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Abstract: Solar energy is one of the main alternatives for the decarbonization of the electricity sector
and the reduction of the existing energy deficit in some regions of the world. However, one of its
main limitations lies in its storage, since this energy source is intermittent. This paper evaluates the
potential of an underground thermal energy storage tank supplied by solar thermal collectors to
provide hot water for the activation of a single-effect absorption cooling system. A simulator was
developed in TRNSYS 17 software. Experimentally on-site measured data of soil temperature were
used in order to increase the accuracy of the simulation. The results show that the underground tank
reduces thermal energy losses by 27.6% during the entire hot period compared with the air-exposed
tank. The electrical energy savings due to the reduction in pumping time during the entire hot period
was 639 kWh, which represents 23.6% of the electrical energy consumption of the solar collector
pump. It can be concluded that using an underground thermal energy storage tank is a feasible
option in areas with high levels of solar radiation, especially in areas where ambient temperature
drops significantly during night hours and/or when access to electrical energy is limited.

Keywords: underground thermal energy storage; UTES; thermal energy storage tank; solar thermal
energy storage

1. Introduction

Solar energy is recognized as one of the main alternatives for decarbonizing the elec-
tricity sector and reducing the energy deficit that exists in several regions of the world. In
places with high levels of solar radiation, the energy collected by a solar capture system (i.e.,
photovoltaic panels, solar collectors) can be higher than the energy demand during sunny
hours; however, the maximum demand can occur during non-sunny hours. Therefore,
energy storage technologies have an important role in such applications.

The implementation of an energy storage device allows mitigating/reducing the
intermittency of renewable energy sources such as solar energy. The inadequate design
of an energy storage device can have negative impacts on the initial investment and/or
the operating cost of the whole system. For this reason, the efforts of different research
groups are focused on designing energy storage devices that provide an optimal matching
between the temporal variation of users demand and the availability of the solar resource.

The selection of an energy storage technology depends directly on the type of solar
energy application. In systems for electrical energy generation mainly with photovoltaic
technologies, the electrical energy is generally stored in a battery bank. In systems for
solar thermal energy collection, thermal energy is generally stored in a volume of fluid
inside a container called a “tank”. Thermal energy storage can contribute significantly to
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meeting society’s desire for more efficient, environmentally benign energy use, particularly
in the areas of building heating and cooling and electric power generation [1]. In addition,
their high thermal power density has increased their implementation in industrial thermal
processes [2].

Despite the fact that thermal storage systems have a low initial investment, long useful
life, and simplicity of operation, they still present areas of opportunity to improve their
efficiency. Some authors have studied the implementation of two thermal energy storage
tanks with the purpose of storing fluid at low temperatures and feeding it into the solar
collectors to increase its energy content and store it in another high-temperature tank.

Dannemand et al. [3] used two tanks to store thermal energy provided by PVT col-
lectors to activate a solar-assisted heat pump. The authors report that compared with the
single-tank thermal energy storage, the power consumption of the double-tank thermal
energy storage system was reduced by 23%, and the heat loss was reduced by 11%.

They have also implemented phase change materials because they offer high thermal
storage density with moderate temperature variation. Abdelsalam et al. [4] reported that
increasing the number of PCM modules can increase the efficiency of heat storage and
delay the time of water temperature drop. However, when the volume fraction of PCM
reaches a certain value, it will affect the heat transfer of the heat exchange coil, and the
heat storage efficiency becomes no longer sensitive. Therefore, increasing the charge rate
requires an increase in the surface area of the heat exchanger coil.

Shen et al. [5] conducted a literature review on three types of solar-driven short-term
low-temperature thermal energy storage technologies: thermal energy storage water tanks,
thermal energy storage with phase change materials, and thermochemical thermal energy
storage. The authors conclude that from an economic point of view, thermal energy storage
water tanks are completely feasible in the global market. The application prospect of phase
change material thermal energy storage in moderate climates is obviously stronger than
that of tropical climates, while the thermochemical heat storage system can be economically
feasible around 2030.

Other authors have proposed to take advantage of soil thermal inertia to improve the
efficiency of the thermal storage subsystem. For this reason, they are called underground
thermal energy storage systems (UTES). These underground storage systems are classified
according to their geometry and enclosure material; the main technologies are: aquifer
thermal energy storage (ATES), borehole thermal energy storage (BTES), pit thermal energy
storage (PTES), and tank thermal energy storage (TTES).

The first attempt to store thermal energy in an underground tank occurred in 1939 in
Cambridge, Massachusetts, with the purpose of storing solar thermal energy in the summer
months to supply heating to a residential building during the winter months [6]. Since then,
different UTES technologies for hot water storage have been investigated and proposed,
with the main use being long-term storage between seasons.

Yumrutaş et al. [7] studied a space heating system consisting of a heat pump driven by
flat-plate solar collectors and an underground cylindrical thermal energy storage tank. The
authors developed an analytical computational model to determine the annual variation of
the water temperature in the underground tank, the earth temperature field surrounding
the tank, and the annual performance of their heating system. Based on their results, the
authors report that their heating system is an alternative to fossil-fuel-fired heating systems.
In addition, they mention that the soil surrounding the tank behaves as an additional
storage medium, since it absorbs energy during summer and rejects the absorbed energy to
the tank in winter.

Banjac [8] presented a sizing methodology for a space heating and cooling system
which consists of a heat pump, solar collectors, and an underground thermal storage tank
for seasonal (or long-term) thermal energy storage. Numerical calculations show that
the size of the underground tank has the greatest impact on water temperature variation,
and that the amplitude of temperature oscillation decreases with the increase in the tank
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volume. Furthermore, it is shown that the tank burial depth had a minor effect on the
change of water temperature in the tank.

Nhut et al. [9] established a mathematical model for the study of a residential heating
system activated by solar thermal energy with a buried thermal tank for seasonal storage.
Their results revealed that the optimum volume of the underground tank is 5 m3 and that
on days with clear sky, intermittent cloudy sky, and cloudy sky, the solar fraction obtained
was 45.8%, 17.26%, and 0%, respectively. The authors recommend that a residential house
solar-assisted heating system with a thermal storage tank should be replaced by the solar-
assisted heating system with a boiler and a seasonal underground thermal energy storage
tank, because it will increase the solar fraction.

Meister and Beausoleil-Morrison [10] experimentally studied a solar thermal system
with a 36 m3 underground thermal energy storage tank for seasonal storage. The authors
report that low efficiency of solar collectors has the most detrimental effect on system
performance. The results indicate that the system can achieve 100% solar fraction for space
heating loads (15 GJ) and 86% for domestic hot water loads (13 GJ). The authors report that
the seasonal storage tank achieves an annual energy storage efficiency of 42%.

The main application of the UTES is for seasonal or “long-term” thermal energy
storage, in order to have solar thermal energy availability in places where the solar radiation
decreases significantly during autumn–winter months. Their main application is to provide
heating services in buildings. This research gap presents an opportunity to evaluate
the potential of UTES for daily or “short-term” thermal energy storage for solar cooling
purposes in zones with hot climates. This paper evaluates the potential of a UTES for
short-term thermal energy storage supplied by solar thermal collectors to provide hot water
for the activation of a single-effect absorption cooling system, considering as a case of study
the off-grid remote community of Puertecitos, located in northwest Mexico where rational
consumption of electrical energy is essential and solar radiation levels present high values
throughout the year.

2. Case of Study

This work considers as the case of study the current conditions of the solar absorption
cooling system (35 kW) of Puertecitos school reported by Aguilar-Jiménez et al. [11]. The
solar absorption cooling system is activated by a solar thermal energy collection and storage
subsystem shown in Figure 1, consisting of 25 evacuated tube heat-pipe solar collectors
with 110 m2 of collection area (arrangement of five collectors in series and five in parallel)
and a thermal energy storage tank exposed to the ambient air with a height of 2.5 m, glass
fiber insulation thickness of 0.025 m, and a volume of 12 m3.
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Figure 1. Solar thermal energy collection and storage subsystem (Aguilar-Jiménez et al., 2020) [11]. Figure 1. Solar thermal energy collection and storage subsystem (Aguilar-Jiménez et al., 2020) [11].

Figure 2 shows schematically the arrangement of the thermal energy storage tank.
Thermal energy input comes from solar collectors, increasing the water temperature inside
the tank and positioning the water with higher temperature in the upper part of the tank
through the physical phenomenon of stratification caused by the density differential. The
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water with lower density and higher temperature inside the tank is used for the activation of
the solar absorption cooling system. The water with higher density and lower temperature
is used for energy capture in the solar collectors.
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Figure 2. Schematic diagram of the system under study.

During weekdays, the solar absorption cooling system operates during the occupancy
hours of the Puertecitos school, which are from 8:00 h to 15:00 h. During weekends, the
absorption cooling system does not operate, but the solar thermal energy collection and
storage subsystem may be turned on to increase the water temperature in the thermal
energy storage tank. Sunny hours in this community generally range from 6:00 h to 18:00 h.
Therefore, during weekdays the solar energy collection and storage subsystem begins
collecting energy before the solar absorption cooling system is turned on and can be found
working after school hours to increase the water temperature in the thermal energy storage
tank.

The pump that circulates water between the thermal energy storage tank and the solar
collectors has a rated power of 3.5 HP (≈2612 W) and starts up when the water temperature
at the outlet of the solar collector rows is higher than the average temperature of the hot
water tank.

Figure 3 shows the variation of daily ambient temperature, soil temperature, and
solar radiation averages during the warm season (May–October), since these are the two
surrounding mediums with which the thermal energy storage tank of the solar absorption
cooling system exchanges heat. Although the ambient temperature reaches values of 40 ◦C
during sunny hours in the period from June to September, at night it presents values
between 25–30 ◦C, which increases the temperature difference with respect to the tank
temperature (≈90 ◦C) and, subsequently, the heat losses.

The community of Puertecitos is a coastal remote community without access to the
electrical grid. The electrical energy supply comes from a solar PV microgrid with electrical
battery storage. For this reason, it is important to develop and implement actions and/or
strategies to reduce the energy consumption of electrical devices that consume electrical
energy from the microgrid. The proposal of burying the thermal energy storage tank of the
solar absorption cooling system aims to reduce the heat losses dissipated to the surrounding
ambient air, and thus maintaining the desired temperature in the tank (≈90 ◦C) for a
longer period. As a result, reducing the operation time of the pump that circulates water
between the thermal energy storage tank and solar collectors, decreases its electrical energy
consumption.
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3. Methodology

This section presents the methods used to carry out an operational study on the
performance of the proposed underground thermal energy storage tank, which consists
of three main points: features of TRNSYS simulation, experimental validation of soil
temperature at the study site, and calculation of the heat transfer coefficients for the air
exposed (base case) and the underground thermal energy storage tank cases.

3.1. TRNSYS Simulation

TRNSYS 17 software [12] was used in order to quantify the potential of the proposed
underground thermal energy storage tank for short-term energy storage, because this
software is suitable for simulating the annual performance of different energy systems.

Meteorological data from Puertecitos, Baja California, Mexico (30.21◦, 114.38◦) mea-
sured during the year 2020 by a weather station were used in this simulation. The data
generated by the weather station was entered into the Meteonorm v7 software [13] in order
to obtain an Energy Plus Weather file (EPW) compatible with the TRNSYS “Type 15”.

Output meteorological variables such as ambient temperature and solar radiation
processed by “Type 15” are fed as input variables into the mathematical model of the
evacuated tube solar collector (Type 71) and the thermal energy storage tank (Type 534).
Subsequently, the solar collector (Type 71) output variables (temperature and mass flow
rate) are connected to the thermal energy storage tank (Type 534). The hydraulic pump
(Type 3) enables the flow of hot water between the thermal energy storage tank and the
solar collectors as shown in Figure 4.

The hot water (≈90 ◦C) stored in the thermal energy storage tank is pumped to the
absorption cooling system (Type 107). Table 1 shows the TRNSYS “Types” used to evaluate
both the base case and the proposed underground thermal energy storage tank.
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The system simulation was conducted during the hot period of the year at the study
site, which starts on 1 May (2880 h) and ends on 31 October (7296 h). Time steps of 1 h
were set and “Type 41” was configured to turn off the absorption cooling system during
weekends, holidays (15 May and 16 September), and vacations (1 July–25 August). The
solar thermal energy collection and storage subsystem pump is turned off during vacations
only. The performance analysis of both cases (air-exposed and underground tank) was
focused on the operational start-up week of the solar thermal energy collection and storage
subsystem (2977–3096 h) and the week with the highest thermal load in the classrooms
during the hot period (5833–5952 h). Table 2 shows the parameters specified to “Type 534”.

Table 2. Specifications of the thermal storage fluid and tank.

Parameter Specification

Tank volume [m3] 12
Tank height [m] 2.5

Fluid specific heat [kJ/kg·K] 4.2
Fluid density [kg/m3] 965

Fluid thermal conductivity [W/m·K] 0.68
Fluid viscosity [kg/m·h] 1.134

3.2. Soil Temperature Validation

The experimental data were measured with HOBO model TMCx-HD temperature
sensors (ONSET BRANDS, Norwalk Connecticut, CT, USA) placed at a depth of 2 m
in a vertical well drilled at the Puertecitos school. An analog recorder HOBO model
UX120-006M was used for data acquisition.

Figure 5 shows the results of the experimental validation for the soil temperature
variation in Puertecitos at 2 m depth. The coefficient of determination R2 is equal to 0.9901
and the mean absolute error (MAE) value is 0.1572 which indicates that the TRNSYS
model to obtain the soil temperature is representative of the real phenomenon. The largest
temperature difference between the model and the experimental measurement occurs at
the end of the hot period (7293 h) and it is equal to 0.61 ◦C.
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The parameters used for “Type 77” to calculate the soil temperature variation based
on the Kusuda and Achenbach [14] model are presented in Table 3. The parameters Tm, A0,
and t0 represent the annual average ambient temperature (◦C), the amplitude of annual
ambient temperature variation (◦C), and the time at which the lowest annual temperature
occurs (◦C). The parameters k, ρ, and Cp represent the thermal conductivity, density, and
specific heat of the soil, respectively, and were obtained from the ground thermal properties
database reported by Dalla Santa et al. [15] considering a wet clayey-silt soil.

Table 3. Parameters used for soil temperature calculation.

Tm (◦C) A0 (◦C) t0 (h) k (W/m·K) ρ (kg/m3) Cp (J/kg·K)

28 10 360 1.45 2000 1200

3.3. Heat Transfer Coefficient
3.3.1. Air-Exposed Tank

The heat transfer phenomenon studied to determine the heat losses through the
thermal energy storage tank exposed to ambient air is the natural convection on the top
and walls. The equations to calculate the heat transfer natural convective coefficient “h”
depend mainly on its geometry and orientation.

In the literature, a wide variety of correlations and dimensionless numbers are avail-
able that vary according to the geometry and orientation of the tank; as reported by Çengel
and Ghajar [16], a vertical cylindrical container can be treated as a vertical plate when the
condition stated in Equation (1) is met:

D ≥ 35 ∗ L
Gr1/4

L

(1)

where “D” represents the tank diameter, “L” the tank height, and “GrL” the Grashof number.
The Grashof number must be calculated using Equation (2); this dimensionless number
represents the effects of natural convection:

GrL =
gβ(Ts − T∞)L3

c
ν2 (2)

where “g” represents the acceleration of gravity, “β” the coefficient of volumetric expansion,
“Ts” the plate surface temperature, “T∞” the temperature of the fluid in contact with the
plate surface, “Lc” the height of the plate, and “ν” the kinematic viscosity of the fluid.

For this case study, the condition established in Equation (1) is satisfied, and hence
the equations corresponding to a vertical plate were used. Subsequently, it is necessary to
calculate the Rayleigh number using Equation (3), which describes the relationship between
buoyancy and viscosity within the fluid:

RaL = GrLPr (3)

where “Pr” represents the Prandlt number, used to describe the relationship between
momentum diffusivity and thermal diffusivity. The last dimensionless number required
for the calculation of the convective coefficient is the Nusselt number obtained by Equation
(4), which is an empirical correlation in natural convection for vertical plates:

Nu =

0.825 +
0.387Ra1/6

L

[1 + (0.492/Pr)9/16]
8/27


2

(4)
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Finally, the natural convection heat transfer coefficient “h” was calculated using
Equation (5). Figure 6 shows a flow chart summarizing the methodology used for the
calculation of the natural convection heat transfer coefficient.

h =
Nu ∗ k

Lc
(5)
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3.3.2. Underground Tank

For the calculation of the heat transfer coefficient corresponding to the underground
tank case, Equation (6) reported by Big Ladder software (Denver, CO, USA) was used. This
software provides software tools, training, support, and consulting services for Energy-



Processes 2023, 11, 2406 10 of 14

Plus [18] to mechanical, architectural, and design engineering firms focused on the building
energy modeling sector.

Rsoil = 0.0607 + 0.3479·z (6)

where “Rsoil” represents the effective thermal resistance of the soil and is the inverse of the
heat transfer coefficient, and “z” represents the depth into the soil from the surface.

4. Results

Figure 7 shows the tank’s water temperature behavior during the absorption cooling
system in the first week of operation (2977–3096 h). The solar thermal energy collection
and storage subsystem started operating at the weekend (2929–2976 h) in order to reach
the required temperature (≈90 ◦C) to activate the absorption cooling system. For Monday,
at the beginning of school hours (2982 h) the temperature of the underground tank is
77.6 ◦C and the air-exposed tank is 72.6 ◦C; it is worth mentioning that this is the largest
temperature difference (≈5 ◦C) between both cases during this week. During the rest of
this week, the temperature of the underground tank is on average 2.1 ◦C higher than the
air-exposed tank at the start of the absorption cooling system operation.
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Figure 7. Variation of the tank water temperature during the start-up week.

Figure 8 shows that the temperature in the underground tank has a more stable
dynamic during the highest classroom thermal load week, and the amplitude of the temper-
ature variation is lower compared with the air-exposed tank. At the first hour of Monday
(5833 h), the temperature of the buried tank is 91.6 ◦C, whereas the temperature of the
air-exposed tank is 82.75 ◦C. During school hours, when water is extracted from the tank to
activate the absorption cooling system, the temperature difference in the tanks decreases
considerably. At the end of the week, the temperature of the underground tank is 91.1 ◦C
and 85.8 ◦C for the air-exposed tank.
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Figure 8. Tank water temperature behavior during the highest thermal load week.

Figure 9 shows that the temporal variation of heat losses follows the same trend as
the water temperature in the tank, because as the temperature in the tank increases, the
temperature difference with respect to the heat sink (air or soil) increases. The underground
tank reduces heat losses during the critical week by 27.33% compared with the air-exposed
tank. The maximum rate of thermal energy that dissipated to the soil surroundings is
8.1 kWh, while, for the case of the air-exposed tank, this is 11.5 kWh. The increase/decrease
in thermal energy dissipated to the soil surroundings has a more linear trend because the
soil temperature change during a day is negligible, as opposed to ambient air which has a
greater temperature variation.

Figure 10 shows the electrical energy savings generated by the reduction of pumping
time, because the pump that circulates water between the tank and the solar collectors turns
on when the temperature at the solar collector row outlet is higher than the temperature
of the tank. The reduction in thermal energy losses in the underground tank causes its
temperature to be higher than the outlet temperature of solar collectors for a longer period
of time. Monthly electrical energy savings were 146.21 kWh (22.3%) in May, 193.2 kWh
(24.5%) in June, 31.3 kWh (18.7%) in August, 172.32 kWh (24.26%) in September, and
96.6 kWh (25.17%) in October.
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5. Conclusions

This paper evaluates the potential of a UTES for short-term thermal energy storage
supplied by solar thermal collectors to provide hot water to activate a single-effect ab-
sorption cooling system, considering as a case of study the off-grid remote community of
Puertecitos, located in northwest Mexico where rational consumption of electrical energy is
essential and solar radiation levels present high values throughout the year.

The results show that the underground tank reduces thermal energy losses by 27.6%
during the entire hot period, during the first stage of the hot period (May–June) by 28.1%,
and during the second stage (August–October) by 24.9%, compared with the air-exposed
tank. The underground tank presented higher savings during the first stage of the warm
period (May–June) due to higher solar radiation values but lower ambient temperature
values compared with the second warm period (August–October).

The electrical energy savings due to the reduction in pumping time during the entire
hot period was 639 kWh, which represents 23.6% of the electrical energy consumption of
the pump that circulates water between the tank and the solar collectors. During the first
stage of the hot period (May–June), the electrical energy savings was 339.43 kWh and for
the second stage it was 300.2 kWh, representing 23.5% and 23.8%, respectively. Although
during the second stage the percentage of savings was higher, the performance of the
underground tank was better during the first stage because it saved more electricity by
39.2 kWh and its duration was shorter by 8 days.

Based on the results, it can be concluded that using an underground tank for short-
term thermal energy storage is a feasible option in areas with high levels of solar radiation,
especially in areas where ambient temperature drops significantly during night hours
and/or when access to electrical energy is limited. To reduce the initial investment, the
excavation for burying the tank can be carried out simultaneously and using the same
machinery required for constructing the foundation of a control room or other structure. In
addition, the underground tank may have a longer service life by avoiding corrosion due
to contact with saline environments in coastal communities; it also increases the availability
of space at the installation site and can prevent vandalism.
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