space, and its feature principal components are ex-
tracted based on a 95% feature contribution rate.

First, the feature samples are standardized to eliminate feature magnitude differences,
and the covariance matrix is calculated to obtain the eigenmatrix and the eigenvalues
and eigenvectors.

∑ij cov
(
XiXj

)
= E

(
(Xi − µi)

(
Xj − µj

))
(3)

λv = ∑ v (4)

The number of principal components is determined based on the cumulative contri-
bution of the features, where the contribution represents the proportion of information
contained in the first n dimensions of the principal component expression to that in the
original feature set X. The dimensionality of the principal component n is determined
when the cumulative contribution exceeds 95% (This value can be changed to reflect the
current circumstances.)

Pn =
∑n

k=1 λk

∑m
k=1 λk

> 0.95 (5)

Next, the projection direction of the principal component analysis is determined for the
first n eigenvalue vectors, resulting in V15×n = [v1, v2, · · · , vn]. Finally, the original feature
set X is projected in this direction to obtain the reduced dimensional feature space Y.

The PCA approach can be enhanced and treated differently depending on the data
being used; just the base method is listed in this study.

2.2. Data Clustering Layer
2.2.1. K-Means

K-means clustering is a widely used unsupervised learning algorithm that partitions a
set of data points into k clusters based on their similarity [46]. This algorithm consists of
two fundamental steps [47]. Initially, the k-centroids are selected randomly as the center
of mass for each cluster, followed by the assignment of each data point to the closest
centroid based on the Euclidean distance between the data point and the centroid. The
algorithm continues to iterate until convergence, with each iteration updating the centroid
positions based on the new assignments of data points. Ultimately, K-means produces a set
of k-clusters, with each cluster comprising data points that are similar to each other and
dissimilar to the data points in the other clusters.

2.2.2. DBSCAN

DBSCAN is a clustering algorithm that effectively groups points based on their prox-
imity while also identifying and isolating outliers [48]. It outperforms K-means in its ability
to handle noisy and complex data, making it particularly useful for clustering chemical
process data. DBSCAN employs two crucial parameters, the distance threshold ε and the
minimum number of points minPts, to define clusters [49]. The algorithm classifies data
points as core points, boundary points, or noise points based on their local density. A point
xi is a core point if |Ni| ≥ minPts„ where Ni is the set of points within a distance of ε from
xi. For each core point, DBSCAN creates a new cluster and adds all points within ε distance
of the core point to the cluster. These points are then marked as visited. Starting from an
initial point, the algorithm forms a cluster by including all points that satisfy the core point
criteria and fall within the ε distance. The process continues until all unvisited points have
been processed.
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2.2.3. K-means DBSCAN Fusion Clustering Method

To effectively discriminate between abnormal data and normal fluctuations, the
K-means clustering algorithm and the DBSCAN clustering algorithm have their respective
advantages and limitations. While the K-means clustering algorithm can identify the spatial
variability of the features, it sometimes misjudges normal fluctuations. On the other hand,
the DBSCAN clustering algorithm can effectively detect the density difference of the feature
spatial distribution, but determining the neighborhood radius (Eps) is dependent on the
a priori information of the feature spatial distribution. To address these limitations, a
K-means DBSCAN fusion clustering method is proposed. To begin the K-means DBSCAN
fusion clustering method, first perform K-means clustering with k = 2 on the feature space
to identify feature location differences. Then assign class labels to each measurement
point based on the majority cluster to which its samples belong to avoid misjudgments
due to individual samples. Next, examine whether any measurement points belong to
isolated classes and obtain a priori information on the feature distribution. If an isolated
class is identified, use the maximum radius of the majority clusters as the neighborhood
radius Eps and the number of samples from a single measurement point as the minimum
neighborhood density Minpts for DBSCAN clustering. Then determine whether there is a
significant difference in the distribution density, and if the characteristics of the measure-
ment points satisfy both the location and distribution density variability criteria, judge
them as anomalous data. The detailed steps of the process are provided below.

Based on the principal component feature set Y, K-means clustering is applied to the
association process data features with a value of k = 2. The sample class label(label = 1, 2)
is assigned to each association measurement point k(k = 1, 2, . . . , s); the majority class to
which a measurement point’s sample belongs is determined based on the label count of
each measurement point.

c(i) =
{

1, label(i) = 1
0, otherwise

(6)

class(k) =
{

1, ∑N
i=1 c(i) > N

2
2, otherwise

(7)

The obtained measurement point class labels are then counted to identify the presence
of any isolated class.

C(k) =
{

1, class(k) = 1
0, otherwise

(8)

outliter =
{

1, ∑N
i=1 C(k) < ro or s−∑N

i=1 C(k) < ro
2, otherwise

(9)

The discriminant threshold for an isolated class test point ro is used to classify a test
point as an isolated class test point if the number of samples belonging to that class is less
than ro.

In case K-means clustering detects any isolated points, the maximum cluster radius of
most clusters is calculated using the following equation:

dmax

2
=

max
(
dist

(
xi, xj

))
x

i, j = 1, 2, . . . , n (10)

where n refers to the number of samples in most clusters.
Following the identification of the sparse distribution of abnormal data and the rela-

tively concentrated distribution of most normal data, DBSCAN clustering is performed to
further distinguish and isolate the anomalous samples.
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The resulting cluster of anomalous data points is denoted as D = {p1, p2, . . . , pm}, where
each data point is y ρi with density ρi = |Nε(pi)|, Nε(pi) =

{
pj ∈ D | dist

(
pi, pj

)
≤ ε
}

. Here
dist(p, q) =‖ p− q ‖2, and |N| indicates the number of data points in set N.

ε =
dmax

2
(11)

Minpts = n (12)

The density of each data point in D is then calculated according to Equation (10).
If a data point pi ∈ D satisfies ρi ≥ MinPts, it is deemed to be a core point; conversely,

if ρi < MinPts, it is considered a boundary point. The set of core points in D is designated
as C.

R← C

c← 0

while R 6= 0 do∣∣∣∣∣∣∣∣∣∣

c← c + 1
∀pi ∈ R;
Cc ← {pi}
Cc ← Cc ∪

{
pj | pj is the pi density reachable from

}
R ← Rr Cc;

end

C0 ← D r
⋃c

i=1 Ci◦

(13)

The algorithm proceeds by assessing the distribution density difference between
the majority and minority classes and identifying the clustering results of the samples
belonging to each class. Specifically, if the clustering results indicate that the majority class
samples are classified as the same kind, while the minority class samples are all identified
as noise, and the difference in distribution density between the two classes is significant,
then the noise class is classified as anomalous. In cases where the distribution density of
the majority and minority classes is similar, the DBSCAN clustering result yields samples
belonging to the same kind, and anomalous data are absent.

The misjudgment rate and the silhouette coefficient are the evaluation indicators
used to assess the accuracy and superiority of the clustering method. The probability of
classifying data points that do not belong to the same class into the same class during the
clustering process, or the ratio of the number of samples that were incorrectly classified
to the total number of samples, is referred to as the misjudgment rate of a clustering
algorithm. The clustering effect is assessed using the silhouette coefficient, which combines
the two cohesion and separation indicators to simultaneously assess intra-cluster and
inter-cluster differences of various clustering methods on the same sample. The equation
reads as follows:

Si =
bi − ai

max{ai, bi}
(14)

In the formula, ai stands for the average distance between the sample and other
samples in the cluster, or the similarity of samples in the same cluster, reflecting the degree
of separation, while bi stands for the average distance between the sample and all other
samples in the nearest cluster, reflecting the degree of cohesion. Si ∈ [−1, 1], the optimal
clustering is when there are few intra-cluster differences and many inter-cluster differences,
or when bi > ai. The closer to 1 the clustering is, the more reasonable it is.

2.3. Data Prediction Layer

Upon completion of data clustering, the labeled clusters are utilized as input to
the LSTM-MLP network to predict abnormal chemical working conditions. The LSTM
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component captures time dependencies in the data, while the MLP part performs a non-
linear mapping of input to output.

2.3.1. LSTM

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that
has gained wide popularity in time series prediction due to its ability to remember patterns
of a large number of sequences [50]. By using gates to regulate the flow of information,
LSTM models are designed to capture temporal dependencies in data [51]. A typical LSTM
network consists of multiple memory blocks, or cells, that enable the memorization of
information. The input, forget, and output gates play crucial roles in regulating the flow of
information in and out of the cells [52], like Figure 2.
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The mathematical notation used in the LSTM model is described as follows: The
input at time t is represented by xt, and ht−1 represents the previous hidden state. The
sigmoid activation function σ is used to control the flow of information through the model.
W and U are matrices representing the weights associated with the input and hidden
states, respectively, while b is a vector representing the bias term. The ∗ operator denotes
element-wise multiplication, which is used in the calculation of the input gate, forget gate,
and output gate in the LSTM model.

In the LSTM cell, the input gate assesses the importance of new information carried
by input data through the equation

it = σ(Wi·xt + Ui·ht−1 + bi). (15)

Meanwhile, the forget gate determines whether to retain or delete historical informa-
tion through

ft = σ(W f ·xt + U f ·ht−1 + b f ) (16)

Lastly, the output gate determines which information to output.
The output gate:

ot = σ(Wo·xt + Uo·ht−1 + bo) (17)

The memory cell:

ct = ft ∗ ct−1 + it ∗ tanh(Wc·xt + Uc·ht−1 + bc) (18)

The hidden state:
ht = ot ∗ tanh(ct) (19)

The long short-term memory (LSTM) neural network is a type of unidirectional
network used for long and short-term pattern recognition in time series data. In contrast,
the bidirectional LSTM (Bi-LSTM) network is a type of bidirectional network that utilizes
a positive and negative LSTM network in the training process, which are then combined
in the output layer [53]. This approach allows the Bi-LSTM network to capture temporal
dependencies from both past and future time steps, resulting in a more comprehensive and
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complete representation of time-series data compared to the unidirectional LSTM [54]. A
schematic of the Bi-LSTM network structure is presented in Figure 3.
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2.3.2. MLP

While the Bi-LSTM network is known for its ability to capture both past and future
information when extracting sequence data, it has been observed to exhibit slow conver-
gence and dynamic prediction when mapping to target results [55]. To address this issue,
this paper proposes deepening the fully connected layers by feeding the output of the
Bi-LSTM into a multilayer perceptron. The MLP is a feed-forward neural network capable
of handling high-dimensional data and nonlinear relationships and is commonly used
in industry for nonlinear regression and classification tasks, as shown in Figure 4. The
MLP achieves this by stacking multiple hidden layers composed of neurons that enable
the network to learn complex relationships between input and output variables [56]. The
training process of the MLP involves using a back-propagation method that iteratively
minimizes the error between the actual and model outputs.
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2.3.3. Bi-LSTM-MLP Fusion Method

Data reshaping is a crucial preprocessing step in building an effective Bi-LSTM model.
This involves determining the number of layers of the LSTM, the number of neurons in
each layer, and the input and output dimensions of the network. To incorporate anoma-
lous observations after the clustering stage, the clustering assignment sequence must be
reformatted into a structure that is compatible with the input Bi-LSTM-MLP model. A
sliding window approach is employed to create fixed-length sequences, where the length
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of the window corresponds to the number of time steps in the input sequence. For in-
stance, if the length of the input sequence is set to 10, the first input sequence will contain
cluster assignments of data points 1–10, the second input sequence will contain cluster
assignments of data points 2–11, and so forth. The reshaped data are then represented as
a three-dimensional tensor with dimensions

[
nsamples ntimesteps nclusters

]
, where nsamples

denotes the number of input sequences, ntimesteps is the length of each input sequence, and
nclusters is the number of clusters. A suitable partitioning ratio is employed to divide the
input data into training, testing, and validation sets, depending on the size of the dataset
and the complexity of the model. The reshaping process is carried out using three key
parameters: sample size, time step, and number of features, with the reshaping function
being varied based on the specific use case.

In this study, a Bi-LSTM-MLP model is proposed for processing the reshaped data.
Specifically, the input sequence Xt is first passed through the Bi-LSTM layer in a bidirectional
manner to capture the temporal dependence between cluster assignments. The output of this
layer is a string of hidden states H, which has a dimension of

[
nsamples ntimesteps nhidden

]
,

where nhidden is the number of hidden cells in the Bi-LSTM layer.
To calculate the hidden state for each time step, a specific approach is employed.
Forward hidden state:

ht f wd = LSTMFwd

(
xt, ht−1 f wd , ct f wd

)
(20)

Backward hidden state:

htbwd = LSTMBwd
(
xt, ht+1bwd , ctbwd

)
(21)

In the proposed Bi-LSTM-MLP model, the input sequence xt is first processed in a
bidirectional manner by the forward and backward LSTM cells denoted as LSTMFwd and
LSTMBwd, respectively. At timestep t, the input xt is used to compute the forward and
backward hidden states ht f wd and htbwd , as well as the forward and backward cell states
ct f wd and ctbwd .

The output hidden state for timestep t is obtained by concatenating the forward and
backward hidden states as ht =

[
ht f wd ; htbwd

]
, where [;] denotes concatenation.

Following the Bi-LSTM layer processing, the output hidden states H are directed
towards a multilayer perceptron (MLP) layer for mapping to the output space. The MLP
layer, comprising one or more fully connected layers activated with functions such as
sigmoid, generates a vector y of dimensions

[
nsamples noutputs

]
, where noutputs represents

the number of output units within the MLP layer.
At each timestep t, the output is determined by first flattening the hidden state to

obtain a 1-dimensional vector ht f lat with dimensions
[
nhidden

2], where nhidden
2 corresponds

to the concatenated forward and backward hidden state size.
The flattened hidden state is then passed through the MLP layer with appropri-

ate weights and biases, yielding the output at timestep t, which can be represented as
yt = MLP

(
ht f lat

)
. The MLP layer is instantiated with the necessary weights and biases

before being utilized in the model architecture.
The output of the previous layer will be utilized as the input of the current layer in

the MLP input layer to the hidden layer process, and the calculation rule is frequently as
follows: the product of the weights and the inputs plus the value of the bias. The formula
is not provided here since experiments are used to determine the number of layers.

The loss function plays a crucial role in training the Bi-LSTM-MLP model. After
obtaining the output vector y by passing the hidden state through the MLP layer, the model
compares it to the true labels and computes the loss. The choice of loss function depends
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on the task at hand and may include mean squared error for regression or cross-entropy
loss for classification. The loss is denoted as

L = loss(y, ytrue) (22)

To train the model, an appropriate optimization algorithm, such as stochastic gradient
descent or the Adam optimizer, is used to minimize the loss function. Instead of using
parameter data from training, hyperparameters are parameters that are set to values
before the model begins learning. Hyperparameters frequently need to be optimized,
which involves experimenting with various hyperparameters before settling on a set
that will increase learning performance. There are many hyperparameters. The model’s
hyperparameters in this study, including the learning rate, number of hidden units, and
epochs, are fine-tuned via cross-validation.

Once trained, the model can be used to make predictions on new data by feeding the
encoded cluster assignments through the Bi-LSTM and MLP layers, where the MLP layer
produces the predicted labels for the input data. To obtain accurate predictions, it is essential
to normalize the predicted data back to the original scale using the inversetrans f orm(X). This
function reverses the scaling applied to the data during preprocessing. By doing so, the
predictions can be compared to the original data to obtain an accuracy metric.

ypred = MLP(BiLSTM(Xt)) (23)

To assess the performance of the proposed model, a held-out test set is utilized to
estimate its performance. The effectiveness of the model is then validated through the
computation of various metrics such as the root mean square error (RMSE).

The RMSE serves as a measure of the average difference between the predicted and
actual values, with the square root taken to ensure that the units of measurement are the
same as the original values. The resulting RMSE value ranges between 0 and 1, with 0
being the most favorable outcome.

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (24)

Additionally, the trend of RMSE is used to monitor the working condition of the
chemical process. By monitoring the fluctuation of the residual RMSE, the operation status
of the process can be accurately identified. When the changing trend exceeds or maintains
the threshold level, it can be inferred that the chemical process has changed and is in an
abnormal working condition.

2.3.4. Early Warning

The warning signs are inputted beforehand to guarantee the promptness and accuracy
of early warning. The historical state of the unit operation, process indicators, and alarm
setpoints are all employed as early inputs in this method to extract the normal operating
state and values with the help of the alarm management operator, as shown in Figure 5.
The yellow line in the figure is supposed to represent the actual data value, the blue line is
assumed to represent the anticipated value, and the red dashed line in the figure is assumed
to represent the defined warning indicator. An early warning signal will be sent out before
the DCS alarm when the anticipated data value exceeds the predetermined alarm value.
This signal alerts the operator to pay attention and take action by warning that an abnormal
situation is likely to arise.
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3. Analysis and Verification of Examples

The experimental setup for the retouching task involved conducting all experiments
on an Ubuntu 16.04 operating system, utilizing an i8-CPU with 24 GB of RAM and a
GPUTesla3090. The implementation was performed using Python 3.7 and PyTorch 1.8. The
proposed method was validated via the application of the TE model and real-world cases.

3.1. TE Model

This study proposes an approach for monitoring the Tennessee Eastman (TE) process
using a benchmark approach. The TE process comprises five reaction units, namely the
reactor, condenser, separator, stripper, and compressor, and contains material transfer and
control loops, as shown in Figure 6. The process involves 41 measured variables, including
19 component-measured variables and 22 continuous process-measured variables, and
12 control variables (Table 1), with 21 pre-defined failure modes, 16 of which are known
and 5 are unknown. In this study, the training set is a set of data from normal operating
circumstances, the simulation period is 48 h, and the sampling frequency is 3 min/time.
The test set is chosen to include both a random change fault and a richer typical step change
fault to better demonstrate the sensitivity of the suggested technique for early warning
monitoring. A common step change error is fault 1, which is a step change in the A/C
feed flow ratio. The reactor cooling water intake temperature fluctuates randomly under
fault 11, which is more challenging to identify than a step change fault. At the start of the
simulation, or eight hours in, both faults 1 and 11 were added.
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Table 1. TE Process Variables.

No. Process Variable No. Control Variable No. Component
Variable

1 A Material flow rate 1 D feed volume (stream 2) 1 A6
2 D Material flow 2 E feed volume (stream 3) 2 B6
3 E Material flow rate 3 A feed volume (stream 1) 3 C6
4 A and C mixture flow rate 4 Total feed volume (stream 4) 4 D6

5 Recovery flow rate 5 Compressor recirculation
valve 5 E6

6 Reactor feed rate 6 Discharge valve (stream 9) 6 F6

7 Reactor pressure 7 Separator tank bottom flow
(stream 10) 7 A9

8 Reactor level 8 Vapor extractor liquid
product flow rate (Stream 11) 8 B9

9 Reactor temperature 9 Vapor stripper water flow
valve 9 C9

10 Emptying rate 10 Reactor cooling water flow 10 D9

11 Product separator
temperature 11 Condenser cooling water flow

rate 11 E9

12 Product separator level 12 Stirring speed 12 F9

13 Product separator
pressure 13 G9

14 Product separator outlet
flow rate 14 H9

15 Separator level 15 D11
16 Separator pressure 16 E11

17 Extraction tower outlet
flow rate 17 F11

18 Vapor extraction tower
temperature 18 G11

19 Vapor Flow Rate 19 H11

20 Compressor operating
power

21 Reactor cooling water
outlet temperature

22 Condenser cooling water
outlet temperature

The product separator temperature of fault 11 and the reactor feed rate variable of
fault 1 are chosen as the display because adding too many variables will cause results to
become hazy. The raw data are first visualized in Figure 7, which allows for a series of
subsequent preprocessing steps.
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The trials on the pre-processed data used the clustering method described in Section 2.2.
Figure 8 and Table 2 both feature comparisons to show how the proposed combined k-
means and DBSCAN method outperforms a single clustering method. Figure 8 shows
typical data in dark blue, while abnormal data are shown in cyan. It can be seen that the
findings of the right b, d plot are more accurate when comparing the two variables’ k-means
clustering results (a, c) with the combined clustering results (b, d). The results of Table 2’s
comparison of the results using misclassification rates and contour coefficients show that
the suggested fusion clustering approach performs better on this dataset than the single
clustering method and can successfully distinguish between normal and abnormal data.
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Table 2. Comparison of evaluation results of clustering methods for TE model.

Clustering Method Profile Coefficient False Positive Rate

K-means 0.8665 6.658%
DBSCAN 0.9024 4.374%

K-means DBSCAN 0.9564 1.256%

The model was evaluated with 11 distinct configurations applied to the activation
functions of Bi-LSTM + MLP (ReLU, ELU, Tanh, SiLU, LeakyReLU), which differ in the
number of various Bi-LSTM (1,2,3) and MLP layers (1,2,3). A feature introduced to artificial
neural networks is the activation function, which aids in the network’s ability to recognize
intricate patterns in data. Layer count is a parametric evaluation metric that assesses
the model’s complexity and capacity for learning; using a simple model may result in
underfitting issues, whilst using a complex model may result in overfitting issues. Table 3
provides an explanation of the model’s performance on the test dataset using the RSME
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as the results’ evaluation metric. The Bi-LSTM + MLP model performs best with 1-layer
Bi-LSTM and 1-layer MLP when employing the LeakyReLU activation function for this
collection of data, as can be seen by the bolding of each best result.

Table 3. Comparison of the results of different settings of the Bi-LSTM-MLP model for TE model.

Method Differences RMSE

Different activation functions
BiLSTM + MLP ReLU 0.009854
BiLSTM + MLP ELU 0.010254
BiLSTM + MLP Tanh 0.012547
BiLSTM + MLP SiLU 0.032874
BiLSTM + MLP LeakyReLU 0.006854

Bi-LSTM different layers
BiLSTM + MLP 1 0.006854
BiLSTM + MLP 2 0.015684
BiLSTM + MLP 3 0.042541

MLP different layers
BiLSTM + MLP 1 0.006854
BiLSTM + MLP 2 0.025641
BiLSTM + MLP 3 0.051254

Figure 9 compares the actual data with the expected data to display the prediction
results for the two variables in the proposed model. The results show that the fit is good
and can reflect the validity and reliability of the model prediction.
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The results of this comparison, which are displayed in Table 4, further indicate the
superiority of the fused Bi-LSTM + MLP model over competing models. The suggested
fused Bi-LSTM + MLP model has the best prediction result among the six models, as shown
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by the RMSE, which also shows that the model has a better RMSE value of 0. This shows
that the fused Bi-LSTM + MLP model is more capable of forecasting abnormal working
circumstances for chemical processes. Data are more useful.

Table 4. Comparison of the results of various prediction models for TE model.

Method RMSE

KNN regression model 0.086214
SVM regression model 0.058621

LSTM 0.023242
LSTM + MLP 0.010145

BiLSTM 0.015254
BiLSTM + MLP 0.006854

3.2. Real Atmospheric Depressurization Unit

The present study applies the proposed method to the electric desalination process of
a 10-million-ton/year normally reduced pressure distillation unit in a refinery. Specifically,
the electric desalination process involves injecting water and an emulsion breaker into
crude oil to remove salt from the oil via the action of a high-voltage electric field. This
process is a critical component of the normal reduced pressure unit, which is depicted
in the accompanying Figure 10. To confirm the accuracy of the suggested model, use
actual process data from this typically depressurized unit. The period covers the complete
recording of abnormal working conditions associated with crude oil and water accidents.
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There are numerous variables in Figure 10, and we tested the model for 29 of them
before identifying the nine most important factors that are directly associated with incidents
involving crude oil and water in Table 5. Four of them—EI10201 for the electric desalination
tank current, LIC10101 for the electric desalination tank boundary level, PIC10101 for
the electric desalination tank pressure, and PI10401 for the top pressure of the primary
distillation tower—are shown due to the condensed nature of the paper. These four contain
more information about the accident condition than the others. All of the example’s data
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were obtained from the chemical plant’s distributed control system (DCS) system, and they
were all collected over 380 h using a total of 273,600 samples at intervals of 5 s. The raw
data for the four chosen variables are shown in Figure 11 and will be further processed in
the data pre-processing stage. It is important to note that in instance 4.2, we only chose a
data set with a length of 3000 as validation data to verify the correctness of the suggested
model due to the limitations of the graphical display.

Table 5. Instances of partial variables.

Bit No. Description

EI10201 Electric desalination tank current
FIC10101 Electric desalination tank
LIC10101 Electric desalination tank boundary level
PIC10101 Electric desalination tank pressure
TI10102 Electric desalination tank inlet temperature

PDIC10101 Primary distillation column top fractionation tank pressure
TI10801 Primary distillation tower top cold after temperature
PI10401 Primary distillation tower top pressure

FIC11703 Crude oil feed volume
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Figure 12a–h demonstrates how each of the four variables is projected in three dimen-
sions using K-means and the two alternative clustering techniques suggested in Section 2.2,
K-means and DBSCAN, combined. It can be seen that in Figure 12, the cyan hue represents
abnormal data, which has a smaller range, and the dark blue color represents normal data,
which has a vast and dense range. Figure 12’s four comparisons (a-b, c-d, e-f, and g-h) show
that clustering utilizing k-means in combination with DBSCAN is capable of having a more
precise range of anomaly identification. Table 6 shows the suggested method’s superiority
in terms of contour coefficients and false positive rates when compared to k-means alone
and DBSCAN alone clustering, respectively. The prediction model will be further trained
using the normal and abnormal data split into distinct columns in Figure 12.
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EI10201. (b) K−means DBSCAN clustering result for EI10201. (c) K−means clustering result for
LIC10101. (d) K−means DBSCAN clustering result for LIC10101. (e) K−means clustering result for
PIC10101. (f) K−means DBSCAN clustering result for PIC10101. (g) K−means clustering result for
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Table 6. Comparison of evaluation results of clustering methods for atmospheric depressurization unit.

Clustering Method Profile Coefficient False Positive Rate

K-means 0.7541 9.985%
Dbscan 0.8214 7.565%

K-means Dbscan 0.9214 4.258%

To find the best configuration for a better deep learning network and avoid overfitting,
both Bi-LSTM and MLP must be tested based on the data. Table 7 displays the outcomes
of applying various configurations for testing. Once more, the RMSE values for various
situations are selected to aid in selecting the optimum setup. LeakyReLU() is chosen as
the activation function because, as can be seen, it has the lowest RMSE value among the
various activation functions. This group of data performs best when 2 layers are chosen for
the number of layers, and 2 layers also perform well when choosing the number of MLP
layers. The second set of real data has a lower RMSE index than the first TE model, and the
best number of layers for BILSTM and MLP are also different. This is likely because the
second set of real data is a real collection, which gets noisier over time and necessitates a
deeper network for fitting.

The prediction results of four variables are given in Figure 13 to further highlight the
efficacy of the proposed fused data-driven methodology. In Figure 14, the real data and
the predicted data are compared and partially enlarged to be more intuitive and verify the
results. The projected data are displayed in orange, whereas the actual data are displayed
in blue. The degree of curve fitting indicates how well the expected results match the actual
data and how reliable the model is.
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Table 7. Comparison of the results of different settings of the Bi-LSTM-MLP model for atmospheric
depressurization unit.

Method Differences RMSE

Different activation functions
BiLSTM + MLP ReLU() 0.062546
BiLSTM + MLP ELU() 0.098545
BiLSTM + MLP Tanh() 0.105412
BiLSTM + MLP SiLU() 0.112874
BiLSTM + MLP LeakyReLU() 0.052546

Bi-LSTM different layers
BiLSTM + MLP 1 0.098541
BiLSTM + MLP 2 0.052546
BiLSTM + MLP 3 0.066541

MLP different layers
BiLSTM + MLP 1 0.084124
BiLSTM + MLP 2 0.052546
BiLSTM + MLP 3 0.062541
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Further proving the superiority of the proposed model, Table 8 compares the perfor-
mance indices of the fused Bi-LSTM + MLP model with those of the KNN, SVM, LSTM,
LSTM + MLP, and Bi-LSTM models using RMSE representation. According to Table 8,
the developed method can more precisely and dependably monitor and timely warn
of the abnormal working conditions of the chemical process. The model incorporating
Bi-LSTM + MLP can effectively predict the process data in the chemical process and reduce
the gap between the predicted data and the real data.
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Table 8. Comparison of the results of various prediction models for atmospheric depressurization unit.

Method RMSE

KNN regression model 0.111532
SVM regression model 0.109854

LSTM 0.094562
LSTM + MLP 0.073568

Bi-LSTM 0.086985
Bi-LSTM + MLP 0.052546

4. Conclusions

The present study introduces a novel data-driven early warning approach to effectively
monitor abnormal working conditions in chemical processes. The proposed method,
which combines the strengths of k-means, DBSCAN, Bi-LSTM, and MLP algorithms, offers
improved accuracy in early warning. Specifically, the method leverages the k-means and
DBSCAN algorithms to extract abnormal data for input into the Bi-LSTM-MLP model,
which better integrates the temporal features of various states. The proposed method is
evaluated using both the TE model and a real chemical plant example. Results indicate that
the method yields high accuracy and presents a viable solution for detecting abnormal states
in chemical processes, affording monitoring and maintenance personnel more flexible time
to take appropriate actions and improve the safety and reliability of the process. However,
different data preprocessing methods can be considered for linear and nonlinear processes,
and further study could look into the creation of modules to help operators decide what to
do in unusual circumstances.
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