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Abstract: Plastic pollution and food waste are two pressing global challenges that require immediate
attention and innovative solutions. In this study, we address these challenges by upcycling brewers’
spent grain (BSG) into biodegradable composite films. BSG, a by-product of the beer brewing process,
is commonly discarded in landfills or used as animal feed. By utilizing BSG as a raw material for
biodegradable films, we simultaneously reduce waste and decrease plastic pollution. To create the
composite films, we employed poly(vinyl alcohol) (PVA) and glycerol as binder materials, along with
hexamethoxymethylmelamine (HMMM) as a water-repelling agent. By varying the ratios of these
components, we investigated the effects on film properties. Our characterization included assessing
moisture uptake and tensile properties. The results revealed that the practical BSG content in the
films was 20–60 wt%. Films with this composition exhibited a balance between moisture absorption
and mechanical strength. The addition of glycerol improved the flexibility and toughness of the
films, while HMMM reduced moisture absorption, enhancing their water resistance. This study
contributes to the development of sustainable materials by showcasing the potential of upcycling
BSG into valuable biodegradable films. By transforming food waste into useful applications, we
reduce environmental burdens and promote a circular economy. Further research is warranted to
explore the potential applications and optimize the properties of BSG-based composites.

Keywords: brewers’ spent grain; mulch film; poly(vinyl alcohol); biodegradable composite film;
mechanical properties; waste upcycling; food waste; glycerol; hexamethoxymethylmelamine (HMMM);
moisture uptake; universal test machine; tensile tests

1. Introduction

The usage of plastic in today’s society is unsustainable, and if the current production
rate continues, it is estimated that approximately 12 billion metric tons of plastic waste
will be generated by 2050 [1,2]. Plastics, being highly diverse pollutants, exhibit variations
in size, shape, and properties. The primary concern regarding plastic pollution lies in its
longevity, as it takes hundreds of years for plastic to fully decompose into inert gases. The
prolonged existence of plastics significantly impacts various ecosystems. This pressing
global issue demands immediate attention and collective efforts to mitigate its extensive
consequences. Even in geographically remote regions like New Zealand [3], the presence
of microplastics has been detected, highlighting the pervasive nature of this problem.
Containers and packaging components account for 16% of global plastic waste [2,4]. Plastic
pollution negatively affects soil by altering its natural composition, microbial activity, water
retention capacity, and density. In response to the ecological imperative to reduce synthetic
plastic consumption and waste, there has been a significant increase in research on the
properties and production of biodegradable films and membranes [5,6].

On the other hand, another issue that deserves attention is food waste. One example
is brewers’ spent grain (BSG) [7], which accounts for approximately 85% of the by-products
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generated during the beer brewing process [8]. Globally, an estimated 35 million tons of
BSG is produced each year, with 20 kg of BSG (wet basis) resulting from the production of
100 L of beer. The brewing process involves milling the barley malt, followed by mashing
with water to create wort through enzymatic hydrolysis of the malt [6]. The insoluble parts
of the grain settle and the wort is filtered, resulting in BSG waste. The BSG is collected
while the wort continues to be processed into beer by adding hops and later yeast for
fermentation and maturation [8]. BSG typically contains 70–80% moisture and is prone
to spoilage due to its high protein and polysaccharide content [7], which makes it an
ideal nutrient source for microbes. The high moisture content also makes transporting
BSG expensive due to its excessive weight. Barley is the most used grain in breweries,
comprising the germ, endosperm, seed coat, pericarp layers, and husk. BSG primarily
consists of the seed coat, pericarp, and husk layers left behind after brewing. Its composition
includes fiber (22–52% w/w dry basis), protein (14–31% w/w), and lignin (11–28% w/w) [8].
The majority of BSG is either sent to landfills or used as animal feed, typically sold at a
cost of NZD 10 per ton of wet BSG [7]. Due to the high transportation costs and short
shelf-life, BSG is primarily supplied to local dairy farmers or discarded, composted, or
fermented. This presents a clear opportunity [9–12] to acquire and utilize BSG at a low
cost for the production of biodegradable products. Upcycling food waste [13,14] (BSG in
this study) in such products not only reduces waste but also decreases the dependence on
long-lasting plastics. However, there is limited research on composite films incorporating
BSG. One example is a multi-ring can-holder [15]. However, there was only 9.5% BSG in
the patent application. Although the inventors claim that this can-holder is edible and
environmentally benign, their oil-repelling chemical, perfluoroalkyl ethyl phosphate, falls
under the category of “perfluoroalkyl and polyfluoroalkyl substances” (PFAS), which have’
toxicological effects [16,17].

In our study, we aimed to develop biodegradable films that incorporate a substantial
fraction of BSG and environmentally benign components to avoid similar concerns and
issues. However, it should be noted that BSG alone does not possess adhesive properties to
form a dimensionally stable structure of a final product. Therefore, relying solely on BSG as
the main component may not result in the desired stability of the composite film. To over-
come the challenge of forming a strong structure using unmodified BSG while minimizing
environmental impact, we incorporated biodegradable plastic as a binder material. For this
purpose, we selected poly(vinyl alcohol) (PVA) resin [18,19] as a binder. PVA was chosen
due to its affordability, non-toxicity, biodegradability [20], and relatively low processing
temperatures. PVA is produced through the hydrolysis of poly(vinyl acetate) in the pres-
ence of a catalyst, such as sodium hydroxide [21]. The resulting PVA can exhibit different
degrees of hydrolysis (DoH), with partially hydrolyzed PVA containing 10–15 mol% acetate
groups and fully hydrolyzed PVA containing 1–2 mol% acetate groups. PVA is utilized in
various applications, depending on its molecular weight, DoH, and combination with other
components, including fibers [22], fiber-reinforced composites [23,24], and, particularly,
films [25–29]. PVA has a higher melting temperature due to the strong hydrogen bonds
formed between its hydroxyl groups [30], making it suitable for shaping processes based
on solution casting after dissolving in water. Polymer melt processes typically require
operating temperatures above the melting point of the polymer, such as 160 ◦C for PLA [31].
However, it is important to note that BSG may undergo undesirable effects, such as cooking
or burning, at such high temperatures. Therefore, a maximum processing temperature
of 100 ◦C in solution casting with water is a suitable choice for incorporating BSG into
composite films. This temperature allows for the effective dispersion of BSG within the
film matrix while minimizing the risk of thermal degradation or other detrimental effects
on the BSG particles. Hence, we employed the solution casting method to fabricate films.

In addition to PVA, we introduced two more components to our composite films.
Since PVA films have a tendency to absorb moisture due to their hydrophilicity, we em-
ployed hexamethoxymethylmelamine (HMMM) [32], an FDA-approved crosslinking agent
used in food packaging products [30] as a crosslinking agent, to enhance water resistance.
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Crosslinking is a common method [26] to improve the water-resistance of PVA films. An-
other component was glycerol, which acted as a plasticizer. Plasticizers are substances
that enhance the elasticity, toughness, flexibility, and stretchiness of films [33]. Consider-
ing that flexibility or stretchability of polymeric products has an important role in their
functions [34], it is important to control those by choosing a proper plasticizer in the right
amount. For hydrophilic polymers like PVA, plasticizers are highly effective in reducing
the rigidity of the polymers. They do not chemically bind with the polymer but facilitate
increased movement of polymer chains, thereby reducing intermolecular forces. This
addition improves the physical properties and versatility of the film but also increases
its vapor permeability. PVA is inherently rigid due to its high crystallinity and hydrogen
bonding. However, for film applications, flexibility is desired, and therefore a plasticizer
is commonly added. While urea is another common choice for a bioplastic plasticizer,
it poses environmental concerns due to high nitrogen levels and solubility, potentially
contaminating groundwater and rivers through leaching [35]. On the other hand, glycerol
has been studied as a method to reduce perchlorate contamination in groundwater and
has shown benefits in reducing nitrate levels through the kinetics of biological reduction
by soil microorganisms [36]. As a result, we have chosen glycerol [37,38] as a plasticizer
over urea. By combining BSG, PVA, glycerol, and HMMM in different proportions, we
fabricated biodegradable composite films. We fabricated two sets of composite films. In
the first set, while keeping the ratio of contents among PVA, glycerol, and HMMM fixed,
we varied the content of BSG as an independent variable to isolate the effects of BSG. In
the other set, while keeping the ratio of contents among BSG, PVA, and HMMM fixed, we
varied the content of glycerol as an independent variable to isolate the effects of glycerol.

Various characterizations were performed to determine the optimal content of each
component and to achieve the desired properties such as moisture uptake, film appearance,
film thickness, and mechanical properties (tensile strength, ultimate strain, Young’s modu-
lus, and toughness) as dependent variables. We could determine the effects of the contents
of BSG and glycerol on those properties, and eventually, those formulations can be used to
fabricate PVA/BSG films for given applications.

2. Materials

Poly(vinyl alcohol) (PVA) with 88 mol% DoH was obtained from Sigma Aldrich
(Burlington, MA, USA) and used as the binder material for the composite films. The
molecular weights of the PVA were determined using the method described in the sub-
sequent section, yielding Mn = 205 kg/mol, Mw = 217 kg/mol, Mz = 235 kg/mol, and
Mw/Mn = 1.06, where Mn, Mw, and Mz are the number-average, weight-average, and
Z-average molecular weights, respectively. Mw/Mn is the polydispersity index (PDI). Glyc-
erol, sourced from LabServ Pronalys (analytical reagent grade, ThermoFisher, Auckland,
New Zealand), served as the plasticizer in the films. Hexamethoxymethylmelamine (Cymel
303LF, Allnex, Frankfurt, Germany) was utilized as the crosslinking agent to enhance
the water resistance of the composite films [30]. The brewers’ spent grain (BSG) used in
the study was provided by a local beer brewing company, The Fermentist (Christchurch,
New Zealand).

3. Methods
3.1. Molecular Weights of PVA

Molecular weights of PVA were attained using gel permeation chromatography
(GPC), GPCMax VE-2001 (Malvern, UK) with triple detectors, TDA 305 (Malvern Vis-
cotek, Malvern, UK) at 35 ◦C. The three detectors include light scattering, refractive index,
and viscometer. Deionized water with 2.5 mg/L of sodium azide was used as the eluent
in the GPC. The addition of sodium azide into deionized water was to prevent bacterial
cell growth within the GPC system. Calibration of the GPC system was carried out using
a narrow-disperse poly(ethylene oxide) standard with Mw = 46,000 g/mol and PDI of
1.07 (Polymers Standard Service, Mainz, Germany). To confirm that the calibration was
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performed correctly, a dextran reference with Mw = 262,000 g/mol and PDI of 1.56 (Sigma
Aldrich, USA) was used to confirm the calibration by comparing the attained Mn, Mw,
and Mz from GPC to their actual values. PVA was analyzed by dissolving approximately
1 mg/mL of PVA into deionized water containing 2.5 mg/L of sodium azide and imple-
mented in the GPC for a duration of 2 h. The molecular weights attained from the GPC:
Mn, Mw, and Mz.

3.2. BSG Particles Preparation

Figure 1 illustrates the preparation processes for particles and dopes and film casting.
Wet BSG was obtained from a local brewery and subjected to a washing process using
deionized (DI) water. The washed BSG was then dried using a VirTis General Purpose
Freeze Dryer 24DX48 (SP Scientific, Pennsylvania, PA, USA) until the moisture level
dropped below 14 wt%. The moisture content was determined using a moisture analyzer
MA35 (Sartorius, Göttingen, Germany) at 20 ◦C. Subsequently, the dried BSG was milled
using an Ultra Centrifugal Mill ZM 100 (Retch, Haan, Germany) with a mesh size of 75 µm.
Only milled BSG particles with a size below 75 µm were utilized in the film-casting process.
The resulting particle size distribution was determined as follows. A photo image of the
BSG particles was captured using a stereoscopic microscope (Olympus SZX10, Tokyo,
Japan). The obtained image was analyzed using ImageJ software. The area of each particle
in the image was measured, and the particle diameter was calculated under the assumption
that each particle resembled a disk in the image. Throughout the remainder of this paper,
the term “BSG” refers to dried and milled BSG particles with a diameter of 75 µm or lower.
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3.3. Film Casting and Thickness Measurement

Calendaring [39] is not suitable for hydrophilic polymers like PVA due to the close
proximity of the melting and thermal degradation points caused by the strong hydrogen
bonds within the polymer chains [40]. Therefore, we employed the solution casting method
to fabricate our films (Figure 1), which involved dissolving PVA and other components in a
liquid and mixing them with the BSG particle dispersion within the polymer matrix. To
prepare the PVA/water solution, PVA pellets were dissolved in deionized (DI) water at
90 ◦C and thoroughly mixed using a magnetic stirrer to create a 10 wt% solution. Glycerol
was then added to the solution, and the liquid was stirred at 80 ◦C for 10 min. BSG, HMMM,
and water were added to the solution to achieve a fraction of water of 0.9. The mixture was
further homogenized using a planetary mixer AR100 (Thinky, Tokyo, Japan) at 2200 rpm for
5 min, and the visual uniformity of the mixture was confirmed. The suspension was stirred
at 70 ◦C on a stirring hot plate for 45 min [33] to induce crosslinking. The compositions of
the dope for film casting are provided in Table 1 for a basis of a total of 1 g of dope. We fixed
the ratio among PVA, glycerol, and HMMM in a set of composites (B1 through B6) to isolate
the effects of BSG. The BSG content gradually increases from 0 (B1) to 90 wt% (B6) while
maintaining a constant ratio of PVA:glycerol:HMMM = 3.4:1.8:1.0. The glycerol content
in polymeric films range from 20 to 40% [41], and we chose a midpoint of 29% of glycerol
content for B1. We performed a series of experiments to determine the ratio between PVA
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and HMMM to minimize moisture absorption, and we found that the content of HMMM
should be at least 30% of PVA content to have a significant effect on HMMM (the data
are not shown in this report.) We kept the above ratios for the other composites of B2
through B6.

Table 1. Compositions of the dope of 1 g for film casting. The numbers in the table will be in % after
drying, except water.

Code BSG (mg) PVA (mg) Glycerol (mg) HMMM (mg) DI Water (mL) Ratio

B1 0.0 54.8 29.0 16.1 0.9

PVA:glycerol:HMMM
= 3.4:1.8:1.0

B2 20.0 43.9 23.2 12.9 0.9

B3 40.0 32.9 17.4 9.7 0.9

B4 60.0 21.9 11.6 6.5 0.9

B5 80.0 11.0 5.8 3.2 0.9

B6 90.0 5.5 2.9 1.6 0.9

G1 43.8 43.8 0.0 12.5 0.9

BSG:PVA:HMMM
= 3.5:3.5:1.0

G2 42.4 42.4 3.0 12.1 0.9

G3 41.1 41.1 6.0 11.8 0.9

G4 39.4 39.4 10.0 11.3 0.9

On the other hand, in another set of composites (G1 through G4), we fixed the
ratio among BSG, PVA, and HMMM to isolate the effects of glycerol. The glycerol
content increases from 0 (G1) to 10 wt% (G4) while maintaining a constant ratio of
BSG:PVA:HMMM = 3.5:3.5:1.0. We tried to maximize the amount of BSG without lowering
mechanical strength too much, so we chose a 1:1 ratio of PVA and BSG while keeping the
ratio between PVA and HMMM the same as the previous composites set. After the film is
dried, the values in Table 1, except for water, indicate the component content in percentage.

The prepared dope was applied onto a glass plate positioned on an optical breadboard.
A coating of the dope was then achieved by using an adjustable film applicator, ensuring a
consistent coating thickness of 1.5 mm at a temperature of 20 ◦C. The film casting setup
was covered, leaving one side open, and allowed to rest at 20 ◦C for 24 h. Following this,
the film was carefully detached from the glass plate and subjected to drying in a lyophilizer
(Virtis General Purpose Freeze Dryer 35L EL, Scientific Products, Gardiner, NY, USA) for
24 h. Subsequently, the films were stored in a vacuum oven (OV11, Jeiotech, Daejeon,
Republic of Korea) at 20 ◦C until they were ready for further characterizations.

The local thicknesses of the casted films were determined using a digital indicator
(ID-C112CMXB, Mitutoyo, Sakado, Japan). The tip of the indicator touched the surface,
which had been facing the air during the casting process of the film, to measure thicknesses.
The minimum thickness was measured at three locations that were visually thin or flat,
while the maximum thickness was measured at three locations that were visually thicker
than the thin parts.

3.4. Tensile Tests

To assess the mechanical properties of the films, tensile tests were conducted using a
universal testing machine (model 5965, Instron, Norwood, MA, USA). The tests aimed to
obtain parameters such as tensile strength (σTS), ultimate tensile strain, Young’s modulus
(ET), and toughness. The dimensions of the samples used for testing were as follows: length
of 10 cm and width of 1 cm. The testing procedure followed the guidelines outlined in
ASTM D638-22 Standard Test Method for Tensile Properties of Plastics [42]. The tests were
performed at a crosshead speed of 50 mm/s and a temperature of 20 ◦C. Tensile stress (σT)
was calculated using the formula:

σT =
FT
wd

(1)
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where FT is the tensile force, w is the width of the strip, and d is the minimum thickness of
the strip. The tensile strength (σTS) is the maximum tensile stress was attained using:

σTS =
FT,max

wd
(2)

where FT,max is the maximum tensile force applied. The tensile strain (εT) was obtained by:

εT =
∆L
L0

(3)

where ∆L is the tensile displacement, L0 is the initial length of the strip, and the ultimate
(tensile) strain, εUT is the maximum tensile strain when the sample breaks. The Young’s
(elastic) modulus (ET ) was determined as the slope of the σT versus εT plot with its
linear regime:

ET =
∆σT
∆εT

(4)

The toughness of the material was assessed by calculating the total area under the
curve of the σT versus εT plot.

3.5. Hydrophilicity and Moisture Uptake

The hydrophilicity of the film product was evaluated by measuring the moisture
uptake. The film was placed in a humidified tub at 100% relative humidity (RH) and 20 ◦C
for 15 min. Subsequently, the wet film was patted-dry and re-weighed. The hydrophilicity
of the composite films was quantified using two methods as follows:

MUdry(%) =
m − m0

m0
× 100 (%) (5)

MUwet(%) =
m − m0

m
× 100 (%) (6)

where m is the mass of the wet film, and m0 is the mass of the dried film. Equation (5)
shows how much moisture a dried film can uptake, while Equation (6) shows the moisture
content in a film.

3.6. Statistical Analysis

Three sample repeats were used for each type of test. The obtained data were subjected
to statistical analysis using Analysis of Variance (ANOVA), which employs F-tests to
evaluate the effect of variances in the characteristics of the samples [43]. Additionally,
Student’s t-test was employed. A significance level of p < 0.05 was considered statistically
significant. Both were performed using Microsoft Excel 2019.

4. Results and Discussion
4.1. Particle Size Distribution of Milled BSG Particles

The particle size distribution of the dried and milled BSG particles is presented in
Figure 2. As anticipated, the distribution confirms that the particle diameter is smaller than
the mill size (75 µm). The majority of the particles exhibit smaller sizes due to the milling
process, which operates with a sieve-like mechanism. Within the milling chamber, rotating
pins facilitate the grinding of the grain, allowing particles to pass through the sieve when
they reach a small enough size. It is worth noting that no particles smaller than 15 µm were
observed in the distribution.
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4.2. Moisture Uptake

Figure 3 illustrates the impact of BSG content on the moisture uptake of the composite
films (B1 through B6) after exposure to 100% RH for 15 min. Figure 3a represents the
moisture uptake calculated using Equation (5), which indicates how much moisture a dried
film can absorb. On the other hand, Figure 3b displays the moisture uptake determined
by Equation (6), which signifies the moisture content in the wet film. The results indicate
that the BSG content in the films does not have a significant effect on the moisture uptake
by films. Both MUdry = 150% and MUwet = 60% are relatively high. These findings
differ from a study conducted by Chiellini et al. [30], which investigated PVA and apple
pomace. Their results showed MUwet ranging from 16% to 22% after exposure to 95% RH
for 28 days. The higher moisture uptake observed in our study may be attributed to the
presence of glycerol as a plasticizer in our films. Among the composite films, B1 has no
BSG but the highest amount of PVA (55%) and HMMM (16.1%). Consequently, one might
anticipate reduced water-absorbing materials and increased water resistance. Notably, B1
also contains the highest glycerol content of 29%. Since the solubility of water in glycerol is
higher than that in PVA, the increased glycerol content contributes to the overall moisture
uptake capability. Chiellini et al. [30] also reported no significant difference in moisture
uptake between PVA and apple pomace. Considering the similarity in composition between
BSG and apple pomace, it can be inferred that the moisture uptake between BSG and PVA
would exhibit minimal variation. Consequently, the higher solubility of water in glycerol
compared to BSG further supports the balanced moisture uptake observed in the samples
from B1 to B6. The competition between the reduced moisture-absorbing materials and
increased water resistance in B1, along with the elevated glycerol content, leads to a
comparable moisture uptake capability among samples B1 through B6.

To isolate the effect of glycerol content, we maintained a constant ratio among BSG,
PVA, and HMMM while varying only the glycerol content for samples G1 through G4.
Figure 4 depicts the impact of glycerol content on the moisture uptake of the composite
films after exposure to 100% RH for 15 min. Figure 4a represents the moisture uptake
calculated using Equation (5), indicating how much moisture a dried film can absorb.
Figure 4b displays the moisture uptake determined by Equation (6), representing the
moisture content in the wet film. The results clearly demonstrate that moisture uptake, or
hydrophilicity, increases with the glycerol content, as indicated by MUdry = 110–215% or
MUwet = 52–68%. This trend can be attributed to the high affinity of glycerol for water,
facilitated by its three hydroxyl groups that form hydrogen bonds with water molecules.
Importantly, considering that the total amount of PVA, BSG, and HMMM decreases as the
glycerol content increases from G1 to G4, the observed trend in Figure 4 can be primarily
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attributed to the impact of glycerol itself. The strong interaction between glycerol and
water further supports the increased moisture uptake observed in the films.
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In addition to increasing the overall moisture uptake of the film, the addition of
glycerol as a plasticizer to PVA has the effect of reducing the film’s crystallinity [44]. This
reduction in crystallinity is attributed to the introduction of defects in the lattice structure
caused by the highly polar and hydrophilic nature of glycerol, which allows for easier
movement of the polymer chains [45]. The decreased crystallinity of the PVA component
in the film further contributes to its moisture uptake [46]. Thus, the glycerol content
plays a crucial role in balancing the flexibility, moisture uptake, and mechanical properties
(discussed in Section 4.4) of BSG/PVA films and should be carefully considered during film
design. Overall, the films produced in this study exhibit a clear ability to absorb moisture.
This characteristic makes them suitable for applications where high moisture absorption is
desired or not a concern. One potential application is a disposable laundry bag that can be
submerged directly in water along with laundry. In this case, both the PVA and glycerol
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components of the film will dissolve in warm or hot water, which is desired. Considering
that BSG has a more rigid nature compared to PVA (discussed in Section 4.4), it can serve
as a scrubbing element. Subsequently, all the components comprising the laundry bag can
be easily washed away. Moisture uptake is related to biodegradation, but its kinetics study
is out of the scope of this study, so we have not performed quantitative biodegradation
studies, which can be one of the future directions of studying PVA/BSG films to broaden
its applications as a biodegradable composite.

4.3. Film Morphology and Thickness

Figure 5 provides a visual representation of the appearance of the composite films
after casting. The inclusion of BSG in the composite films has a noticeable impact on both
their appearance and texture. The film without any BSG content (B1) appears slightly
turbid and exhibits elasticity. Films with lower BSG content (20% and 40%, B2 and B3)
are opaque with a light brown color and display slight brittleness. As the BSG content
increases to 60 and 80% (B4 and B5), the films become highly opaque and stiff. B6 with
90% BSG could not maintain its dimension due to high brittleness. Additionally, these films
(B4 through B6) show a less homogeneous appearance, with small clumps that become
apparent as the films dry, resulting in an uneven surface. The uneven surface and clumping
of BSG particles in the dope are likely responsible for these observations. When the BSG
content is high, the BSG particles can stack on top of each other, leading to the formation of
multiple layers. In contrast, when the BSG content is low, the particles tend to form a single
layer within the film. There is no significant difference observed among G1 through G4 in
terms of the glycerol content (ranging from 0 to 10%), as the BSG content remains relatively
constant (ranging from 39.4 to 43.8%). However, an increase in glycerol content resulted in
a significant increase in the flexibility of the composite films. The addition of glycerol as a
plasticizer allowed for increased mobility and reduced intermolecular forces within the
film, leading to enhanced flexibility and improved mechanical properties.
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Figure 6a illustrates the local thickness distribution observed in the composite films as
the BSG content increases. The maximum particle size (diameter) of BSG particles used
was 0.075 mm, the gap in the film casting applicator (representing the initial thickness of
the dope layer) was 1.5 mm, and the water content was 90%, and, thus, a simple estimation
of the thickness of a dried film would be 0.15 mm. However, the minimum local thickness
was smaller than that value. The minimum local thickness likely indicates areas in the
film where the BSG content is minimal, representing predominantly the thickness of the
binder components (PVA, glycerol, and HMMM). It is expected that both the minimum
and maximum local thicknesses of the film increase with increasing BSG content. The
sudden jump in thickness observed at 60% BSG (B4) can be attributed to the clumping of
BSG particles, suggesting that the dopes were not uniformly compounded and did not
form a homogeneous mixture. This finding aligns with the observations made by Chiellini
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et al. [30] that dopes with fiber content exceeding 50% are not practical for producing
useful films due to inhomogeneous thickness. The difference between the maximum and
minimum local thicknesses of the films reflects the uniformity of the film, with a smaller
difference indicating a more uniform film. As the BSG content increases, the uniformity
of the film decreases, likely due to the clumping of BSG particles within the dope. The
large difference between the minimum and maximum thicknesses of the films is not ideal
for a film product as it indicates non-uniformity, resulting in varying physical properties
throughout the film. Therefore, achieving a homogeneous mixture of components is crucial
for the successful development of this type of composite film.
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Figure 6. Maximum and minimum local film thicknesses. (a) Effect of BSG content for B1 through B6;
(b) Effect of glycerol content for G1 through G4. The error bars are the standard deviations.

In contrast, Figure 6b demonstrates that the glycerol content has no significant effect
on the thickness distribution, unlike the BSG content. Statistically, the difference between
the maximum and minimum thicknesses remains independent of the glycerol content
ranging from 0% to 10%. This can be attributed to the relatively small variation in BSG
content (ranging from 43.8% to 39.4%), considering the significant effect of BSG content on
the thickness variations (Figure 6a). This finding provides more evidence that the thickness
homogeneity of the film primarily relies on the BSG content.

4.4. Mechanical Properties

Figure 7 illustrates the impact of BSG content on the tensile properties of the composite
films (B1 through B5). Tensile tests for B6 were not possible due to natural ruptures of
the film, as observed in Figure 5. Both tensile strength and ultimate strain demonstrate
a decreasing trend with increasing BSG content (Figure 7a). The tensile strength remains
relatively constant up to 40% BSG (32.9% PVA, 17.4% glycerol, and 9.7% HMMM) and
then exhibits a significant drop at 60% BSG (21.9% PVA, 11.6% glycerol, and 6.5% HMMM).
This decrease can be attributed to the highly brittle nature of films with higher BSG
content. A similar trend was observed for a composite of PVA/cottonseed shell [29]. As
the BSG content increases, the added amounts of PVA, HMMM, and glycerol decrease.
The reduction in the amount of binding materials (PVA and HMMM) contributes to the
decrease in tensile strength. Conversely, the reduction in the amount of plasticizer (glycerol)
can increase the tensile strength. Up to 40% BSG, such counteracting combination results
in a relatively similar tensile strength. However, from 60% BSG onward, the effect of the
reduced amount of binding materials becomes dominant, leading to a significant drop in
tensile strength.
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Figure 7. Effects of BSG content on the tensile properties of B1 through B5. (a) On tensile strength and
ultimate strain; (b) On Young’s modulus and toughness. The error bars are the standard deviations.
The blue and red arrows indicate the axes on which the data are plotted.

In terms of ultimate strain, a significant decrease is observed from 20% BSG (43.9% PVA,
23.2% glycerol, and 12.9% HMMM), indicating that the film becomes more brittle as the BSG
content increases. With increasing BSG content, the film loses its ability to stretch, resulting
in a decrease in ultimate strain. This significant decrease in ultimate strain occurs at a lower
BSG content compared to the decrease in tensile strength. This is because the proportions
of binding materials and glycerol are all decreasing with increasing BSG content, resulting
in a reduction in elasticity in the films. In the case of fibrous fillers [47], it is common
to observe an increase in both tensile strength and ultimate strain with increasing filler
content. However, the unique structure of BSG and the occurrence of adhesive (interfacial)
failure between BSG particles and the binder and/or the cohesive failure in the binder led
to the opposite trends in this study. As a result, the addition of BSG resulted in a decrease
in both tensile strength and ultimate strain of the composite films. These trends align with
the findings of other studies on PVA/apple pomace composites [30]. However, since their
data show a dramatic drop in ultimate strain with 10% apple pomace and a continuous
drop in tensile strength from 10% apple pomace, the data from this study suggest that there
is more flexibility in adjusting the BSG content within the composite films.

In Figure 7b, it is observed that the Young’s modulus of the composite films signif-
icantly increases with BSG content up to 40% BSG, indicating that BSG imparts greater
rigidity compared to the other components. Films with 60% and 80% BSG do not show a
significant difference in Young’s modulus, suggesting that the rigidity is primarily gov-
erned by the BSG content and reaches a saturation point at 60% BSG. This increase in
Young’s modulus differs from previous studies on PVA/apple pomace composites [30],
which reported a continuous decrease in Young’s modulus with increasing filler content.
Furthermore, Figure 7b demonstrates that the toughness of the films dramatically decreases
at lower BSG content and generally follows the trend of ultimate strain. Therefore, it can be
expected that films with 60% or higher BSG content will not exhibit high toughness. The
optimal BSG content for the composite films should depend on the specific application.
However, based on the results, a range of 20% to 60% BSG content is recommended to
balance the desired properties for the intended application.

Figure 8a shows the effect of glycerol content on the tensile properties of the composite
films (G1 to G4). Up to a glycerol content of 3%, there is no significant impact on the tensile
strength. However, beyond this content, the tensile strength decreases significantly while
the ultimate strain increases. This suggests that glycerol acts as a plasticizer, exerting its
plasticizing effect on the films. To observe the full plasticization effect, a glycerol content
of more than 3% is required in applications. These trends align with previous studies on
PVA/apple pomace composites, which also reported similar effects of glycerol content up
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to 50% [30]. It is worth noting that we aimed to limit the addition of glycerol to maintain
BSG as the main component in the composite films. In this study, it is evident that the
plasticizing effect of glycerol increases the mobility of the PVA chains, thereby reducing
the stress required for deformation. Consequently, the films become easier to stretch and
exhibit decreased rigidity. This phenomenon is clearly observed in Figure 8b, where the
Young’s modulus (a measure of rigidity) continuously decreases with increasing glycerol
content, resulting in greater flexibility of the films. As a result, the toughness of the films
increases with glycerol content. The relationship between toughness and glycerol content
aligns with the relationship observed between ultimate strain and glycerol content, as
previously shown in Figure 7.
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Figure 8. Effects of glycerol content on the tensile properties of G1 through G4. (a) On tensile
strength and ultimate strain; (b) On Young’s modulus and toughness. The error bars are the standard
deviations. The green and red arrows indicate the axes on which the data are plotted.

5. Conclusions

This study successfully developed biodegradable composite films using brewers’
spent grain (BSG) as a filler material, poly(vinyl alcohol) (PVA) as a binder, and hex-
amethoxymethylmelamine (HMMM) as a water-repelling agent. The practical BSG content
ranged between 20% and 60%, providing a balance between film properties such as uni-
formity in thickness, water absorption, and mechanical strengths. The films exhibited
significant moisture uptake, making them suitable for applications where water absorption
is desirable, such as in laundry bags. The addition of HMMM can help reduce moisture
absorption. This is beneficial for applications where excessive moisture absorption could
lead to functional issues during storage. However, further research is required to enhance
the water repellence of the films for applications requiring dry conditions. The mechanical
properties of the films were influenced by the BSG content, with a decrease in tensile
strength and ultimate strain observed as the BSG content increased. The addition of glyc-
erol improved the flexibility and toughness of the films, making them more resistant to
brittleness. In summary, this study highlights the potential of utilizing BSG as a sustainable
resource in the development of biodegradable composite films. The findings contribute to
the growing body of research on eco-friendly alternatives to traditional plastics and provide
insights for the design and optimization of BSG-based films for various applications.
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