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Abstract: In deep coal mine strata, characterized by high ground stress and extensive fracturing,
predicting the strength of fractured rock masses is crucial for stability analysis of the surrounding
rock in coal mine strata. In this study, rock samples were obtained from construction sites in deep
coal mine strata and intact, as well as fissured, rock specimens were prepared and subjected to
triaxial compression tests. A numerical model based on the discrete element method was then
established and the micro-parameters were calibrated. A total of 288 triaxial compression tests on
the rock specimens under different conditions of confining pressure, loading rate, fissure dip angle,
and fissure length, were conducted to obtain the triaxial compressive strength of the fractured rock
specimens under different conditions. To address the limitations of traditional back propagation (BP)
neural networks in solving stochastic problems, a modified BP neural network model was developed
using a random factor and an interlayer mean square error corrected network model evaluation
function. The traditional and modified BP neural network models were then employed to predict
the triaxial compressive strength of the fractured rock specimens. Through comparative analysis,
it was found that the modified BP neural network prediction model exhibited smaller errors and
significantly reduced overfitting, making it an effective tool for predicting the strength of fractured
rocks in deep coal mine strata.

Keywords: fissured rock specimen; triaxial compression tests; numerical tests; improved BP neural
network prediction model

1. Introduction

As China’s shallow coal resources have nearly been exhausted, coal mining in China
has shifted to deep-seated strata. Deep-seated strata are characterized by high ground stress
and well-developed discontinuities, such as joints and fractures, which result in engineering
disasters, such as roof collapse and significant deformation of the surrounding rock, posing
significant risks to coal mining operations. The presence of fractures in deep-seated strata
rock masses has a substantial contribution on the mechanical character of rocks. Accordingly,
the mechanical properties of rock masses containing fractures under the conditions of high
ground stress in deep-seated coal strata become a key issue in evaluating the stability of the
surrounding rock and in supporting the surrounding rock in coal mining operations.

Many researchers have conducted experimental tests on rock specimens, which contain
fissures or joints. Wang researched the failure behaviors and mechanical properties of
soft rocks containing different fissures under uniaxial compression. The influence of the
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fissure dip angle, fissure length, and fissure number on the strength of the rock specimens
were studied [1]. Liu studied the strain and stress distribution characteristics of rock
specimens containing a single pre-existing fissure under uniaxial compression [2]. Tan
carried out uniaxial compressive tests on cubic rock-like specimens with fissures, and
the effects of the fissure number on the mechanical properties were studied [3]. In deep-
buried strata, rock masses are commonly damaged under triaxial compressive conditions.
Therefore, some researchers have studied the mechanical behaviors of fissured rocks under
triaxial compression. Yang conducted triaxial compressive tests on both intact and fissured
sandstone specimens. Stress–strain curves for sandstone specimens containing different
fissures were obtained. The crack evolution characteristics were also studied by using the
acoustic emission technique [4]. Li studied the failure mechanism of rock with prefabricated
cracks by conducting compression failure tests on rock with prefabricated fractures under
different true triaxial conditions [5]. Zhou conducted the true triaxial compressive tests
on coarse and fine sandstone specimens containing two parallel fissures, and the failure
characteristics were studied [6]. Liu conducted triaxial pulling tests on sandstone rock
specimens, which contained a single fissure, and studied the influence of the fissure
parameters on the strength of the specimens [7]. Although experimental tests on fissured
rocks can provide accurate data, the lengthy preparation time and high cost of experimental
tests make it difficult to obtain large quantities of data for research and analysis purposes.

Different experimental tests on rock specimens containing fissures have been con-
ducted and the mechanical parameters, as well as the failure behaviors, of fissured rocks
have been analyzed. Nevertheless, some drawbacks have been encountered during the
implementation of experimental tests. For example, only the stress and strain distribution
and evolution behaviors on the surface of rock specimens can be measured. Moreover,
the failure processes of rock specimens cannot be clearly observed in experimental tests.
Therefore, numerical tests on fissured rock specimens have been conducted by researchers.
Zare conducted numerical tests on rock-like specimens containing fissures and compared
them with experimental tests [8]. Zhao established particle flow models of rock samples
with flaws and conducted numerical tests [9]. The influence of the inclination angle on the
mechanical properties and crack propagation behaviors of the specimens were examined.
Manouchehrian carried out numerical tests on rock specimens with notches under triaxial
compression to investigate the influence of the notch length on the fracturing behavior of
the specimen. Wang studied the mechanical behaviors of sandstone containing a single
open fissure under uniaxial compression by conducting numerical tests [10]. Feng investi-
gated the influence of two unparalleled fissures on the mechanical behavior of rock-like
specimens subjected to uniaxial compression through numerical tests [11]. Wang studied
crack coalescence modes and micro-crack propagation law of fissured sandstone specimens
by conducting numerical uniaxial tests [12]. Chen established a discrete element model of
rock specimens containing X-shaped fissures and conducted uniaxial compressive tests. The
influence of fissures on the mechanical properties of rock specimens were investigated [13].

Numerical tests on fissured rocks provide a more efficient and cost-effective approach to
obtain the mechanical properties of fractured rock masses under different conditions [14,15].
However, there are numerous factors that influence the strength of fractured rocks, making
it difficult to analyze experimental results through traditional fitting methods. Therefore,
some researchers have introduced machine learning techniques to analyze the outcomes
of rock experiments. Yu predicted the uniaxial compressive strength of rock by using
swarm intelligence optimization algorithms [16]. Ren established the back propagation
(BP) neural network and applied it in rock micro-parameter calibration of PFC numerical
models [17]. Zhang applied the BP neural network model to predict the rock parameters in
underground coal mines [18]. BP neural networks have found extensive applications in
the domain of rock mechanics due to their strong learning capability, robustness, ability
to achieve parallel processing through distributed computing, and high computational
efficiency. However, they still have certain limitations when it comes to analyzing problems
with randomness. In particular, the choice of evaluation metrics significantly influences the
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performance of the network, potentially leading to overfitting and substantial errors in the
output predictions of the BP model.

In order to investigate the mechanical properties of deep-seated fissured rock masses
in coal mines, this study first conducted triaxial compression laboratory tests on intact and
fractured rock specimens. Based on the test results, a numerical model was developed
utilizing the discrete element method, with the calibration of micro-mechanical parameters.
After the numerical tests were verified by experimental tests, 288 triaxial compression
numerical tests on rock specimens under different confining pressures, loading rates, fissure
dip angles, and fissure lengths were then conducted to obtain the triaxial compression
strength of the rock specimens subjected to various conditions. To address the limitations
of conventional back propagation (BP) neural networks in dealing with randomness, an
improved BP neural network model was developed for predicting the triaxial compressive
strength of fissured rock. The model utilized random factors and interlayer mean square
error correction as the evaluation function. The triaxial compressive strength of fractured
rock was predicted using both the conventional and improved BP neural network models.
Through comparative analysis, it was found that the modified BP neural network model
had smaller prediction errors and significantly reduced overfitting, making it an effective
tool for predicting the strength of fractured rock in deep-seated geological formations in
coal mines.

2. Experimental Tests on Fissured Rock Specimens
2.1. Test Specimen Preparation

The rock samples were collected from deep-buried sandstone strata from coal mines
in Huainan coal field, China. The rock samples were processed into standard cylindrical
specimens, with a diameter of 50 mm and a height of 100 mm, according to ISRM’s
suggestions [19]. In order to investigate the mechanical properties of fractured rocks under
triaxial compression conditions, fissured rock specimens were fabricated. The fissures were
cut at the center of the processed rock specimens, with a length of 20 mm and a width of
1 mm. The fissure dip angles were assigned values of 0◦, 15◦, 30◦, 45◦, 60◦, and 90◦, as
depicted in Figure 1.
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Figure 1. Fissured rock specimens.

2.2. Test Apparatus and Procedures

The experiments were carried out utilizing a ROCK 600-50HT rock mechanics testing
system manufactured by TOP INDUSTRIE from France, as illustrated in Figure 2. The
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ROCK 600-50HT testing system comprises a control system, triaxial chamber, servo loading
system, and data acquisition system. The system has a maximum axial loading capacity of
1000 kN, a maximum confining pressure of 60 MPa, and a maximum displacement capacity
of 25 mm.
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Figure 2. ROCK 600-50HT rock mechanics testing system.

In order to study the mechanical behavior of the Huainan sandstone specimens, which
contain fissures, under various fissure dip angles, confining pressures, and loading rates,
orthogonal tests were designed and implemented. Firstly, the specimens were placed within
the triaxial chamber and the axial, as well as the confining pressures, were increased to the
expected level, with a rate of 0.05 MPa/s, simultaneously. Subsequently, the specimens
were loaded under different loading rates and confining pressures until the failure of the
specimens. The test parameters are shown in Table 1.

Table 1. Parameters of the triaxial test.

Specimen
Number

Fissure Dip
Angle (◦)

Fissure Length
(mm)

Loading Rate
(mm/s)

Confining
Pressure (MPa)

IR-15 N/A N/A 0.001 15
IR-20 N/A N/A 0.001 20
IR-25 N/A N/A 0.001 25
IR-30 N/A N/A 0.001 30
FR-1 0 20 0.003 15
FR-2 15 20 0.001 20
FR-3 30 20 0.003 25
FR-4 45 20 0.001 30
FR-5 60 20 0.003 15
FR-6 90 20 0.001 20

2.3. Test Results

Figure 3 illustrates the stress–strain curves for the fissured specimens. The stress and
strain values have near linear relations at the beginning stage of the tests. Subsequently, the
stress–strain curves for the specimens experienced fluctuations before reaching the peak
stress. This phenomenon could be caused by crack mobilization. The stress–strain curves
turned from approximate straight lines to curves when approaching the peak stress. As
shown in Figure 3, it can be noted that at a confining pressure of 30 MPa, the rock specimens
begin to exhibit significant ductility. The peak stress values of the fissured specimens are
shown in Table 2. The decrease in the peak stress tends to increase and then decrease with
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the increase in the dip angles in the fissures. The impact of fissures on the mechanical
properties of rocks is most pronounced at a dip angle of 45◦.
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Figure 3. Stress–strain curves of the fissured specimens.

Table 2. Test results for the fissured specimens.

Specimen
Number

Fissure Dip
Angle (◦)

Fissure
Length (mm)

Loading
Rate (mm/s)

Confining
Pressure

(MPa)

Peak Stress
σc (MPa)

FR-1 0 20 0.003 15 76.21
FR-2 15 20 0.001 20 58.86
FR-3 30 20 0.003 25 98.56
FR-4 45 20 0.001 30 54.56
FR-5 60 20 0.003 15 107.31
FR-6 90 20 0.001 20 91.54

3. Numerical Tests on Fissured Rock Specimens

The triaxial compressive strength of fractured rock specimens is affected by various
factors, and the extensive range of combinations of these factors poses challenges, namely
in conducting separate experimental tests for every scenario. For the purpose of studying
the influence of various parameters (confining pressure, prefabricated fissure angles, etc.)
on the specimen’s mechanical character, more tests under different parameters need to
be conducted. Considering experimental tests are time consuming and costly, numerical
tests were implemented. First of all, discrete element method (DEM) numerical models of
the specimens were established by using particle flow code (PFC) simulation. Secondly,
numerical tests were performed, and the obtained results were compared with those from
the experimental tests, enabling the calibration of micro-parameters for the DEM models.
Subsequently, the accuracy of the numerical tests was validated through a comparative
analysis of the experimental and numerical test results for the fissured specimens. Fi-
nally, more numerical tests with various parameters were conducted and the test results
were recorded.
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3.1. Numerical Model Establishment

A model of an intact cylinder specimen, with a height of 100 mm and a diameter of 50
mm, was developed. The model contained 44,143 particles with diameters ranging from 0.7
to 1.1 mm. A cylindrical wall and two panel walls were built to apply the confining load
and axial load, respectively (shown in Figure 4).
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Traditionally, the method of removing particles has been used to form fissures in
PFC models. However, deleting particles can result in uneven fissure surfaces, which is
inconsistent with reality. As shown in Figure 4, in this study, during the numerical model
pre-pressing phase, a wall is created at the joint position through editing the FISH code,
and prefabricated fissures are generated within the wall after the pre-pressing is completed.
The fissure surfaces generated using this method are smooth and unaffected by the particle
radius. Using the aforementioned method, a PFC numerical model of the fissured rock
specimens is established, with the actual rock specimen parameters, where the fissure
length is set to 20 mm, and the fissure dip angle is set to 0◦, 15◦, 30◦, 45◦, 60◦, and 90◦.

3.2. Parameter Calibrations for the Numerical Model

In order to calibrate the micro-parameters of the PFC numerical model, laboratory
triaxial compression tests were conducted on four intact specimens, along with correspond-
ing numerical simulations. The numerical tests were repeated multiple times until the
mechanical behavior of the numerical model closely matched that of the rock specimens.
As demonstrated in Table 3, the errors in the triaxial compressive strength between the
numerical model and the rock specimens were less than 5%, thus validating the accuracy of
the numerical experiments. The calibrated micro-parameters of the PFC model are shown
in Table 4.

Table 3. Comparison of the triaxial compression strength between the experimental and numerical tests.

Specimen
Number

Confining
Pressure (MPa)

Triaxial Compression Strength
(MPa)

Error (%)
Experimental

Tests Numerical Test

IR-1 15 82.40 84.56 15
IR-2 20 99.01 103.43 20
IR-3 25 118.27 123.35 25
IR-4 30 132.74 136.74 30
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Table 4. Micro-parameters of the numerical model.

Parameters Value

Effective modulus (GPa) 18.51
Stiffness ratio 2.42

Parallel bonding effective modulus (Gpa) 18.51
Parallel bonding stiffness ratio (GPa) 2.42

Tensile strength (MPa) 104.38
Bonding strength (MPa) 43.49

Parallel bonding friction angle (◦) 47

3.3. Numerical Test Results

Upon calibrating the micro-parameters of the numerical model, to further substan-
tiate the precision of the numerical experiments, numerical models of the fissured rock
specimens were developed employing the parameters derived from the aforementioned
rock specimens. The procedures for the numerical tests were established by referring to the
experimental tests, thereby simulating the experimental tests conducted on the fissured
rock specimens. By comparing the results of the experimental tests with the numerical
tests, the accuracy and effectiveness of the numerical tests were further validated.

Numerical tests were conducted encompassing all combinations of the test parameters,
including four confining pressures (15 MPa, 20 MPa, 25 MPa, 30 MPa), six fracture angles
(0◦, 15◦, 30◦, 45◦, 60◦, 90◦), four fracture lengths (10 mm, 15 mm, 20 mm, 25 mm), and
three loading rates (0.001 mm/s, 0.002 mm/s, 0.003 mm/s). A total of 288 numerical
triaxial compression tests were conducted on the fissured rock specimens, and the triaxial
compressive strength values were obtained. Due to space constraints, only a portion of the
test results are shown in Figure 5 and Table 5. Figure 5a presents the stress–strain curve
obtained from the numerical experiments under a confining pressure of 20 MPa and a
fissure length of 20 mm. It can be observed that the specimen exhibits the lowest strength
when the fissure dip angle is 45◦. Figure 5b illustrates the failure characteristics of different
fissured specimens in the numerical experiments, where the blue dots represent cracks. As
the load increases, the cracks always initiate at the fissure tip and then propagate along the
diagonal direction, eventually leading to specimen failure.
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Table 5. Numerical test results for the partial fissured rock specimens under triaxial compression.

Number Fissure
Length (mm)

Fissure Dip
Angle (◦)

Confining
Pressure

(MPa)

Loading
Rate (mm/s)

Strength
(MPa)

1 10 0 15 0.001 83.58
2 10 15 15 0.001 82.75
3 10 30 15 0.001 83.24
4 10 45 15 0.001 87.44
5 10 60 15 0.001 79.86
6 10 90 15 0.001 74.79
7 10 0 20 0.001 75.94
8 10 15 20 0.001 74.82
9 10 30 20 0.001 75.31
10 10 45 20 0.001 77.70
. . . . . . . . . . . . . . . . . .
284 25 15 30 0.003 60.68
285 25 30 30 0.003 60.89
286 25 45 30 0.003 61.10
287 25 60 30 0.003 61.31
288 25 90 30 0.003 64.91

4. Rock Strength Prediction Model Based on Artificial Neural Networks

The strength of fissured rock specimens is influenced by many factors, such as the
confining pressure, fissure dip angle, fissure length, fissure opening, etc. Therefore, it is
difficult to establish a strength prediction model for fissured rocks using conventional
analytical models. A back propagation (BP) neural network is a multi-layer feed-forward
network trained according to error back propagation, the basic idea is the gradient descent
method, using the gradient search technique, to minimize the actual output value of the
network and the expected output value of the error mean square difference [20]. As shown
in Figure 6, the computational procedure of a BP neural network involves a forward
propagation stage and a backward propagation stage. During the forward propagation
stage, the input pattern is sequentially processed through the input layer, hidden layer, and
output layer. The state of each neuron in a layer only influences the state of the subsequent
layer. If the desired output is not achieved at the output layer, the backward propagation
stage is triggered. Here, the error signal travels back through the original connection
pathway, and the weight of each neuron is adjusted to minimize the error signal.

Processes 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

286 25 45 30 0.003 61.10 

287 25 60 30 0.003 61.31 

288 25 90 30 0.003 64.91 

4. Rock Strength Prediction Model Based on Artificial Neural Networks 

The strength of fissured rock specimens is influenced by many factors, such as the 

confining pressure, fissure dip angle, fissure length, fissure opening, etc. Therefore, it is 

difficult to establish a strength prediction model for fissured rocks using conventional 

analytical models. A back propagation (BP) neural network is a multi-layer feed-forward 

network trained according to error back propagation, the basic idea is the gradient de-

scent method, using the gradient search technique, to minimize the actual output value of 

the network and the expected output value of the error mean square difference [20]. As 

shown in Figure 6, the computational procedure of a BP neural network involves a for-

ward propagation stage and a backward propagation stage. During the forward propa-

gation stage, the input pattern is sequentially processed through the input layer, hidden 

layer, and output layer. The state of each neuron in a layer only influences the state of 

the subsequent layer. If the desired output is not achieved at the output layer, the back-

ward propagation stage is triggered. Here, the error signal travels back through the 

original connection pathway, and the weight of each neuron is adjusted to minimize the 

error signal. 

 

Figure 6. The BP neural network training graph. 

4.1. The Algorithm Steps in the BP Neural Network 

The back propagation (BP) neural network is a type of multi-layer feed-forward 

network that is trained using the error back-propagation algorithm. It is based on the 

concept of gradient descent, wherein the network’s actual output values are adjusted 

using a gradient search technique to minimize the mean squared difference between the 

actual and expected output values [21].  

The procedure for the BP neural network algorithm is outlined below [21]: 

Step1: Weight Initialization. 

( )sqw Random=   (1) 

where sq denotes ij, jk, and w represents the corresponding node connection weight. 

Step 2: Input the P learning samples sequentially, with the current input being p 

samples. 

Step 3: Calculate the outputs of each layer sequentially. 

,j kx y , j = 0,1...,n1, k = 0,1,...,m − 1 (2) 

Step 4: Calculate the back propagation error. 

( ) ( ) ( ) ( ) ( )( ) (1 )p p p p p

jk k k k kd y y y = − −  (3) 

where k = 0, 1, 2, ..., m − 1; 

Figure 6. The BP neural network training graph.

4.1. The Algorithm Steps in the BP Neural Network

The back propagation (BP) neural network is a type of multi-layer feed-forward
network that is trained using the error back-propagation algorithm. It is based on the
concept of gradient descent, wherein the network’s actual output values are adjusted using
a gradient search technique to minimize the mean squared difference between the actual
and expected output values [21].
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The procedure for the BP neural network algorithm is outlined below [21]:
Step1: Weight Initialization.

wsq = Random(·) (1)

where sq denotes ij, jk, and w represents the corresponding node connection weight.
Step 2: Input the P learning samples sequentially, with the current input being p samples.
Step 3: Calculate the outputs of each layer sequentially.

x′j, yk, j = 0, 1 . . . , n1, k = 0, 1, . . . , m− 1 (2)

Step 4: Calculate the back propagation error.

δ
(p)
jk = (d(p)

k − y(p)
k )y(p)

k (1− y(p)
k ) (3)

where k = 0, 1, 2, . . ., m − 1;

δ
(p)
ij =

n2

∑
k=0

(δ
(p)
jk w′jkx′(p)

j (1− x′(p)
j ) (4)

where j = 0, 1, 2, . . ., n1.
Step 5: Record the number of samples already learned, p. If p is less than P, go back to

step 2 and continue the computation. If p equals P, proceed to step 6.
Step 6: Update the weights and thresholds for each layer according to the weight

adjustment formula.
Step 7: Recalculate x′j, yk, and the total error EA using the updated weights. If the

conditions
∣∣∣d(p)

k − y(p)
k

∣∣∣ < ε (or EA < ε) are satisfied for each p and k, or the maximum
number of learning iterations is reached, the learning process is terminated. Otherwise, go
back to step 2 and continue with a new round of learning.

4.2. Stochastic Improvement of BP Neural Networks

The back propagation (BP) neural network, widely utilized in machine learning, boasts
numerous advantages. However, it is not exempt from a common limitation known as
overfitting. Overfitting arises when a model excessively adapts to the training data, result-
ing in poor generalization capabilities on unseen data. To tackle this issue, regularization
methods have been introduced to effectively control the magnitudes of network weights.
These methods involve modifying the error function by incorporating a regularization term
that imposes constraints beyond the sample data. In the case of neural networks, the mean
squared error (MSE) function is commonly employed to appraise training effectiveness. It
is defined as follows:

mse =
1
P

P

∑
n=1

(d(p) − y(p))
2

(5)

where d(p) and y(p) represent the target value and prediction value for the i-th training
sample among P training samples, respectively. In the regularization method, the network
performance function msereg is modified as follows:

msereg = γmse + (1− γ)msw (6)

msw =
1
N

N

∑
i=1

wj
2 (7)

where γ represents the proportion coefficient and msw denotes the mean square weight.
By adopting a new performance index function it is ensured that the network has

smaller weights, while minimizing the training error. This effectively results in the auto-
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matic reduction of the network’s size, which in turn reduces the chances of overfitting.
Overfitting occurs when the dimension of the network is considerably smaller than the mag-
nitude of the training dataset. This is beneficial for enhancing the network’s generalization
ability. The improved algorithm workflow is described in Figure 7.
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4.3. Stochastic Prediction Model for Fissured Rock Specimen Strength

In order to enhance the precision of the stochastic prediction model for the strength of
fissured rock samples, the confining pressure, fissure length, and fissure dip angle were
used as inputs into the improved BP neural network stochastic prediction model. The
compressive strength is taken as the output of the stochastic prediction model.

In addition to the input and output layers, the determination of the hidden layers also
relates to the prediction efficiency and the accuracy of the results of the network model.
Usually, in order to ensure the efficiency and accuracy of the network model, Equation (8)
is used to calculate the number of intermediate layer cells, according to the principle of
model lightweighting.

T =
√

AB + 1.68B + 0.93 (8)

where T is the ideal number of neural units in the intermediate layer, and A and B represent
the count of the input and output parameters utilized in the network model, respectively.

Substituting the number of model input and output parameters into Equation (8),
results in:

T =
√

3× 1 + 1.68× 1 + 0.93 (9)

T =
√

5.61 ≈ 2.37 (10)
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Consequently, the hidden layer in the improved BP neural network-based stochastic
prediction model can be determined to comprise three cells through the calculation.

4.4. Application of Fissured Rock Specimen Strength Prediction

Before establishing the model, it is necessary to pre-divide the dataset into a training
set and a testing set. The training set is used for model training, while the testing set is used
to verify and evaluate the reliability and generalization performance of the trained model.
Proper dataset partitioning has a significant impact on the final generalization performance
of the model. When the proportion of the training set is too high and the proportion of the
testing set is relatively low, it can lead to overfitting, where the model performs well on the
training set but poorly on the testing set. Conversely, when the proportion of the training
set is too low and the proportion of the testing set is too high, it can lead to underfitting,
where the model performs poorly on both the training set and the testing set [22]. In BP
neural network model training, it is common to divide the dataset into a ratio of 7:3 or
8:2 for training and testing purposes [23]. Therefore, 75% of the data was chosen as the
training set, while the remaining 25% of the data was used as the testing set. The training
set consisted of 216 data points, while the testing set contained 72 data points.

To evaluate the predictive performance of the conventional BP neural network and the
improved BP neural network model, the determination coefficient (R2), root mean square
error (RMSE), and mean absolute percentage error (MAPE) are used as evaluation metrics
to measure the model’s generalization ability. The corresponding calculation formulas
are illustrated in Table 6. R2 represents the precision of the model in fitting the data, and
a value closer to 1 indicates a better fit. The RMSE reflects the deviation between the
predicted values and the actual values, while the MAPE represents the average absolute
error between the predicted values and the actual values. Smaller values for both metrics
indicate better generalization performance of the model.

Table 6. Evaluation index for the prediction model.

Evaluation Index Calculation Formula Evaluation Criteria

Determination coefficient (R2)
R2 = 1−

n
∑

i=1
(yi−ŷi)

2

n
∑

i=1
(yi−yi)

2

The larger the R2 value, the
better the performance of

the model.

Root mean square error
(RMSE) RMSE =

√
1
n ×

n
∑

i=1
(yi − ŷi)

2
The smaller the RMSE value,
the better the performance of

the model.

Mean absolute percentage
error (MAPE) MAPE =

n
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× 100%
n

The smaller the MAPE value,
the better the performance of

the model.

Figure 8 presents the comparison results for the predicted values and measured values
between the two models, namely the conventional BP neural network and the improved
BP neural network. As shown in Figure 8, the blue and orange scattered points represent
the predicted results of the models for the samples in the training set and the testing set,
respectively. The former reflects the learning ability of the models for complex nonlinear
relationships in known data, while the latter reflects the generalization ability of the models
for predicting unknown data. From Figure 8, it can be observed that the scattered points
for the improved BP neural network model are more concentrated near the reference line
compared to the conventional BP neural network model, indicating that the improved
BP neural network model achieves better prediction results for the triaxial compressive
strength of fractured rock specimens. The R2, RMSE, and MAPE for the improved BP
neural network model using the training set are 0.992, 3.53, and 4.91%, respectively, which
are better than those of the conventional BP neural network model (0.965, 5.42, and 7.89%).
Moreover, the R2, RMSE, and MAPE for the improved BP neural network model using
the testing set are 0.985, 6.29, and 9.83%, respectively, outperforming the conventional BP
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neural network model (0.961, 10.35, and 14.72%). Based on the values of the evaluation
metrics, it can be concluded that the improved BP neural network model exhibits better
performance using both the training and testing datasets compared to the conventional BP
neural network model.
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5. Conclusions

The experimental and numerical triaxial compression tests on fissured rock specimens
containing pre-existing fissures were conducted and the improved BP neural network
model was established for strength prediction of fissured rock specimens under triaxial
compression. Some conclusions can be made, as follows:

1. Triaxial compression tests were conducted on intact and fissured rock specimens
under different confining pressures, fracture angles, and loading rates to obtain the
triaxial compression strength of the fissured rock specimens under different conditions,
serving as reference data for the numerical experiments.

2. Discrete element method numerical models were established for the intact and fissured
rock specimens. After calibrating the micro-parameters of the numerical models,
numerical triaxial compression tests were conducted on the rock specimens and
validated through experimental tests. The error in the numerical experiments was
within 5%, indicating a high level of accuracy of the numerical models.

3. Numerical triaxial compression tests on the fractured rock specimens were conducted
under four confining pressures, four fracture lengths, six fracture inclinations, and
three loading rates, resulting in a total of 288 sets of triaxial compression test data for
the fractured rock specimens. These data were used to train a predictive model on
the triaxial compressive strength of fractured rock. By employing a modified back
propagation neural network based on random factor and interlayer mean square error
correction, the predictive model for the triaxial compressive strength of fractured
rock was established. The R2, RMSE, and MAPE for the improved BP neural network
model in the training set was 0.992, 3.53, and 4.91%, respectively, indicating that
the model’s prediction performance is superior to that of the traditional BP neural
network model.

In summary, this study combines machine learning with rock mechanics to achieve
intelligent prediction of rock strength using a limited number of rock mechanics tests.
Compared to traditional experimental methods, this approach saves a significant amount
of manpower, financial resources, and time, providing a new reference for predicting the
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strength of fractured rocks under high stress conditions in deep coal mine strata. However,
the training process for the BP neural network requires iterative computations through the
back propagation algorithm to adjust the network’s weights and biases. As a result, the
training speed is relatively slow. In the future, the authors will continue to conduct further
research on accelerating the training speed of BP neural networks.
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