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Abstract: One of the crucial methods for adapting distributed PV generation is the microgrid.
However, solar resources, load characteristics, and the essential microgrid system components are
all directly tied to the optimal planning scheme for microgrids. This article conducts a collaborative
planning study of grid-connected PV-storage microgrids under electric vehicle integration in various
scenarios using HOMER 1.8.9 software. To be more specific, in multiple scenarios, we built capacity
optimization models for PV modules, energy storage, and converters in microgrids, with several
scenarios each accounting for the cleanliness, economic performance, and overall performance of
microgrids. For multiple scenarios, this paper used the net present value cost and levelized cost of
electricity as indicators of microgrid economics, and carbon dioxide emissions and the fraction of
renewable energy were used as indicators of microgrid cleanliness. The optimal capacity allocation
for economy, cleanliness, and a combination of economy and cleanliness were separately derived.
Finally, on a business park in Wuhan, China, we conducted thorough case studies to compare and
debate the planning performance under various scenarios and to undertake sensitivity analyses on
the cases. The sensitivity analyses were conducted for the optimal configuration of microgrids in
terms of the EV charging scale, carbon dioxide emissions, PV module unit cost, and storage unit
cost. The results of the simulation and optimization show that the optimization approach could
determine the ideal configuration for balancing economy and cleanliness. As the EV charging demand
increased, the energy storage capacity required in the microgrid gradually increased, while the carbon
dioxide emission limit was negatively correlated with the energy storage capacity demand. The unit
investment cost of PV module units had a greater impact on the optimal system configuration than
the cost of batteries.

Keywords: collaborative planning; electric vehicles; grid-connected PV-storage microgrid; HOMER
simulation; sensitivity analysis

1. Introduction

In recent years, the proportion of photovoltaic (PV) generation, wind power genera-
tion, and other renewable energy sources in the grid has been increasing, and the planning
and construction of future renewable-dominated power systems have become key for
building a modern energy system [1]. Although renewable generation has the advantages
of environmental protection, energy saving, and emission reduction, it relies on external
environmental conditions and shows the characteristics of uncertainties in power output [2].
Large-scale grid integration of renewable generation will cause many adverse effects on the
normal operation of traditional power systems [3]. A microgrid, which is a combination of
distributed renewable generation, energy storage devices, and various types of loads into a
small power networks, provides a promising tool for renewable accommodation. Micro-
grids not only serve as a bridge for energy exchange between distributed power sources
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and distribution grids, but also play a positive role in load redistribution [4,5]. Optimal
planning of microgrids in order to coordinate resources and loads is an important issue.

As electric vehicles (EVs) gain popularity and the share of EV charging load is continu-
ously increasing, the characteristics of the loads in the microgrids are diverse [6]. Compared
with the conventional electricity load, the EV charging load shows significant randomness
and fluctuation in spatial and temporal distribution, and the EV charging decision is sus-
ceptible to real-time electricity price, weather, road conditions, battery state of charge, and
other factors [7,8]. Users’ travel habits and usage habits also introduce variability to EV
charging loads. Moreover, the diverse operational and charging characteristics of different
EV types differ greatly, thus introducing more uncertainty to microgrid operations [9].
Microgrids planned with only conventional loads considered might fail to accommodate
for the massive influx of EVs, and the electricity quality and economic performance of the
microgrids will be significantly impacted by EV loads [10]. The large-scale access of EVs to
the microgrid system will lead to load growth and affect the microgrid load architecture
and characteristics, and the simultaneous access of a large number of EVs will also lead to
a surge in the microgrid power supply pressure and deterioration of power quality [11,12],
which will affect the operation stability and economy of the microgrid. In this context, the
importance of taking into account EV charging loads in microgrid planning is pronounced.

Literature Review and Contributions

The problem regarding the optimal planning of microgrids has been widely studied.
In the literature [13], using the loss of power supply probability (LPSP) as a constraint,
the objective function of reducing the total capital cost was constructed and used to de-
termine the best design of the microgrid’s energy storage capacity. In the literature [14], a
model for the economic optimization of an off-grid microgrid was built, primarily taking
temperature and battery capacity deterioration into account. The results showed that the
overall economy of the microgrid system was effectively improved. In the literature [15],
the optimal allocation of PV and energy storage in rural microgrids was achieved based on
the second-generation non-dominated ranking genetic algorithm with the optimization
objectives of maximum PV utilization and optimal economy, considering the load char-
acteristics of rural areas, local environmental factors, and various economic factors. In
the literature [16], an improved genetic algorithm was used to obtain the best planning
for isolated hybrid systems using the total NPV reduction as the optimization goal. How-
ever, these studies mostly concentrated on economic reasons and inadequately took into
account other crucial indicators, including the usage of renewable energy resources and
carbon emissions. In the literature [17], a microgrid system with renewable resources and
batteries was constructed, and the electric vehicle load was generated based on the Monte
Carlo algorithm, with the lowest probability of power loss and the lowest life cycle cost
as the optimization objectives, and, finally, the optimal configuration of the system was
derived based on the particle swarm optimization algorithm. In the literature [18], the
multi-objective algorithms of MOPSO and MO-CSA were used to create a hybrid system
that was intended to reduce net present cost (NPC), LPSP, and CO2 both with and without
operating reserves. In the literature [19], a capacity planning model was developed to
optimize the sizing of a grid-connected microgrid, taking into account uncertainties in
renewable generation. This model incorporated efficient scenario generation and reduction
techniques using the deep convolutional generative adversarial network (DCGAN) and
an improved k-medoids clustering algorithm. In the literature [20], for the purpose of
establishing a new demand response strategy (DRS), a fuzzy logic controller was used
to calculate the electricity tariff depending on the battery’s charge level, charging and
discharging power, and the customer’s prior response. In pursuit of attaining the utmost
economic efficiency and mitigating the risk of load shedding, an advanced cuckoo search
(MCS) optimization algorithm was innovatively introduced to determine the optimal sizing
of the hybrid energy storage (HES) components. This cutting-edge approach aimed to
minimize the cost of energy (COE) while simultaneously reducing the probability of experi-



Processes 2023, 11, 2408 3 of 19

encing loss of load (LOLP). The aforementioned literature conducted studies by establishing
optimization models and seeking solution algorithms. In addition, HOMER, which is a
commercial software, provides an efficient platform for tailored microgrid planning. In the
literature [21], The technical-economic evaluation of hybrid renewable energy systems to
electrify three off-the-grid isolated settlements in Columbia was carried out using HOMER
software. Based on the net present cost (NPC), levelized cost of electricity (LCOE), and
initial capital cost, the most cost-effective system was suggested for each hamlet. In the
literature [22], Rahman conducted a study in the Canadian Ontario region and set up
seven generation scenarios based on the percentage of renewable energy. They applied
HOMER for a hybrid energy generation design that could fulfill a peak load of 772 kW
and an average load of 4.4 kWh/day. In addition, the carbon dioxide penalty cost was also
considered in the total cost components, and solar surface radiation, wind speed, diesel
price, and carbon dioxide penalty cost were analyzed as sensitive variables. The simulation
results showed that the percentage of renewable energy was 100%, 80%, 65%, 50%, 35%,
21%, and 0%, and the corresponding electricity costs were UDS 1.48/kWh, USD 0.62/kWh,
USD 0.54/kWh, USD 0.42/kWh, USD 0.39/kWh, USD 0.37/kWh, and USD 0.36/kWh,
respectively. In the literature [23], based on HOMER software, an optimal configuration
of a diesel−battery−wind−PV hybrid system was proposed considering NPC and LCOE.
In the literature [24], HOMER Pro software was used to develop a stand-alone microgrid
system with a mixture of wind power, PV power, diesel generators, and batteries in order
to meet the agricultural load requirements using minimized NPC as the objective function,
and resources, technology, reliability, and emissions as the constraints. In the literature [25],
for a mixed-use building in the Philippines, Culaba modeled a PV with an Li-ion battery
system in HOMER Grid. They took into account four scenarios: business-as-usual as the
baseline case, battery only, PV only, and PV with battery. Based on the lowest net present
cost (NPC), payback period, internal rate of return (IRR), and levelized cost of electricity
(LCOE), the PV with a battery emerged as the best system architecture. In the literature [26],
for a building that already had a 500 kW PV system, Patil designed an electric vehicle
charging station. They used HOMER Grid to size the BESS and to determine the charging
station’s financial viability after creating the load profile for the station using a Monte
Carlo simulation in Matlab. In the literature [27], numerous scenarios were evaluated using
HOMER software for the best design of an isolated EV charging station (EVCS) and a grid-
connected EVCS, while taking the objectives of cost reduction and environmental pollution
into consideration. Overall, the effectiveness of HOMER software has been verified in
several scenarios.

Table 1 compares the model suggested in this work with others suggested in the
literature. Although various methods to simulate the optimal sizing problem of microgrid
systems have been developed in earlier studies, the following technological concerns
related to microgrid capacity planning need more exploration:

(1) The data used to characterize PV output and load demand are often insufficient.
In this case, capacity planning studies based on optimization algorithms only used
characterization data for a typical number of days, which resulted in a planning model
that contained only a small number of typical scenarios, when in reality, the scenarios
are much more complex than that.

(2) Many microgrid capacity planning studies have only conducted sensitivity analyses
in terms of overall cost and load demand, and have not further analyzed the impact
of different component costs on microgrid capacity planning, as well as the impact of
carbon dioxide emission limits on microgrid capacity planning.

(3) Existing studies using HOMER did not comprehensively consider the technical, eco-
nomic, and environmental-friendly performance of different components in micro-
grids, especially with multiple operating scenarios using EVs.



Processes 2023, 11, 2408 4 of 19

Table 1. Comparison between microgrid capacity planning in the literature.

Literature
Components Objective Function Sensitivity

Analysis

PV Storage EV Others Economic Performance
Indices

Cleanliness
Performance Indices

[13]
√ √

Wind Total capital cost

[14]
√ √

Diesel generators Total capital cost + system
operating costs + LCOE

[15]
√ √ Total capital cost + system

operating costs PV utilization

[16]
√ √

Diesel generators NPC

[17]
√ √ √ Life cycle cost (LCC) +

LPSP
√

[18]
√

Diesel generators NPC + LPSP Carbon dioxide
emission

[19]
√ √

Wind Total capital cost Carbon dioxide
emission

[20]
√ √ Diesel generators +

wind
Cost of energy + loss of

load probability
√

[21]
√ √

Diesel generators NPC + LCOE

[22]
√ √

Diesel generators NPC

[23]
√ √

Diesel generators NPC + LCOE

[24]
√ √

Diesel generators NPC

[25]
√ √

NPC

[26]
√ √ √

NPC
√

[27]
√ √ √

Diesel generators NPC
√

This paper
√ √ √

NPC + LCOE
Carbon dioxide

emission + percentage
of renewable energy

√

This paper created a capacity planning strategy to address this issue. In this paper, we
conducted multi-scenario collaborative planning for grid-connected PV-storage microgrids
with EVs using HOMER software. Specifically, we built a multi-scenario optimization
model considering both the economic and cleanliness performance of EV-connected micro-
grids. Based on HOMER software, we built business park conventional load profiles as
well as a multi-type EV charging load for 8760 h a year and considered the stochasticity of
multi-type EV charging loads. The performance was quantified using indices such as NPC,
LCOE, and carbon dioxide emission under multiple scenarios. The planning performance
was compared and discussed using in-depth case studies on a business park in Wuhan,
China, along with a sensitivity analysis considering particular circumstances. Specifically,
this paper analyzed the impacts of electric vehicle charging scale, unit investment costs of
the photovoltaic (PV) modules and battery storage, and carbon dioxide emission limits on
the optimal planning scheme for grid-connected PV-storage microgrid systems, and derived
the impacts of the sensitivities on the optimal configuration of the microgrid system under
different unit cost multipliers. This paper analyzed the impact of the cost of each compo-
nent on the optimal configuration of grid-connected PV-storage microgrids. The technical
contributions from this work compared with the current solutions are outlined below:

(1) This paper generated annual charging load data for multiple types of electric vehicles
based on HOMER, which contained 8760 h of charging demand data, taking into
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account the stochastic nature of charging loads for multiple types of electric vehicles,
and it derived the optimal capacity planning for microgrids based on this modeling.

(2) Existing studies using HOMER have not fully considered the technical, economic,
and environmentally friendly performance of different components in microgrids.
In this paper, grid-connected PV-storage microgrids with an electric vehicle under
multiple scenarios were planned collaboratively using HOMER software. The optimal
capacity configurations for economy, cleanliness, and a combination of economy and
cleanliness were separately derived.

(3) This paper analyzed the impacts of the electric vehicle charging scale, unit investment
costs of photovoltaic (PV) modules and battery storage, and carbon dioxide emission
limits on the optimal planning scheme for grid-connected PV-storage microgrid
systems, and found the impacts of the sensitivity factors on the optimal configuration
of microgrid systems and the impacts of the costs of components on the optimal
configuration of the systems under different unit cost multipliers.

The rest of this paper is organized as follows. The HOMER-based modeling of each
element of the grid-connected PV-storage microgrid is shown in Section 2. Section 3
presents the multi-scenario collaborative planning model. Section 4 conducts an extensive
case analysis based on a business park in China. Section 5 concludes this paper.

2. Grid-Connected PV-Storage Microgrids Based on HOMER Software
2.1. Topology of Grid-Connected PV-Storage Microgrids

The grid-connected PV-storage microgrid system consists of PV modules, battery
packs, converters, and conventional loads. Considering the growing access of EV charging
load in the microgrid, EV charging piles are added to the microgrid system. The topology of
a grid-connected PV-storage microgrid with EVs is built in HOMER, as shown in Figure 1.
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2.2. Distributed PV Power Generation Model

HOMER software calculates the available output power of distributed PV generation
in microgrids based on input parameters such as PV array size, ambient temperature, and
solar radiation intensity, using Equation (1), and continuously optimizes the final optimal
power of PV [28].

PPV = YPV fPV

{
GT

GT,STC

}[
1 + ap(Tc − Tc,STC)

]
(1)
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where PPV is the output power of the PV panel, YPV is the PV array output power (kW)
under standard test conditions, fPV is the derating factor for the PV array, GT is the
solar radiation that hits the photovoltaic array during the current time period, GT,STC
is the solar radiation measured under typical test circumstances, ap is the coefficient of
power temperature, Tc is the current time period’s ambient temperature, and Tc,STC is the
temperature in typical test circumstances. The current time period’s solar radiation impact
on the PV array GT,STC in Equation (1) and the ambient temperature during the current
time period Tc can greatly affect the PV output.

2.3. Battery Storage Model

In the HOMER model, the operating characteristics of the battery are represented by
the KiBam dynamic battery model [29]. The following are the power restrictions for the
battery’s charging and discharging rates in the KiBam model:

Pbat,cpmax =
min

(
Pbat,cpmax,kbm, Pbat,cpmax,mcr, Pbat,cpmax,mcc

)
ηbat,c

(2)

Pbat,dpmax = ηbat,dPbat,amax,kbm (3)

Pbat,cpmax,kbm =
−kcQmax + kQ1e−k∆t + Qkc

(
1− e−k∆t

)
1− e−k∆t + c

(
k∆t− 1 + e−k∆t

) (4)

Pbac,cpmax,mcr =

(
1− e−ac∆t)(Qmax −Q)

∆t
(5)

Pbac,cpmax,mcc =
Nbat ImaxVnom

1000
(6)

Pbat,dpmax,kbm =
kQ1e−k∆t + Qkc

(
1− e−k∆t

)
1− e−k∆t + c

(
k∆t− 1 + e−k∆t

) (7)

where Pbat,cpmax is the maximum charging power of the energy storage battery (kW),
Pbat,dpmax is the maximum discharging power of the energy storage battery (kW),
Pbat,cpmax,kbm is the maximum charging power of the energy storage battery per time
step (kW), Pbat,cpmax,mcr is the maximum charging power of the energy storage battery in
the maximum charging rate limit (kW), Pbat,cpmax,mcc is the maximum charging power of the
energy storage battery within the permitted maximum charging current (kW), Pbat,amax,kbm
is the energy storage battery ‘s maximum discharge power for each time step (kW), ηbat,c
is the charging efficiency of the energy storage battery (%), ηbat,d is the discharging effi-
ciency of the energy storage battery (%), Q1 is the available energy of the energy storage
battery (kJ), Qmax is the maximum storage energy of the energy storage battery (kJ), k is
the rate constant of the battery, c is the capacity ratio of the energy storage battery, ac is
the maximum charging rate of the energy storage battery (Ah), Nbat is the total number of
series and parallel connections of the energy storage battery, Vnom is the rated voltage of
the energy storage battery (V), and Imax is the maximum charging current (A).

A battery storage system can be set up in HOMER software to smooth the net load
fluctuations of the distributed PV and loads. The setup battery storage system uses 100 kWh
fixed capacity Li-ion batteries, with a rated voltage of 600 V for a single battery module
and a maximum charging current of 167 A. The initial investment and replacement cost of
the battery module is 2000 Yuan/kWh, and the annual operation and maintenance cost is
80 Yuan/kWh.
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2.4. Converter Parameters

The conversion of the DC part and AC part of the microgrid is considered, and the
converter configuration is incorporated into the planning model. The converter model
selected in this paper is a general-purpose bidirectional converter, which can be freely set
using several parameters. The converter efficiency modeling is presented in Equation (8).
In a grid-connected PV-storage microgrid system, a bi-directional inverter converts the DC
output from the photovoltaic array as well as the DC output from the battery to AC, and
likewise converts the AC output from the grid to DC for storage in the battery. The invest-
ment cost and replacement cost of converters are 5393.54 Yuan/kW and 4800 Yuan/kW,
respectively, and the maintenance cost is 60 Yuan/year/kW. The operating life of converters
is 15 years, and the conversion efficiency is 95%.

ηcnv =
Pouput

Pinput
(8)

where Pouput and Pinput are the output power and the input power of inverter, respectively.

2.5. Load Characteristics

In addition to the conventional load in the microgrid, the charging load brought by the
EVs is also considered. The types of EVs and their corresponding charging characteristics
are set. Then, by setting the number of charging piles in the microgrid and their rated
power, the charging load demand of EVs is simulated for 8760 h. The time scale for electric
vehicle loads and conventional loads in this paper is 1 h. The EV charging scale is set to 6,
which in turn generates an EV charging load profile of 8760 h a year, with an average annual
EV charging load of 290 kWh/day. The average annual conventional load in business parks
is about 2619.91 kWh/day.

3. HOMER-Based Multi-Scenario Collaborative Planning for Grid-Connected
PV-Storage Microgrids

In this paper, using HOMER software, we developed a multi-scenario collaborative
planning technique for grid-connected PV-storage microgrids with EVs. Specifically, mul-
tiple scenarios under two categories of indices, i.e., the cleanliness index and economic
index, were considered. On this basis, a multi-scenario collaborative planning model
was constructed.

3.1. Cleanliness and Economic Performance Indices
3.1.1. Indices for Cleanliness Performance

In this paper, based on HOMER software, the cleanliness performance of the grid-
connected PV-storage microgrid was evaluated in terms of two indicators: renewable
energy share and carbon dioxide emission. The percentage of non-renewable energy is
calculated as shown in Equation (9), and the percentage of renewable energy is calculated
as shown in Equation (10) [30].

fNRF =
Enonren

Eserved
(9)

fRF = 1− Enonren

Eserved
(10)

where Enonren is the amount of electricity purchased from the grid in the microgrid system
(kWh/year) and Eserved is the annual electrical load in the microgrid system (kWh/year).
fNRF and fRF are the ratios of non-renewable energy generation and renewable energy
generation, respectively. When fRF has a value of 0, it indicates that the electric load in the
microgrid is supplied entirely by the main grid, while when the value of fRF is 1, it means
that the electric load in the microgrid is supplied entirely by distributed PV.
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For grid-connected PV-storage microgrids, the purchased power from the distribution
network also indirectly causes carbon dioxide emissions in the power grid. Carbon dioxide
emissions are calculated as shown in Equation (11).

fECO2
= k1Enonren (11)

where fECO2
is the carbon dioxide emission (kg/kWh) from the grid-connected PV-storage

microgrid, and k1 is the carbon emission factor, which is 0.632 kg/ kWh.

3.1.2. Indices for Economic Performance

In this paper, the NPC and the LCOE are selected as the economic indicators of
grid-connected PV-storage microgrids.

LCOE is the cost of generation calculated by leveling the cost and generation over the
life cycle of the system [31], which is calculated as shown in Equation (12):

fLCOE =
Cann,tot

Eserved
(12)

where Cann,tot represents the system’s total annualized cost (Yuan/year) [32], which is
calculated as shown in Equation (13):

Cann,tot = fNPC · CRF(i, N) (13)

where fNPC is the overall net present value cost of the microgrid, which accounts for all
expenses and income incurred throughout the course of the project, such as the original
investment costs, operation and maintenance costs, replacement costs, salvage value, and
revenue from power sales. The capital recovery factor CRF(i, N), which transforms the
current value into equivalent annual cash flows, is utilized [33]. CRF(i, N) is calculated as
shown in Equation (14):

CRF(i, N) =
i · (1 + i)N

(1 + i)N − 1
(14)

where i and N stand for the discount rate and project life cycle, respectively.
A system’s NPC is calculated by subtracting the present value of all expenditures

paid throughout its lifespan from the present value of all revenues generated over that
same period. Investment expenses, replacement costs, operating and maintenance costs,
fines for carbon dioxide emissions, and the price of grid power are all included in the
cost component. The equipment’s remaining value as well as the money made from
selling electricity generated by the microgrid to a larger grid are included in the revenue
component [34]. It is calculated as shown in Equation (15):

fNPC =
Canntot

CRF(i, N)
(15)

3.2. Optimal Planning of Grid-Connected PV-Storage Microgrids

In this paper, we considered three scenarios for optimal capacity configuration of
grid-connected PV-storage microgrids.

Scenario I: Only the economic performance of the microgrid is considered, i.e., mini-
mizing the fLCOE and fNPC indices. The objective function of collaborative planning is:

min F1 = m1 fLCOE + m2 fNPC (16)

where m1 and m2 are the weights of fLCOE and fNPC indices, respectively.
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Scenario II: Only the cleanliness performance of the microgrid is considered, i.e.,
minimizing the fNRF and fECO2

indices. In this scenario, the objective function is:

min F2 = n1 fNRF + n2 fECO2
(17)

Scenario III: Both the economic and cleanliness performance of microgrids are consid-
ered. In this scenario, the objective function is:

min F3 = ω1 fLCOE + ω2 fNPC + ω3 fNRF + ω4 fECO2
(18)

where ωi (i = 1, 2, 3, 4) is the weighting coefficient for the ith index.
The multi-objective function is constructed by determining the weights of each index

in (19) based on the entropy weighting method [35]. The dispersion of an index may be
determined by its entropy value from the standpoint of information entropy, as entropy is
a measure of uncertain information. The greater the dispersion and greater the influence it
has on the holistic evaluation, the lower the information entropy. The main steps include
the construction of a decision matrix, data normalization, information entropy calculation,
and the final determination of indicator weights [36].

(1) Decision matrix initialization. HOMER simulates the microgrid capacity config-
uration option at each time step of the year and derives the net present cost, levelized
cost of energy, percentage of non-renewable energy, and carbon dioxide emission for each
capacity configuration option. The decision metrics values corresponding to each capacity
configuration option will make up the decision matrix. Equation (19) shows the decision
matrix when there are m alternatives to be assessed based on n decision indicators:

A =
(
aij
)

m∗n =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 (19)

where aij is the index value of the jth decision index of the ith alternate solution.
(2) Normalization of the decision matrix. As the units of measurement of the decision

indicators are not uniform, they need to be normalized before calculating the integrated
weights. Specifically, the positive indicators are normalized as shown in Equation (20), and
the negative indicators are normalized as shown in Equation (21) [37]:

rij =

aij −min
j

aij

max
j

aij −min
j

aij
(20)

rij =

max
j

aij − aij

max
j

aij −min
j

aij
(21)

(3) Calculation of information entropy. The information entropy of the decision
indicator is calculated by Equation (22):

Ej = − (ln m)−1
m

∑
i=1

pijln pij (22)

where Ej represents the decision-making indicators’ information entropy, pij represents
the weight of the indicator value of option i under j decision indicators, and its calculation
formula is shown in Equation (23):

pij =
rij

m
∑

i=1
rij

(23)
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(4) Calculation of weighting factors. Based on the information entropy of the decision
indicator, the weight value of the decision matrix ωj can then be derived by Equation (24).

ωj =
1− Ej

n−
n
∑

j=1
Ej

(24)

4. Case Analysis
4.1. Case Parameters Settings

In this paper, a grid-connected PV-storage microgrid located in a commercial area of
Wuhan, China, is selected for the case analysis. In this region, there are about 211–272 days
without frost per year and there are 1810–2100 h of sunlight overall., the total annual
radiation is 104–113 kcal/cm2, the annual solar radiation intensity is shown in Figure 2,
and the annual average temperature is 15.8–17.5 ◦C, as shown in Figure 3.
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Figure 3. Annual temperature parameters.

The load demand in this business park includes conventional load demand and EV
charging load. The annual average conventional load is about 2619.91 kWh/day, with an
average power of 109.16 kW and a maximum daily load of 376.19 kW, as shown in Figure 4.
Figure 5 shows a typical daily conventional load profile for the business park, with the peak
hours of the day from 09:00 a.m. to 20:00 p.m. The EV charging load includes SUV EVs and
small electric cars with the parameters shown in Table 2. Four charging piles are used in
this microgrid, with a rated power of 12 kW for each charging pile and the EV charging
scale is set at 6. The annual EV charging load is shown in Figure 6, and the typical daily EV
charging load is shown in Figure 7. The average annual EV charging load is 290 kWh/day,
and in this business park, the EV charging load is mainly concentrated between 08:00 a.m.
and 16:00 p.m. The microgrid sets a limit target for carbon dioxide emissions, stipulating
that the portion exceeding 300,000 kg/year is penalized at 250 Yuan per ton. In this paper,
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the load data and PV output data are in hourly resolution, and the multi-scenario optimal
allocation calculations are performed based on the PV output data of 8760 h a year as well
as the load data.
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Table 2. Electric vehicle technical parameters.

Type of Car Percentage (%) Maximum Charging Power (kW) Average Charging Time (min)

SUV Electric Vehicles 30 150 260
Small electric cars 70 50 260
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In terms of cost parameters, the unit investment cost and replacement cost of the PV
modules is 9599.26 Yuan/kW, and the operational life is set to 25 years. Among them, the
derating factor for PV arrays is 80%. In addition, a horizontal axis continuous tracking
strategy is adopted for the PV generation system with a ground reflectivity of 20% and a
temperature coefficient of −0.5, with an operating temperature of about 47 ◦C and a flat
panel efficiency of about 13%. The price for this microgrid to purchase electricity from and
sell electricity to the distribution grid is 1.5 Yuan/kW and 0.4 Yuan/kW, respectively, and
the carbon emission of electricity generation in the distribution grid is 632 kg/kWh.

4.2. Multi-Scenario Collaborative Planning Results

Considering the three scenarios set in Section 3.2, this section carries out the planning
of grid-connected PV-storage microgrids with EVs based on HOEMER. The NPC, LCOE,
non-renewable energy ratio, and carbon emission of the microgrid are used as the decision
indicators. In Scenario III, the weights of each indicator based on the entropy weight
method are derived, as shown in Table 3.

Table 3. Weight of each index in Scenario III.

Indicator Information Entropy Value Information Utility Value Weight

NPC 0.988 0.012 4.971%
LCOE 0.994 0.006 2.714%
NRF 0.931 0.069 29.134%
ECO2 0.851 0.149 63.181%

For each of the three scenarios, the planning outcomes and associated expenditures
are displayed in Tables 4 and 5, respectively. It is evident that the installed capacity
of PV generation, battery energy storage, and converters in Scenario I are the smallest
compared with that in the other two scenarios. The NPC and LCOE indices in Scenario
I are the lowest in comparison with Scenario II and Scenario III, and the NPC and LCOE
are 22.3 million Yuan and 1.471 Yuan/kWh, respectively. However, the cleanliness index
in Scenario I is poor, with a reduction of 25.08% in the share of renewable energy and
carbon dioxide emissions of 199,675.3 kg/year compared with the results in Scenario II. In
Scenario II, the installed PV capacity and battery capacity are the highest, and Scenario
II has the highest renewable energy ratio and the lowest carbon dioxide emissions. This
is because the cleanliness performance is taken into account in the planning objective
in Scenario II; however, this leads to a poor economic performance with its NPC and
LCOE increasing by 126.01% and 28.69%, respectively, compared with that in Scenario
I. In Scenario III, both the economic and cleanliness performance of the grid-connected
PV-storage microgrid are considered, and the optimal planning scheme has 2195 kW PV
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generation, a 637 kW converter, and no battery energy storage. Compared with Scenario
I, the installed PV capacity in Scenario III is much larger, but the battery energy storage
reduces to 0 kWh, which decreases the LCOE by 34.09%, although the NPC is increased
by 39.46%. In the meantime, the renewable energy ratio in Scenario III reaches 85.62%,
and carbon dioxide emissions also decrease to 199,178.9 kg/year, demonstrating a better
cleanliness performance. Additionally, compared with Scenario II, NPC and LCOE are both
lowered by 62.06% and 72.56%, respectively, even though the carbon dioxide emissions are
higher and the share of renewable energy is decreased by 13.24%, respectively, showing a
better economic performance. Collaborative planning in Scenario III achieves an optimal
trade-off that meets both system economic and cleanliness requirements.

Table 4. Planning results for the grid-connected PV-storage microgrid.

System Component System Component Parameter
Configuration Result

Scenario I Scenario II Scenario III

PV Installed capacity (kW) 874.88 2634 2195
Battery bank Nominal capacity × string (kWh) 800 4400 0

Converter rated power (kW) 297.27 637 637

Table 5. Economic and cleanliness performance of the grid-connected PV-storage microgrid.

Index Scenario I Scenario II Scenario III

NPC (million Yuan) 2230 5040 3110
LCOE (Yuan/kWh) 1.471 1.893 1.097

RF (%) 73.06 98.86 85.623
ECO2 (kg/year) 199,675.3 14,857.95 199,178.9

The grid-connected PV-storage microgrid’s investment and operating costs for each
scenario are provided in Table 6, and the specifications of various components are shown in
Table 7. The optimal planning schemes for all three scenarios do not cause load shedding.
Compared with the other two scenarios, the PV capacity and the battery energy storage
capacity in Scenario I are the minimum. Therefore, the PV investment costs as well as
the system operation and maintenance costs in Scenario I are the lowest. However, the
lower PV capacity leads to a higher amount of electricity purchased from the distribution
grid and higher carbon dioxide emissions. As a result of the smaller PV capacity, there
is also less PV power leakage, which accounts for 15.12% of the overall energy usage.
Furthermore, 110,542.8 kWh of electricity was sold to the grid. The optimal planning
scheme in Scenario II has the largest PV capacity and the highest investment cost and
operation and maintenance cost. Consequently, the highest annual PV power generation
is observed in Scenario II, reaching 3,419,029 kWh/year. With a higher energy storage
capacity, the grid-connected PV-storage microgrid in Scenario II has the least purchased
electricity and the most sold power, at 996,154.8 kWh. The PV power spillage accounts
for 36.15% of the total energy consumption. Nevertheless, the higher PV output and
larger battery energy storage capacity in Scenario II contributes to a better cleanliness
performance, but a lower economic performance. The annual throughput of storage in
Scenario I is 133,973.5 kWh and in Scenario II is 307,623.8 kWh, which is an increase of
129.62% compared with Scenario I. The quantity of energy that passes through the storage
bank in a year is known as the storage throughput. If the lifetime throughput of storage is
attained, it will be necessary to replace the battery energy storage. In Scenario II, because
the PV installed capacity is larger and the configuration of the battery pack capacity is
larger, the annual throughput of its energy storage is also more, which also leads to a greater
cost for replacement of the battery pack, compared with Scenario I, where the NPC is also
increased by 126.01%. In Scenario III, the optimal planning scheme includes no energy
storage, causing a higher PV power spillage compared with Scenario I, which accounts
for 27.60% of the total electricity consumption. Moreover, deploying no energy storage
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greatly reduces the system investment and operation and maintenance costs. Electricity
from the distribution grid is 0.24% cheaper than in Scenario I, but the income from selling
the electricity to the distribution grid increases by 922.15%.

Table 6. Investment and operation and investment costs under different scenarios.

Scenario I Scenario II Scenario III

PV module investment cost (million Yuan) 839.88 2530 2110
System operation and maintenance costs (million Yuan) 1160 3750 2450

Table 7. Component parameters under different scenarios.

Indicator Scenario I Scenario II Scenario III

Excess Electricity (kWh/year) 219,546.2 1,244,603 873,389.2
Excess Electricity (%) 15.12481 36.15364 27.60093
Load shedding (%) 0 0 0

PV/Production (kWh/year) 1,135,621 3,419,029 2,849,191
100LI/Annual Throughput (kWh/year) 133,973.5 307,623.8 \

Energy Purchased (kWh) 315,941.9 23,509.41 315,156.4
Energy Sold (kWh) 110,542.8 996,154.8 1,129,914

4.3. Sensitivity Analysis

We analyzed the impacts of EV charging demand, unit investment costs of PV modules
and battery energy storage, and carbon dioxide emissions on an optimal planning scheme
for grid-connected PV-storage microgrids. We used minimizing the NPC as the planning
objective. Specifically, we set the unit investment cost parameters in Section 4.1 as the
base case, then the values of the parameters to be analyzed were adjusted step by step in
HOMER software.

Figure 8 presents the sensitivity of the microgrid planning to EV charging demand and
carbon dioxide emission limits under different unit investment costs. The region below the
lines in Figure 8 represents the optimal planning results consisting of only PV modules with
no battery energy storage. The region above the lines denotes the optimal planning results
with both PV modules and battery energy storage. As shown in Figure 8, with the base
case parameters, when the carbon dioxide emission limit reached about 310 t/year or more,
the optimal planning scheme of the grid-connected PV-storage microgrid contained only
PV modules and were converted with no energy storage. As the carbon dioxide emission
limit gradually increased, the dependence of microgrid on renewable energy decreased
accordingly, and as the cost of power purchase was lower than the cost of deploying battery
energy storage, the microgrid did not need to allocate energy storage in order to pursue
a lower NPC index. In the meantime, as the EV charging demand increased, the lines
under the unit investment cost parameters showed a slightly increasing trend, revealing the
dependence of increased EV charging on energy storage. When the unit investment costs of
PV modules and energy storage decreased from the base case to 60%, the boundary of the
optimal planning scheme changed from the carbon dioxide emission limit value of about
310 t/year to 290 t/year. The optimal planning scheme of a grid-connected PV-storage
microgrid with EV load was less prone to the impacts of the EV load scale. Specifically, the
change in the scale of EV charging load did not increase the dependence of the microgrid
system on energy storage, and the optimal planning scheme change boundary also tended
to be stable. The optimal planning scheme of the microgrid under 60% unit investment cost
was stable and less affected by the EV charging scale, while the optimal planning scheme of
the microgrid under the unit investment cost was more affected by the EV charging scale.
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Figure 8. Sensitivity to EV charging demand and CO2 emission limits at different unit investment
costs.

The sensitivity of the microgrid to the EV charging demand and carbon dioxide
emission that are limited when the unit investment costs of different components are
reduced to 60% is shown in Figure 9. When the unit investment cost of PV modules
decreases to 60% and the battery unit cost remains unchanged, the optimal planning
scheme change boundary decreases to the carbon dioxide emission limit value of about
280 t/year. This is because the decrease in the unit cost of PV modules increases the
affordable PV capacity with the same investment budget, thus reducing the amount of
electricity purchased from the distribution network and reducing the required storage
capacity, and enabling the microgrid to operate economically and environmentally at a
lower carbon dioxide limit. When the unit investment cost of battery energy storage
decreased to 60% and the PV module unit cost remained the same as the base case, the
optimal planning scheme change boundary rose to the carbon dioxide emission limit of
about 330 t/year. Comparing the change of planning schemes with different component
investment costs further demonstrates that the impact of the unit investment cost of PV
modules was greater than that of the battery energy storage.
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Figures 10 and 11 depict how influential elements have an impact on the system
NPC. When the PV module and battery unit investment cost multiplier is 1, it can be
shown that the system NPC will gradually increase with the increase in EV charging scale
and the decrease in carbon dioxide emission limit. The increase in the PV penetration
rate in grid-connected PV-storage microgrid is necessary in order to meet the increase
in EV charging load under the fixed carbon emission limit, so the system NPC increases
gradually with the increase in charging scale under the fixed carbon emission limit. Under
the fixed EV charging scale, the system NPC gradually decreases as the carbon emission
limit increases. Because the increase in carbon emission limit makes the microgrid less
dependent on renewable energy, and the cost of installing solar panels and batteries for
energy storage is more per unit than the cost of acquiring electricity from the distribution
grid. The increase in carbon emission limit leads to an increased power exchange amount
with the distribution grid and thus reduces the system NPC. When the PV and battery
module unit cost multiplier is 0.6, the trend of system NPC is similar. However, the NPC is
reduced by the decrease in the unit cost of PV and battery modules for the same carbon
emission limit.
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5. Conclusions

In this paper, the cooperative planning of a PV-storage microgrid with EVs was
achieved using HOMER software. Several scenarios with various performances, e.g.,
economic and cleanliness performance of the microgrid, were incorporated into the collab-
orative planning. A case study of a business park in Wuhan, China, was used to compare
and analyze the optimal PV-storage configuration of the microgrid. The economic and
cleanliness performance under different scenarios were discussed and a sensitivity analysis
was conducted. Through case studies, the following conclusions were drawn.
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(1) Based on the proposed economic and cleanliness indices, the optimal planning
scheme of grid-connected PV-storage microgrids under three different scenarios was ob-
tained. The comparison of the planning results showed that when only the economic
index was considered (Scenario I), the configured microgrid contained a lower percentage
of renewable energy and was less clean, but it showed the best economic performance.
When only the cleanliness index was considered (Scenario II), the economic performance
of the microgrid was poor, and the LCOE reached 1.893 Yuan/kWh, which was 28.69%
higher than the LCOE in Scenario I, but the cleanliness index was the highest. When both
the economic and cleanliness indices were considered (Scenario III), the obtained optimal
planning scheme balanced the economic and cleanliness performance.

(2) The sensitivity analysis demonstrated that the NPC of the microgrid was jointly
determined by the unit investment of equipment, EV charging demand, and the carbon
emission limits. The NPC gradually increased as the EV charging demand increased and the
allowed carbon dioxide emission limits decreased. As the EV charging demand increased,
the energy storage capacity required in the microgrid gradually increased, while the carbon
dioxide emission limit was negatively correlated with the energy storage capacity demand.
In addition, the unit investment cost of the PV and battery modules could significantly
affect the optimal configuration of the microgrid. A lower unit investment cost of battery
energy storage led to a larger energy storage capacity in the planning schemes, while a
lower unit investment cost of PV modules resulted in a lower demand for energy storage
in microgrids. The unit investment cost of the PV module units had a greater impact on
the optimal system configuration than the cost of the batteries. The optimal planning
scheme of the microgrid under 60% unit investment cost was stable and less affected by
the EV charging scale, while the optimal planning scheme of the microgrid under the unit
investment cost was more affected by the EV charging scale. Increasing the scale of EV
charging at a unit investment cost will result in increased reliance of the microgrid on
energy storage.
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Nomenclature

LCOE Levelized cost of energy (Yuan/ kWh)
NPC Net present cost (million Yuan)
PPV Output power of PV panel (kW)
YPV PV array output power (kW)
fPV The derating factor for PV array
GT The solar radiation that hit the photovoltaic array during the current time period
GT,STC The solar radiation measured under typical test circumstances
αP The coefficient of power temperature
Tc The current time period’s ambient temperature
Tc,STC The temperature in typical test circumstances
Pbat,cpmax The maximum charging power of the energy storage battery (kW)
Pbat,dpmax The maximum discharging power of the energy storage battery (kW)
Pbat,cpmax,kbm The maximum charging power of the energy storage battery per time step (kW)

Pbac,cpmax,mcr
The maximum charging power of the energy storage battery in the maximum
charging rate limit (kW)
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Pbac,cpmax,mcc
The maximum charging power of the energy storage battery in the maximum
charging current limit (kW)

Pbat,dpmax,kbm
The maximum discharging power of the energy storage battery within each time
step (kW)

ηbat,c The charging efficiency of the energy storage battery (%)
ηbat,d The discharging efficiency of the energy storage battery (%)
Q1 Available energy of the energy storage battery (kJ)
Qmax The maximum storage energy of the energy storage battery (kJ)
k The rate constant of the energy storage battery
c Capacity ratio of the energy storage battery
ac The maximum charging rate of the energy storage battery (Ah)
Nbat The total number of series and parallel connections of the energy storage battery
Vnom Rated voltage of the energy storage battery (V)
Imax The maximum charging current (Ah)
fNRF Percentage of non-renewable energy (%)
fRF Percentage of renewable energy (%)
Enonren The amount of electricity purchased from the grid (kWh/year)
Eserved Annual electrical load(kWh/year)
fECO2

Carbon dioxide emission (kg/kWh)
Pgrid,t Power purchased from the grid (kW)
k1 Carbon emission factor
Cann,tot Total annualized cost of the system (Yuan/ year)
fLCOE Levelized cost of electricity (Yuan/ kWh)
fNPC Net present cost of the microgrid system (million Yuan)
CRF(i, N) Capital recovery factor
i Discount rate
N Project life cycle (year)
aij The index value of the jth decision index of the ith alternate solution
Ej Information entropy of decision indicators
pij The weight of indicator value of option i under j decision indicators
ωj The weight value of the decision matrix
NRF Percentage of non-renewable energy (%)
RF Percentage of renewable energy (%)
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