
Citation: Chowdary, M.K.;

Turaka, R.; Alabduallah, B.; Khan, M.;

Babu, J.C.; Kiran, A. Low-Power

Very-Large-Scale Integration

Implementation of Fault-Tolerant

Parallel Real Fast Fourier Transform

Architectures Using Error Correction

Codes and Algorithm-Based

Fault-Tolerant Techniques. Processes

2023, 11, 2389. https://doi.org/

10.3390/pr11082389

Academic Editors: Linlin Li, Hao Luo

and Xin Peng

Received: 8 June 2023

Revised: 22 July 2023

Accepted: 1 August 2023

Published: 8 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Low-Power Very-Large-Scale Integration Implementation
of Fault-Tolerant Parallel Real Fast Fourier Transform
Architectures Using Error Correction Codes and
Algorithm-Based Fault-Tolerant Techniques
M. Kalpana Chowdary 1, Rajasekhar Turaka 2 , Bayan Alabduallah 3,*, Mudassir Khan 4 , J. Chinna Babu 5

and Ajmeera Kiran 1

1 Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad 500043,
Telangana, India; dr.kalpana@mlrinstitutions.ac.in (M.K.C.); kiranphd.jntuh@gmail.com (A.K.)

2 Department of Electronics and Communication Engineering, Nalla Narasimha Reddy Education Society’s
Group of Institutions, Hyderabad 500088, Telangana, India; dr.rajasekhar.turaka@gmail.com

3 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4 Department of Computer Science, College of Science & Arts, Tanumah, King Khalid University, P.O. Box 960,
Abha 61421, Saudi Arabia; mkmiyob@kku.edu.sa

5 Department of Electronics and Communication Engineering, Annamacharya Institute of Technology and
Sciences, Rajampet 516126, Andhra Pradesh, India; jchinnababu@gmail.com

* Correspondence: bialabdullah@pnu.edu.sa

Abstract: As technology advances, electronic circuits are more vulnerable to errors. Soft errors are
one among them that causes the degradation of a circuit’s reliability. In many applications, protecting
critical modules is of main concern. One such module is Fast Fourier Transform (FFT). Real FFT
(RFFT) is a memory-based FFT architecture. RFFT architecture can be optimized by its processing
element through employing several types of adder and multipliers and an optimized memory usage.
It has been seen that various blocks operate simultaneously in many applications. For the protection
of parallel FFTs using conventional Error Correction Codes (ECCs), algorithmic-based fault tolerance
(ABFT) techniques like Parseval checks and its combination are seen. In this brief, the protection
schemes are applied to the single RAM-based parallel RFFTs and dual RAM-based parallel RFFTs.
This work is implemented on platforms such as field programmable gate arrays (FPGAs) using
Verilog HDL and on application-specific integrated circuit (ASIC) using a cadence encounter digital
IC implementation tool. The synthesis results, including LUTs, slices registers, LUT–Flip-Flop pairs,
and the frequency of two types of protected parallel RFFTs, are analyzed, along with the existing
FFTs. The two proposed architectures with the combined protection scheme Parity-SOS-ECC present
an 88% and 33% reduction in area overhead when compared to the existing parallel RFFTs. The
performance metrics like area, power, delay, and power delay product (PDP) in an ASIC of 45 nm
and 90 nm technology are evaluated, and the proposed single RAM-based parallel RFFTs architecture
presents a 62.93% and 57.56% improvement of PDP in 45 nm technology and a 67.20% and 60.31%
improvement of PDP in 90 nm technology compared to the dual RAM-based parallel RFFTs and the
existing architecture, respectively.

Keywords: FFT; soft errors; ABFT; FPGA; ASIC

1. Introduction

Due to the shrinkage of device dimensions in terms of length, width, and oxide
thickness, as well as diminishing operating supply voltages, tolerating soft errors has
become a major design technology problem that is challenging the reliability of VLSI
system implementation. In turn, scaling reduces the area consumption and improves the

Processes 2023, 11, 2389. https://doi.org/10.3390/pr11082389 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082389
https://doi.org/10.3390/pr11082389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-6680-9046
https://orcid.org/0000-0002-1117-7819
https://orcid.org/0000-0001-9005-0615
https://doi.org/10.3390/pr11082389
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082389?type=check_update&version=1

Processes 2023, 11, 2389 2 of 16

throughput of the system, thereby reducing the cost of the overall system [1]. In recent
years, the communication and signal processing circuits have become exceedingly complex
to meet various features. An increase in area complexity can be handled efficiently by
using technologies like CMOS through scaling the device, in order to incorporate a greater
number of transistors within a smaller area. But this technology scaling makes the CMOS
device highly error-prone [2]. Soft errors are one of the types of errors that temporarily
upset the actual circuit operation. The prevention of soft errors can be performed either
by employing specific manufacturing processes like Silicon on Insulator (SOI) or can be
mitigated by adding additional hardware to the original circuitry for its protection [3].

Algorithm-based fault tolerance (ABFT) uses redundant computations within the
algorithms to detect and correct errors caused by permanent or transient failures in the
hardware, concurrently with normal operation, as it is an error detection, location, and
correction scheme. Time redundancy and space redundancy are some of the means of
classifying fault-tolerant schemes. For adding fault tolerance, time redundancy is a popular
technique, in which the same computation is performed on the same processor at two (or
more) different but close enough time periods, and then the results are compared, whereas
in space redundancy, each computation is performed at more than one location in space
(on different processors) and the results are compared. Generally, these computations
are performed at the same time. Hardware and software fault tolerance are another
two dimensions in the classification of fault-tolerant techniques.

All the above specified fault-tolerant techniques contain the below stages and these
stages of fault tolerance are applicable to all the four classes of fault-tolerant schemes.

The stages are:

• error detection;
• fault location;
• reconfiguration;
• recovery and continued service.

The below scheme in Figure 1 outlines the operations in an ABFT system.

Processes 2023, 11, x FOR PEER REVIEW 2 of 17

1. Introduction
Due to the shrinkage of device dimensions in terms of length, width, and oxide thick-

ness, as well as diminishing operating supply voltages, tolerating soft errors has become
a major design technology problem that is challenging the reliability of VLSI system im-
plementation. In turn, scaling reduces the area consumption and improves the throughput
of the system, thereby reducing the cost of the overall system [1]. In recent years, the com-
munication and signal processing circuits have become exceedingly complex to meet var-
ious features. An increase in area complexity can be handled efficiently by using technol-
ogies like CMOS through scaling the device, in order to incorporate a greater number of
transistors within a smaller area. But this technology scaling makes the CMOS device
highly error-prone [2]. Soft errors are one of the types of errors that temporarily upset the
actual circuit operation. The prevention of soft errors can be performed either by employ-
ing specific manufacturing processes like Silicon on Insulator (SOI) or can be mitigated by
adding additional hardware to the original circuitry for its protection [3].

Algorithm-based fault tolerance (ABFT) uses redundant computations within the al-
gorithms to detect and correct errors caused by permanent or transient failures in the
hardware, concurrently with normal operation, as it is an error detection, location, and
correction scheme. Time redundancy and space redundancy are some of the means of
classifying fault-tolerant schemes. For adding fault tolerance, time redundancy is a popu-
lar technique, in which the same computation is performed on the same processor at two
(or more) different but close enough time periods, and then the results are compared,
whereas in space redundancy, each computation is performed at more than one location
in space (on different processors) and the results are compared. Generally, these compu-
tations are performed at the same time. Hardware and software fault tolerance are another
two dimensions in the classification of fault-tolerant techniques.

All the above specified fault-tolerant techniques contain the below stages and these
stages of fault tolerance are applicable to all the four classes of fault-tolerant schemes.

The stages are:
• error detection;
• fault location;
• reconfiguration;
• recovery and continued service.

The below scheme in Figure 1 outlines the operations in an ABFT system.

Figure 1. Operations in ABFT algorithm.

To detect and correct errors caused by permanent or transient failures in the hard-
ware, an ABFT uses redundant computations within the algorithm. It is clear from above
that this approach is not a general mechanism as other approaches (e.g., the triple modular
redundancy). On the contrary, it differs from algorithm to algorithm. However, when the
modified algorithm is actually executed on a multiprocessor architecture, the overheads
are required to be minimal in comparison to TMR. When compared to the original algo-
rithm, the modified algorithm could take more time to operate on the encoded data.
Checks are performed on the processing elements (PEs) to test the correctness of the out-
put data in some of the existing fault-tolerant schemes. Checks are always performed on
the data elements produced by the PEs in an ABFT scheme. To make this possible, the
faulty PEs must not mask the error during the error detection or error correction phase
[4].

Input Encoded
Input Algorithm Encoded

Output
Decoded
Output

Figure 1. Operations in ABFT algorithm.

To detect and correct errors caused by permanent or transient failures in the hardware,
an ABFT uses redundant computations within the algorithm. It is clear from above that
this approach is not a general mechanism as other approaches (e.g., the triple modular
redundancy). On the contrary, it differs from algorithm to algorithm. However, when the
modified algorithm is actually executed on a multiprocessor architecture, the overheads are
required to be minimal in comparison to TMR. When compared to the original algorithm,
the modified algorithm could take more time to operate on the encoded data. Checks are
performed on the processing elements (PEs) to test the correctness of the output data in
some of the existing fault-tolerant schemes. Checks are always performed on the data
elements produced by the PEs in an ABFT scheme. To make this possible, the faulty PEs
must not mask the error during the error detection or error correction phase [4].

An algorithm-based fault tolerance (ABFT) is one of the alternatives to make par-
allel operating modules fault-tolerant; it utilizes the circuit’s algorithmic properties for
error identification and rectification. The area overhead is much smaller compared to the
conventional protection schemes [5].

Under this, various schemes of protection came into existence, the conventional
scheme includes the N-modular redundancy (NMR), in which the unprotected block is
replicated N times and a voting mechanism is conducted between all the blocks for the
error identification and correction [6]. One of the familiar schemes is the triple modular
redundancy (TMR), where the original block is triplicated. But the added redundancy can

Processes 2023, 11, 2389 3 of 16

increase the overhead in terms of area and power consumption. An energy-efficient soft
error tolerance approach for digital signal processor (DSP) systems named algorithmic
soft error tolerance (ASET) techniques are proposed, which provide an area and power
overhead two times less to that of TMR [7].

The Fast Fourier Transform (FFT) block is the main module in various communication
systems and signal processing circuits like digital filtering, digital image processing, etc.
The protection of FFT networks is observed in [8–10]. Although countless FFT architectures
are available, the pipelined and memory-based FFTs are commonly used [11,12].

Memory-based architectures, unlike pipelined architectures, generally use only one
butterfly unit. Thus, their advantage is to save the hardware cost. Because a single butterfly
processing element can complete only one butterfly operation per clock cycle, it implies
a loss in overall processing speed. We can compensate this disadvantage by using the
high radix or split radix algorithms. Furthermore, we can increase the system clock rate to
achieve the required speed.

A type of FFT architecture that processes real signals, i.e., RFFT, is proposed, as
most of the signals in the environment are real. This RFFT finds its applications in the
biomedical field like optical coherence tomography (OCT), electrocardiography (ECG),
electroencephalography (EEG), etc. [13–15].

In this work, the security of parallel memory-based RFFTs is considered. In particular,
it is assumed that there can only be a single error on the method at any given point in time,
and a novel combined fault-tolerant scheme is proposed and used in memory-based RFFT
processors to decrease the failure recovery time.

In this brief, our major contributions are:

• We research the issues and challenges related to soft errors in digital systems.
• We propose a solution that can detect and correct the errors.
• We design and implement two memory-based Real Fast Fourier Transform (RFFT)

architectures that achieve the proposed goals.
• Experimental results show that the proposed single RAM-based and dual RAM-based

fault-tolerant parallel RFFT architectures are fault-tolerant, along with less hardware
utilization in both FPGA and ASIC platforms.

• The successful implementation of RFFT architectures with a reduced hardware utilization.

This work is organized into seven sections, of which, Section 2 describes a brief
literature survey on the various RFFT designs and protection schemes for parallel FFTs.
Section 3 presents the problem statement and solution to it. Section 4 illustrates a brief
study about different RFFT architecture methodologies. In Section 5, various protection
schemes for parallel FFTs are studied. In Section 6, an experimental result of protected
parallel RFFTs of different architectures is seen. Section 7 covers the conclusion of this work.

2. Literature Survey

Zhen Gao et al., in [16], proposed schemes for the protection of parallel CORDIC--
based FFTs. The three schemes in it includes the traditional Error Correction Code (ECC)
scheme, Parseval checks (Parity-SOS), and a new technique which is a combination of both,
i.e., Parity-SOS-ECC. The resources requirement is less for the new technique in comparison
to the previous two techniques.

Zhen Guo Ma et al., in [17], proposed a new memory-based Real Fast Fourier Trans-
form (RFFT) architecture with a novel strategy of stage partitioning in radix-2 DIF RFFT
algorithm to achieve a smaller data path area and a lower number of computation cycles
using one or more processing elements. This work provides the best hardware utilization
and less area time (AT) to that of the pipelined architecture.

Yu Xie et al., in [18], proposed a fault-tolerant method for a parallel pipelined structure
in order to protect a single FFT. The proposed parallel pipelined architecture incorporates a
modified reduced precision redundancy algorithm with ECCs, which can provide a better
protection of FFTs with a moderate area overhead. To evaluate hardware utilization and
validity, the architectures were implemented on an FPGA platform.

Processes 2023, 11, 2389 4 of 16

Xin Liang et al., in [19], presented a novel online ABFT scheme to detect and correct the
soft errors in the FFT architectures. Whenever an error occurred, the proposed ABFT scheme
needed to repeat a part of the computation. Based on the evaluation results, it improves
the efficiency of the architectures twofold via a comparison with the existing schemes.

Ricardo Gonzalez-Toral et al., in [20], proposed three concurrent error detection
schemes for the implementation of FFT architectures, particularly in static RAM-based
FPGAs. To analyze the performance of the proposed architectures in detecting the errors
occurring at the output stage, they forcefully injected the upsets in the FPGA configuration
bits. Experimental results show that the architectures occupy a smaller area and are also
less susceptible to single-event upsets.

Chuang-An Mao et al., in [21], designed an FFT architecture with automated fault injec-
tion by combining C++ and ICAP applications and the proposed architecture implemented
on FPGA Xilinx Kintex 7 board to evaluate the design parameters.

Xin Wei et al., in [22], proposed a novel single-event upsets scheme with a dynamic
partial reconfiguration technique for the protection of an FFT processor to reduce the failure
recovery time. In this, authors used soft error mitigation (SEM) intellectual property IP cores
to perform the SEU detection and correction of soft errors occurring in the configurable
RAM and examined the trade-off between the consumption of hardware resources and
fault tolerance; also, the architecture was implemented on Xilinx Kintex 7 FPGA platform.

T. Rajasekhar et al., in [23], presented the LC-CSLA-RFFT architecture to reduce the
hardware complexity of an RFFT by employing a low-cost carry-select adder instead of a
normal adder in its processing element. This work improved performance parameters such
as the frequency of operation to that of a conventional RFFT when implemented on FPGA,
as well as area, power, delay, APP, and ADP when implemented on ASIC.

Rajasekhar Turaka et al., in [24], illustrated a DRAM-VM-CLA methodology of an
RFFT architecture, which uses the DRAM instead of two separate memories of a conven-
tional RFFT for holding intermediate results, and an output of RFFT to improve the area
constraint, as well as a Vedic multiplier and carry-look-ahead adder in butterfly unit for
better operation. The results are evident for a reduction in area and an increase in frequency
when implemented on FPGA.

Amit kumar et al. [25] proposed several variable-length FFT architectures, which
support four radix types implemented on Virtex-5 FPGA board. All the modules were
designed with very-high-speed hardware description language (VHDL) and analyzed the
hardware performance in terms of DSP slices, blocked RAMs, and frequency with the help
of Chipscope Pro Analyzer in Xilinx ISE software (https://www.xilinx.com).

From the above survey, it is understood that many researchers are carrying out inves-
tigations on different FFT architectures to understand the impact of power and area against
the performance of the processors. Moreover, there is little research available related to the
protection of memory-based FFT architectures.

With the above facts in mind, the present investigation was carried out and we
developed a problem statement; the solutions are presented in Section 3.

3. Problem Statement

• For applications like OCT, OFDM, etc., high-speed and fault-tolerant FFTs are used, in
which all of the FFTs operate in parallel to process different data at a time.

• In the FFT architecture, the processing element (PE) plays a major role. The efficient de-
sign of its components decides the entire architectural efficiency (in terms of area, power,
and delay), which depends on choosing proper adder and multiplier architectures.

• Soft error occurrence may affect the FFT operation for an iteration time, which leads to
the corruption of the processed data of that particular iteration.

• Therefore, protected parallel FFTs with less redundancy is needed.

Solution: In this work, to achieve the highly protective and reduced amount of over-
head parallel FFTs, there is a requirement of incorporating fault-tolerant methodology
through schemes, such as error correction codes (ECCs), Parseval check, and a fusion of

https://www.xilinx.com

Processes 2023, 11, 2389 5 of 16

ECCs and Parseval check to the different types of RFFT architectures mentioned in Section 3.
In this paper, two memory-based parallel architectures single RAM-based RFFT and a dual
RAM-based RFFT are proposed. The former uses only a single memory block and the latter
uses two memory blocks for the complete computations of butterfly operations involved
in the 32-point RFFT architecture. Both proposed architectures avoid the memory conflict,
which is the major constraint in the implementation of memory-based or in-place RFFT
architectures. The single RAM-based RFFT bank provides protection with high speed and
less area than that of dual RAM-based RFFTs when implemented on FPGA, and vice versa
in ASIC.

4. RFFT Architectures

An RFFT architecture is used in applications where the processing of the signals in an
environment is needed, as discussed in Section 1. A previous pipelined RFFT architecture
exists, which provides hardware optimization at the cost of less speed. However, A novel
memory-based RFFT architecture was later introduced, which improves the speed of
operation along with the feature to overcome the challenge of high hardware utilization
by employing a new stage partition strategy. In this strategy, the last two stages do not
have any multiplier units, and the case of multiplication with ‘W0’ twiddle factor is also
avoided, as its value is ‘1’. The new stage partition representation for a 32-point input
of radix-2-based DIF FFT is shown in Figure 2 [16]. This work included the processing
of input using one or two processing elements that require a smaller number of complex
adders and complex multipliers and memory to that of conventional RFFTs. The hardware
utilization can be further improved in dual RAM-based CSLA methodology and single
RAM-based VM-CLA methodology of RFFT architectures.

Processes 2023, 11, x FOR PEER REVIEW 6 of 17

Figure 2. A 32-point DIF RFFT butterfly.

4.1. Dual RAM-based RFFT Architecture
The basic blocks in this type of RFFT architecture [17] is depicted in Figure 3. The

operation of each block can be summarized as below:
• Control unit: For coordinating each and every block in the architecture.
• RAM0: To hold input data.
• RAM1: To hold intermediate data and output results.
• Address generators: To provide addresses to RAM0 and RAM1.
• Processing element: To perform butterfly operation.
• Multiplexer: To select which data to process among input and intermediate data.
• Demultiplexer: Distributes the processed data to RAM units.
• Register bank: Stores the final output.

The main components that the butterfly unit of FFT comprises are adders, multipli-
ers, and multiplexers. The representation of a processing element with the carry-select
adder as an adder architecture improves the FFT operation more than when using normal
adders. ROM unit is to store the twiddle factor values generated using MATLAB R2022a.

Figure 3. Block diagram of dual RAM-based RFFT architecture.

Figure 2. A 32-point DIF RFFT butterfly.

4.1. Dual RAM-Based RFFT Architecture

The basic blocks in this type of RFFT architecture [17] is depicted in Figure 3. The
operation of each block can be summarized as below:

• Control unit: For coordinating each and every block in the architecture.
• RAM0: To hold input data.
• RAM1: To hold intermediate data and output results.
• Address generators: To provide addresses to RAM0 and RAM1.
• Processing element: To perform butterfly operation.
• Multiplexer: To select which data to process among input and intermediate data.
• Demultiplexer: Distributes the processed data to RAM units.
• Register bank: Stores the final output.

Processes 2023, 11, 2389 6 of 16

Processes 2023, 11, x FOR PEER REVIEW 6 of 17

Figure 2. A 32-point DIF RFFT butterfly.

4.1. Dual RAM-based RFFT Architecture
The basic blocks in this type of RFFT architecture [17] is depicted in Figure 3. The

operation of each block can be summarized as below:
• Control unit: For coordinating each and every block in the architecture.
• RAM0: To hold input data.
• RAM1: To hold intermediate data and output results.
• Address generators: To provide addresses to RAM0 and RAM1.
• Processing element: To perform butterfly operation.
• Multiplexer: To select which data to process among input and intermediate data.
• Demultiplexer: Distributes the processed data to RAM units.
• Register bank: Stores the final output.

The main components that the butterfly unit of FFT comprises are adders, multipli-
ers, and multiplexers. The representation of a processing element with the carry-select
adder as an adder architecture improves the FFT operation more than when using normal
adders. ROM unit is to store the twiddle factor values generated using MATLAB R2022a.

Figure 3. Block diagram of dual RAM-based RFFT architecture.
Figure 3. Block diagram of dual RAM-based RFFT architecture.

The main components that the butterfly unit of FFT comprises are adders, multipliers,
and multiplexers. The representation of a processing element with the carry-select adder as
an adder architecture improves the FFT operation more than when using normal adders.
ROM unit is to store the twiddle factor values generated using MATLAB R2022a.

The block representation of PE with CSLA is depicted in Figure 4. Generally, the carry-
select adder (CSLA) consists of ripple-carry adders and selection circuit such as multiplexer.
Here, the carry-select adder is implemented with ripple-carry adders, binary-to-excess-1
code (BEC) circuits and multiplexers. The output carry and sum from the ‘k’ bit ripple-carry
adder with input carry as bit ‘0’ fed to the ‘k + 1’ bit BEC results in an output that is the same
as the output when we use the ripple-carry adder instead. The 16-bit CSLA implemented
with BEC is shown in Figure 5. The number of logic gates required to implement BEC is
less compared with the ripple-carry adder. Therefore, the use of BEC instead of normal
ripple-carry adders result in a low design cost.

Processes 2023, 11, x FOR PEER REVIEW 7 of 17

The block representation of PE with CSLA is depicted in Figure 4. Generally, the
carry-select adder (CSLA) consists of ripple-carry adders and selection circuit such as mul-
tiplexer. Here, the carry-select adder is implemented with ripple-carry adders, binary-to-
excess-1 code (BEC) circuits and multiplexers. The output carry and sum from the ‘k’ bit
ripple-carry adder with input carry as bit ‘0’ fed to the ‘k + 1’ bit BEC results in an output
that is the same as the output when we use the ripple-carry adder instead. The 16-bit CSLA
implemented with BEC is shown in Figure 5. The number of logic gates required to im-
plement BEC is less compared with the ripple-carry adder. Therefore, the use of BEC in-
stead of normal ripple-carry adders result in a low design cost.

Figure 4. Processing element with CSLA.

Figure 5. 16-bit CSLA implementation with BECs.

4.2. Single RAM-Based RFFT Architecture
In this type of RFFT architecture [18], a single dedicated memory named ‘Dual-Port

RAM’ (DPRAM) is considered here. It can handle the reading and writing of input, inter-
mediate, and output data, to and from the PE. Moreover, aside from the adders, multipli-
ers inside the processing element are also implemented with a Vedic multiplier (VM) and
a carry-look-ahead adder (CLA) for a better FFT operation. The block diagram of this type
of RFFT architecture is shown in Figure 6.

Figure 4. Processing element with CSLA.

4.2. Single RAM-Based RFFT Architecture

In this type of RFFT architecture [18], a single dedicated memory named ‘Dual-Port
RAM’ (DPRAM) is considered here. It can handle the reading and writing of input,
intermediate, and output data, to and from the PE. Moreover, aside from the adders,

Processes 2023, 11, 2389 7 of 16

multipliers inside the processing element are also implemented with a Vedic multiplier
(VM) and a carry-look-ahead adder (CLA) for a better FFT operation. The block diagram of
this type of RFFT architecture is shown in Figure 6.

Processes 2023, 11, x FOR PEER REVIEW 7 of 17

The block representation of PE with CSLA is depicted in Figure 4. Generally, the
carry-select adder (CSLA) consists of ripple-carry adders and selection circuit such as mul-
tiplexer. Here, the carry-select adder is implemented with ripple-carry adders, binary-to-
excess-1 code (BEC) circuits and multiplexers. The output carry and sum from the ‘k’ bit
ripple-carry adder with input carry as bit ‘0’ fed to the ‘k + 1’ bit BEC results in an output
that is the same as the output when we use the ripple-carry adder instead. The 16-bit CSLA
implemented with BEC is shown in Figure 5. The number of logic gates required to im-
plement BEC is less compared with the ripple-carry adder. Therefore, the use of BEC in-
stead of normal ripple-carry adders result in a low design cost.

Figure 4. Processing element with CSLA.

Figure 5. 16-bit CSLA implementation with BECs.

4.2. Single RAM-Based RFFT Architecture
In this type of RFFT architecture [18], a single dedicated memory named ‘Dual-Port

RAM’ (DPRAM) is considered here. It can handle the reading and writing of input, inter-
mediate, and output data, to and from the PE. Moreover, aside from the adders, multipli-
ers inside the processing element are also implemented with a Vedic multiplier (VM) and
a carry-look-ahead adder (CLA) for a better FFT operation. The block diagram of this type
of RFFT architecture is shown in Figure 6.

Figure 5. 16-bit CSLA implementation with BECs.

Processes 2023, 11, x FOR PEER REVIEW 8 of 17

Figure 6. Block diagram of single dual port RAM-based RFFT architecture.

The block diagram of a PE with the considered carry-look-ahead adder (CLA) and its
result multiplied with the twiddle factors stored in twiddle ROM using Vedic multipliers
and CLAs are depicted in Figure 7.

Figure 7. Processing element with CLA.

5. Proposed Memory-Based Protection Techniques for Parallel RFFTs
5.1. Using Error Correction Codes (ECCs)

The protection of digital filters based on error correction codes (ECCs) is detailed in
[14]. This work is considered as one of the main references for the protection of parallel
RFFTs in our work. The protection of four parallel RFFTs using ECCs is presented in Fig-
ure 8. One of the ECCs, i.e., Hamming code, is utilized here for single-fault identification
and rectification. For the protection of four actual RFFT modules, three additional RFFT
blocks are added. The error identification and rectification using those three additional
modules is explained with the help of necessary equations as follows.

Figure 6. Block diagram of single dual port RAM-based RFFT architecture.

The block diagram of a PE with the considered carry-look-ahead adder (CLA) and its
result multiplied with the twiddle factors stored in twiddle ROM using Vedic multipliers
and CLAs are depicted in Figure 7.

Processes 2023, 11, x FOR PEER REVIEW 8 of 17

Figure 6. Block diagram of single dual port RAM-based RFFT architecture.

The block diagram of a PE with the considered carry-look-ahead adder (CLA) and its
result multiplied with the twiddle factors stored in twiddle ROM using Vedic multipliers
and CLAs are depicted in Figure 7.

Figure 7. Processing element with CLA.

5. Proposed Memory-Based Protection Techniques for Parallel RFFTs
5.1. Using Error Correction Codes (ECCs)

The protection of digital filters based on error correction codes (ECCs) is detailed in
[14]. This work is considered as one of the main references for the protection of parallel
RFFTs in our work. The protection of four parallel RFFTs using ECCs is presented in Fig-
ure 8. One of the ECCs, i.e., Hamming code, is utilized here for single-fault identification
and rectification. For the protection of four actual RFFT modules, three additional RFFT
blocks are added. The error identification and rectification using those three additional
modules is explained with the help of necessary equations as follows.

Figure 7. Processing element with CLA.

Processes 2023, 11, 2389 8 of 16

5. Proposed Memory-Based Protection Techniques for Parallel RFFTs
5.1. Using Error Correction Codes (ECCs)

The protection of digital filters based on error correction codes (ECCs) is detailed
in [14]. This work is considered as one of the main references for the protection of parallel
RFFTs in our work. The protection of four parallel RFFTs using ECCs is presented in
Figure 8. One of the ECCs, i.e., Hamming code, is utilized here for single-fault identification
and rectification. For the protection of four actual RFFT modules, three additional RFFT
blocks are added. The error identification and rectification using those three additional
modules is explained with the help of necessary equations as follows.

Processes 2023, 11, x FOR PEER REVIEW 9 of 17

Figure 8. Protection using error correction codes.

The actual RFFTs are fed with four inputs y1, y2, y3, and y4, having the four outputs
E1, E2, E3, and E4, respectively. Each of the additional (Parity) blocks is fed with different
linear combinations of actual inputs, according to the Hamming code concept, i.e.:

y5 = y1 + y2 + y3 (1)

y6 = y1 + y2 + y4 (2)

y7 = y1 + y3 + y4 (3)

As DFT obeys the linearity principle, the corresponding transformation results are:

E5 = E1 + E2 + E3 (4)

E6 = E1 + E2 + E4 (5)

E7 = E1 + E3 + E4 (6)

Each of these transformed results of additional blocks is treated as a check equation,
i.e., b1, b2, and b3, to identify the fault presence. Once the fault is identified, its location is
denoted by the combination of check equations tabulated in Table 1.

Table 1. Error positions corresponding to check bits combination.

b1, b2, b3 Error Bit Position
000 No error
111 E1
110 E2
101 E3
011 E4
100 E5
010 E6
001 E7

After that, the fault can be rectified by the correction equations. For instance, if the
fault is identified at block Y2, then it can be corrected by the equation:

Y2c = E6 − E1 − E4 (7)

Figure 8. Protection using error correction codes.

The actual RFFTs are fed with four inputs y1, y2, y3, and y4, having the four outputs
E1, E2, E3, and E4, respectively. Each of the additional (Parity) blocks is fed with different
linear combinations of actual inputs, according to the Hamming code concept, i.e.:

y5 = y1 + y2 + y3 (1)

y6 = y1 + y2 + y4 (2)

y7 = y1 + y3 + y4 (3)

As DFT obeys the linearity principle, the corresponding transformation results are:

E5 = E1 + E2 + E3 (4)

E6 = E1 + E2 + E4 (5)

E7 = E1 + E3 + E4 (6)

Each of these transformed results of additional blocks is treated as a check equation,
i.e., b1, b2, and b3, to identify the fault presence. Once the fault is identified, its location is
denoted by the combination of check equations tabulated in Table 1.

Processes 2023, 11, 2389 9 of 16

Table 1. Error positions corresponding to check bits combination.

b1, b2, b3 Error Bit Position

000 No error
111 E1
110 E2
101 E3
011 E4
100 E5
010 E6
001 E7

After that, the fault can be rectified by the correction equations. For instance, if the
fault is identified at block Y2, then it can be corrected by the equation:

Y2c = E6 − E1 − E4 (7)

Similar correction equations are constructed for the remaining blocks, if they are at
fault. Protection by this scheme requires ‘1 + log2k’ number of RFFT replicas. The hardware
used increases when the power requirement is increased.

5.2. Using Parity Sum of Squares (SOSs)

The proposed Parity sum-of-squares (SOSs) technique relies on the Parseval theorem,
which formulates that the sum of squares of inputs fed to a system is equal to the sum of
squares of individual outputs with some multiplication factor. The SOS block for an FFT is
shown in Figure 9.

Processes 2023, 11, x FOR PEER REVIEW 10 of 17

Similar correction equations are constructed for the remaining blocks, if they are at
fault. Protection by this scheme requires ‘1 + log2k’ number of RFFT replicas. The hard-
ware used increases when the power requirement is increased.

5.2. Using Parity Sum of Squares (SOSs)
The proposed Parity sum-of-squares (SOSs) technique relies on the Parseval theorem,

which formulates that the sum of squares of inputs fed to a system is equal to the sum of
squares of individual outputs with some multiplication factor. The SOS block for an FFT
is shown in Figure 9.

Figure 9. Parseval (SOS) check for an FFT.

The protection of four RFFT blocks using SOS checks is depicted in Figure 10. In this
scheme, each RFFT block is appended with an SOS block. These SOS blocks can only iden-
tify the fault by generating check bits (P1, P2, P3, P4). For fault correction, the extra RFFT
(Parity) block is to be employed, having the input as a combination of actual inputs (y1, y2,
y3, y4).

Figure 10. Protection using Parity-SOS (Parseval check).

The error correction can be performed by the unaffected outputs. For instance, if the
second RFFT is affected by the fault, P2 will be set and correction can be performed using
Equation (8):

Figure 9. Parseval (SOS) check for an FFT.

The protection of four RFFT blocks using SOS checks is depicted in Figure 10. In
this scheme, each RFFT block is appended with an SOS block. These SOS blocks can only
identify the fault by generating check bits (P1, P2, P3, P4). For fault correction, the extra
RFFT (Parity) block is to be employed, having the input as a combination of actual inputs
(y1, y2, y3, y4).

Processes 2023, 11, 2389 10 of 16

Processes 2023, 11, x FOR PEER REVIEW 10 of 17

Similar correction equations are constructed for the remaining blocks, if they are at
fault. Protection by this scheme requires ‘1 + log2k’ number of RFFT replicas. The hard-
ware used increases when the power requirement is increased.

5.2. Using Parity Sum of Squares (SOSs)
The proposed Parity sum-of-squares (SOSs) technique relies on the Parseval theorem,

which formulates that the sum of squares of inputs fed to a system is equal to the sum of
squares of individual outputs with some multiplication factor. The SOS block for an FFT
is shown in Figure 9.

Figure 9. Parseval (SOS) check for an FFT.

The protection of four RFFT blocks using SOS checks is depicted in Figure 10. In this
scheme, each RFFT block is appended with an SOS block. These SOS blocks can only iden-
tify the fault by generating check bits (P1, P2, P3, P4). For fault correction, the extra RFFT
(Parity) block is to be employed, having the input as a combination of actual inputs (y1, y2,
y3, y4).

Figure 10. Protection using Parity-SOS (Parseval check).

The error correction can be performed by the unaffected outputs. For instance, if the
second RFFT is affected by the fault, P2 will be set and correction can be performed using
Equation (8):

Figure 10. Protection using Parity-SOS (Parseval check).

The error correction can be performed by the unaffected outputs. For instance, if
the second RFFT is affected by the fault, P2 will be set and correction can be performed
using Equation (8):

Y2c = Y − P1 − P3 − P4 (8)

It is observed that the hardware required to implement Parseval check is a lower
amount to that of implementing FFT. By reducing the FFT number to one for protection, it
is evident that the resource consumption is less in this scheme.

5.3. Using Parity-SOS-ECC

In this scheme, two previously refereed schemes are combined for providing better
protection along with a reduced overhead in terms of area. In this scheme, the ECC is
performed on SOS blocks rather than on RFFTs; in the first scheme, it is used for error
recognition, and the correction of these errors can be performed by the redundant RFFT,
similarly to the second scheme. This scheme’s block diagram is presented in Figure 11,
where y1, y2, y3, and y4 are the four inputs to the parallel RFFTs, and the corresponding
transformations are Y1, Y2, Y3, and Y4, respectively.

Processes 2023, 11, x FOR PEER REVIEW 11 of 17

Y2c = Y − P1 − P3 − P4 (8)

It is observed that the hardware required to implement Parseval check is a lower
amount to that of implementing FFT. By reducing the FFT number to one for protection,
it is evident that the resource consumption is less in this scheme.

5.3. Using Parity-SOS-ECC
In this scheme, two previously refereed schemes are combined for providing better

protection along with a reduced overhead in terms of area. In this scheme, the ECC is
performed on SOS blocks rather than on RFFTs; in the first scheme, it is used for error
recognition, and the correction of these errors can be performed by the redundant RFFT,
similarly to the second scheme. This scheme’s block diagram is presented in Figure 11,
where y1, y2, y3, and y4 are the four inputs to the parallel RFFTs, and the corresponding
transformations are Y1, Y2, Y3, and Y4, respectively.

Figure 11. Protection using Parity-SOS-ECC.

The linear combination of inputs (y5, y6, y7) based on the Hamming code, fed to the
Parseval check blocks that identifies the error. Parity RFFT is fed with the sum of all actual
inputs and Y is its output. The Y1, Y2, Y3, and Y4 are the correct transformed inputs. The
number of SOS blocks is reduced to “1 + log2k” in this scheme instead of ‘k’ (where ‘k’
denotes the number of original RFFTs) in Parity-SOS. Therefore, the protection overhead
is further reduced.

6. Experimental Results and Discussion
The three protection techniques, i.e., ECC, Parity-SOS, and the combination of the

previous two techniques (Parity-SOS-ECC), are implemented for the parallel single RAM-
based RFFTs and parallel dual RAM-based RFFTs. Here, four parallel RFFTs are consid-
ered. Each RFFT is implemented in radix-2 decimation-in-frequency (DIF) fed with an in-
put of 32-bit length. These are implemented on Artex-7 FPGA devices using Verilog HDL
in Xilinx Vivado 2022.1. The area in terms of slice registers, slice LUTs, LUT–Flip-Flop
pairs, frequency, and delay are analyzed. Table 2 presents the FPGA resource usage of the
protected parallel RFFTs. The hardware resource utilization single RAM-based RFFTs is
better in terms of slice registers, slice LUTs, and LUT–Flip-Flop pairs; and the frequency
of operation also improved by 22.76% and 63.84% when compared to the dual RAM-based
RFFTs and Radix-2 Burst I/O [25], respectively, for the combined Parity-SOS-ECC tech-
nique.

Figure 11. Protection using Parity-SOS-ECC.

Processes 2023, 11, 2389 11 of 16

The linear combination of inputs (y5, y6, y7) based on the Hamming code, fed to the
Parseval check blocks that identifies the error. Parity RFFT is fed with the sum of all actual
inputs and Y is its output. The Y1, Y2, Y3, and Y4 are the correct transformed inputs. The
number of SOS blocks is reduced to “1 + log2k” in this scheme instead of ‘k’ (where ‘k’
denotes the number of original RFFTs) in Parity-SOS. Therefore, the protection overhead is
further reduced.

6. Experimental Results and Discussion

The three protection techniques, i.e., ECC, Parity-SOS, and the combination of the
previous two techniques (Parity-SOS-ECC), are implemented for the parallel single RAM-
based RFFTs and parallel dual RAM-based RFFTs. Here, four parallel RFFTs are considered.
Each RFFT is implemented in radix-2 decimation-in-frequency (DIF) fed with an input
of 32-bit length. These are implemented on Artex-7 FPGA devices using Verilog HDL
in Xilinx Vivado 2022.1. The area in terms of slice registers, slice LUTs, LUT–Flip-Flop
pairs, frequency, and delay are analyzed. Table 2 presents the FPGA resource usage
of the protected parallel RFFTs. The hardware resource utilization single RAM-based
RFFTs is better in terms of slice registers, slice LUTs, and LUT–Flip-Flop pairs; and the
frequency of operation also improved by 22.76% and 63.84% when compared to the dual
RAM-based RFFTs and Radix-2 Burst I/O [25], respectively, for the combined Parity-SOS-
ECC technique.

Table 2. Resource utilization of protected parallel RFFTs on Artix-7 FPGA.

Type of RFFT Technique Slice Registers Slice LUTs LUT–Flip-Flop Pairs Delay (ns) Frequency (MHz)

Radix-2
Burst I/O [25]

ECC 992 5349 784 3.54 282.48

Parity-SOS 775 5244 624 3.85 259.74

Parity-SOS-ECC 876 5784 814 3.67 272.47

Dual
RAM-Based RFFT

ECC 768 4499 585 2.41 336.70

Parity-SOS 851 3669 457 2.57 340.13

Parity-SOS-ECC 786 3747 457 2.24 363.63

Single
RAM-Based RFFT

ECC 358 269 412 2.41 414.93

Parity-SOS 167 3072 229 2.57 389.10

Parity-SOS-ECC 38 809 37 2.24 446.42

RTL schematic and simulation results for the fault identification of parallel RFFTs
using Parity-SOS-ECC are depicted in Figures 12 and 13, respectively, in the form of a
screenshot taken from the Xilinx Vivado 2022.1 window.

In Figure 13, X1, X2, X3, and X4 indicate the inputs and yc1, yc2, yc3, and yc4 indicate
the outputs, respectively.

For example, if the second RFFT is affected by the fault at the second bit position, i.e.,
1100 1100 1100 1100 1100 1100 1100 1110 (the actual value is 1100 1100 1100 1100 1100 1100
1100 1100), P2 will be set and correction can be performed by Equation (8), which is shown
in Figure 13.

The proposed fault-tolerant architectures are implemented on ASIC using cadence
45 nm and 90 nm technology. Through this, the metrics such as area, power, delay, and
power delay product are analyzed and tabulated in Table 3.

Processes 2023, 11, 2389 12 of 16

Processes 2023, 11, x FOR PEER REVIEW 13 of 17

Figure 12. RTL schematic of fault-tolerant parallel RFFTs using Parity-SOS-ECC.

Figure 12. RTL schematic of fault-tolerant parallel RFFTs using Parity-SOS-ECC.

Processes 2023, 11, 2389 13 of 16

Processes 2023, 11, x FOR PEER REVIEW 14 of 17

In Figure 13, X1, X2, X3, and X4 indicate the inputs and yc1, yc2, yc3, and yc4 indicate
the outputs, respectively.

For example, if the second RFFT is affected by the fault at the second bit position, i.e.,
1100 1100 1100 1100 1100 1100 1100 1110 (the actual value is 1100 1100 1100 1100 1100 1100
1100 1100), P2 will be set and correction can be performed by Equation (8), which is shown
in Figure 13.

Figure 13. Simulation results of fault-tolerant parallel RFFTs using Parity-SOS-ECC.

The proposed fault-tolerant architectures are implemented on ASIC using cadence 45
nm and 90 nm technology. Through this, the metrics such as area, power, delay, and
power delay product are analyzed and tabulated in Table 3.

Table 3. Resource usage for the protected parallel RFFTs implemented on ASIC.

Technology Type of RFFT Technique Area (um2) Power (mW) Delay (ns) Power Delay Product
(pJ)

45 nm

Radix-2 Burst I/O [25]
ECC 11,362.74 2.61 1.85 4.83

Parity-SOS 104,799.24 3.35 1.77 5.93
Parity-SOS-ECC 87,864.83 3.93 1.77 6.96

Dual RAM-Based
RFFT

ECC 10,145.30 2.35 1.73 4.06
Parity-SOS 93,570.86 3.02 1.72 5.20

Parity-SOS-ECC 78,462.35 3.54 1.72 6.08
Single RAM-Based

RFFT
ECC 9967.54 2.05 1.65 3.38

Parity-SOS 85,277.52 2.75 1.63 4.48

Figure 13. Simulation results of fault-tolerant parallel RFFTs using Parity-SOS-ECC.

Table 3. Resource usage for the protected parallel RFFTs implemented on ASIC.

Technology Type of RFFT Technique Area (um2) Power (mW) Delay (ns) Power Delay
Product (pJ)

45 nm

Radix-2 Burst I/O [25]

ECC 11,362.74 2.61 1.85 4.83

Parity-SOS 104,799.24 3.35 1.77 5.93

Parity-SOS-ECC 87,864.83 3.93 1.77 6.96

Dual RAM-Based RFFT

ECC 10,145.30 2.35 1.73 4.06

Parity-SOS 93,570.86 3.02 1.72 5.20

Parity-SOS-ECC 78,462.35 3.54 1.72 6.08

Single RAM-Based RFFT

ECC 9967.54 2.05 1.65 3.38

Parity-SOS 85,277.52 2.75 1.63 4.48

Parity-SOS-ECC 66,341.38 1.49 1.73 2.58

90 nm

Radix-2 Burst I/O [25]

ECC 15,052.34 3.86 1.87 7.21

Parity-SOS 158,245.07 4.97 1.84 9.14

Parity-SOS-ECC 132,693.45 5.42 1.84 9.97

Dual RAM-Based RFFT

ECC 13,089.07 3.36 1.69 5.67

Parity-SOS 137,604.41 4.32 1.64 7.08

Parity-SOS-ECC 115,385.61 5.06 1.63 8.24

Single RAM-Based RFFT

ECC 11,414.82 2.93 1.59 4.65

Parity-SOS 125,408.12 3.93 1.54 6.05

Parity-SOS-ECC 97,561.34 2.14 1.53 3.27

Processes 2023, 11, 2389 14 of 16

From Table 3, single RAM-based parallel RFFTs consume less power with better power
delay product when compared to the remaining two parallel RFFTs. The comparison of
ASIC results for the single RAM-based fault-tolerant parallel RFFTs, with respect to dual
RAM-based parallel RFFTs and Radix-2 Burst I/O [25], in terms of percentage reduction in
power and power delay product (PDP) in both 45 nm and 90 nm technology are tabulated
in Table 4. This is because a single dedicated memory is used and it can handle not only
the reading and writing of input, but also intermediate and output data, to and from the
PE. And the adders and multipliers inside the PE are implemented with VMs and CLAs for
a better FFT operation.

Table 4. Percentage reduction in power and PDP in single RAM-based protected parallel RFFTs.

Technology Type of RFFT Technique Reduced % of Power Reduced % of PDP

45 nm

Radix-2 Burst I/O [25]

ECC 21.45 30.02

Parity-SOS 17.91 24.45

Parity-SOS-ECC 62.08 62.93

Dual RAM-Based RFFT

ECC 12.76 16.74

Parity-SOS 8.94 13.84

Parity-SOS-ECC 57.90 57.56

90 nm

Radix-2 Burst I/O [25]

ECC 24.09 35.50

Parity-SOS 20.92 33.80

Parity-SOS-ECC 60.51 67.20

Dual RAM-Based RFFT

ECC 12.79 17.98

Parity-SOS 9.02 14.54

Parity-SOS-ECC 57.70 60.31

From this table, it is evident that, for 45 nm technology, 62.08% and 57.90% of power is
reduced in single RAM-based parallel RFFTs, and 60.51% and 57.70% for 90 nm technology,
respectively, compared to Radix-2 Burst I/O and dual RAM-based parallel RFFTs using
Parity-SOS-ECC technique.

7. Conclusions

In this work, the parallel FFT blocks are protected using three types of techniques.
In the entire work, it is assumed that there is an occurrence of fault on a single block at a
time. For the considered two types of RFFT architectures, their parallel modules protection
is seen against the single fault. The Parity-SOS and Parity-SOS-ECC schemes consume
a smaller number of slice LUTs and LUT–Flip-Flop pairs with improved frequencies to
that of the ECC technique for the two-fault-tolerant parallel RFFTs. The two proposed
architectures with the combined protection scheme present an 88% and 33% reduction in
area overhead and an enhanced the frequency of operation when compared to the existing
parallel pipelined RFFT architectures. In ASIC implementation, the single RAM-based
RFFTs utilize less area and delay than ECC with less PDP on both 45 nm and 90 nm. The
proposed single RAM-based RFFTs fault-tolerant RFFT architecture presents a 62.93% and
57.56% improvement of PDP in 45 nm technology and 67.20% and 60.31% improvement of
PDP in 90 nm technology compared to the dual RAM-based fault-tolerant parallel RFFT
and the existed architectures, respectively. On the other hand, for fault-tolerant single
memory-based RFFTs, the power and PDP both are improved in the two technologies. On
comparing the three types of fault-tolerant parallel RFFTs, the FPGA results convey that
single RAM-based FFTs are better with a smaller area overhead and a high fault tolerance,
whereas in ASIC, single RAM-based RFFTs are better with a smaller chip area and power-
delay product along with same fault tolerance. Furthermore, we can improve the fault

Processes 2023, 11, 2389 15 of 16

coverage of the proposed architectures for higher lengths for two or more numbers of soft
errors with better performance metrics in both FPGA and ASIC.

Author Contributions: Conceptualization: R.T. and J.C.B.; methodology development: R.T., J.C.B.
and B.A.; software implementation: M.K. and B.A.; validation process: A.K., M.K. and R.T.; formal
data analysis: J.C.B., B.A. and M.K.C.; investigation conducted by M.K.; resource allocation: B.A.;
data curation: R.T.; initial draft preparation: A.K.; manuscript review and editing: R.T., M.K.C. and
M.K.; visualization of results: J.C.B.; project supervision: M.K.; project administration handled by A.K.
and R.T.; funding acquisition managed by B.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R440) Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baumann, R. Soft errors in advanced computer systems. IEEE Des. Test Comput. 2005, 22, 258–266. [CrossRef]
2. International Technology Roadmap for Semiconductors. 2008. Available online: http://www.itrs.net/Links/2008ITRS/Home200

8.html (accessed on 14 August 2008).
3. Ko, Y. Characterizing System-Level Masking Effects against Soft Errors. Electronics 2021, 10, 2286. [CrossRef]
4. Vijay, M.; Mittal, R. Algorithm-based fault tolerance: A review. Microprocess. Microsyst. 1997, 21, 151–161. [CrossRef]
5. Reddy, L.N.; Banerjee, P. Algorithm-based fault detection for signal processing applications. IEEE Trans. Comput. 1990, 39, 1304–1308.

[CrossRef]
6. Koren, I.; Su, S. Reliability Analysis of N-Modular Redundancy Systems with Intermittent and Permanent Faults. IEEE Trans.

Comput. 1979, C-28, 514–520. [CrossRef]
7. Shim, B.; Shanbhag, N.R. Energy-efficient soft error-tolerant digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI)

Syst. 2006, 14, 336–348. [CrossRef]
8. Jou, J.Y.; Abraham, J.A. Fault-tolerant FFT networks. IEEE Trans. Comput. 1988, 37, 548–561. [CrossRef]
9. Wang, S.-J.; Jha, N.K. Algorithm-based fault tolerance for FFT networks. IEEE Trans. Comput. 1994, 43, 849–854. [CrossRef]
10. Saravanan, M.; Parthasarathy, E. Impact of Pocket Layer on Linearity and Analog/RF Performance of InAs-GaSb Vertical Tunnel

Field-Effect Transistor. J. Electron. Mater. 2023, 52, 2772–2779. [CrossRef]
11. Saravanan, M.; Parthasarathy, E. A Review of III-V Tunnel Field Effect Transistors for Future Ultra Low Power Digital/Analog

Applications. Microelectron. J. 2021, 114, 105102. [CrossRef]
12. Joshi, S.M. FFT Architectures: A Review. Int. J. Comput. Appl. 2015, 116, 33–36.
13. Tang, S.-N.; Jan, F.-C.; Cheng, H.-W.; Lin, C.-K.; Wu, G.-Z. Multimode Memory-Based FFT Processor for Wireless Display FD-OCT

Medical Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3394–3406. [CrossRef]
14. Stüber, G.L.; Barry, J.R.; McLaughlin, S.W.; Li, Y.; Ingram, M.A.; Pratt, T.G. Broadband MIMO-OFDM wireless communications.

Proc. IEEE 2004, 92, 271–294. [CrossRef]
15. Ayinala, M.; Brown, M.; Parhi, K.K. Pipelined parallel FFT architectures via folding transformation. IEEE Trans. VLSI Syst. 2012,

20, 1068–1081. [CrossRef]
16. Gao, Z.; Reviriego, P.; Pan, W.; Xu, Z.; Zhao, M.; Wang, J.; Maestro, J.A. Fault tolerant parallel filters based on error correction

codes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 384–387. [CrossRef]
17. Gao, Z.; Reviriego, P.; Xu, Z.; Su, X.; Zhao, M.; Wang, J.; Maestro, J.A. Fault Tolerant Parallel FFTs Using Error Correction Codes

and Parseval Checks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 769–773. [CrossRef]
18. Xie, Y.; Yang, C.; Mao, C.-A.; Chen, H.; Xie, Y.-Z. A novel low-overhead fault tolerant parallel-pipelined FFT design. In Proceedings

of the 2017 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Cambridge,
UK, 23–25 October 2017; pp. 1–4. [CrossRef]

19. Liang, X.; Chen, J.; Tao, D.; Li, S.; Wu, P.; Li, H.; Ouyang, K.; Liu, Y.; Song, F.; Chen, Z. Correcting soft errors online in fast fourier
transform. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(SC ‘17), Denver, CO, USA, 12–17 November 2017; Association for Computing Machinery: New York, NY, USA, 2017; Article 30;
pp. 1–12. [CrossRef]

20. González-Toral, R.; Reviriego, P.; Maestro, J.A.; Gao, Z. A Scheme to Design Concurrent Error Detection Techniques for the Fast
Fourier Transform Implemented in SRAM-Based FPGAs. IEEE Trans. Comput. 2018, 67, 1039–1045. [CrossRef]

21. Mao, C.-A.; Xie, Y.; Xie, Y.; Chen, H.; Shi, H. An Automated Fault Injection Platform for Fault Tolerant FFT Implemented in
SRAM-Based FPGA. In Proceedings of the 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, VA, USA,
4–7 September 2018; pp. 192–196. [CrossRef]

https://doi.org/10.1109/MDT.2005.69
http://www.itrs.net/Links/2008ITRS/Home2008.html
http://www.itrs.net/Links/2008ITRS/Home2008.html
https://doi.org/10.3390/electronics10182286
https://doi.org/10.1016/S0141-9331(97)00029-X
https://doi.org/10.1109/12.59860
https://doi.org/10.1109/TC.1979.1675397
https://doi.org/10.1109/TVLSI.2006.874359
https://doi.org/10.1109/12.4606
https://doi.org/10.1109/12.293265
https://doi.org/10.1007/s11664-023-10239-7
https://doi.org/10.1016/j.mejo.2021.105102
https://doi.org/10.1109/TCSI.2014.2327315
https://doi.org/10.1109/JPROC.2003.821912
https://doi.org/10.1109/TVLSI.2011.2147338
https://doi.org/10.1109/TVLSI.2014.2308322
https://doi.org/10.1109/TVLSI.2015.2408621
https://doi.org/10.1109/DFT.2017.8244461
https://doi.org/10.1145/3126908.3126915
https://doi.org/10.1109/TC.2018.2792445
https://doi.org/10.1109/SOCC.2018.8618524

Processes 2023, 11, 2389 16 of 16

22. Wei, X.; Xie, Y.Z.; Xie, Y.; Chen, H. Dynamic partial reconfiguration scheme for fault-tolerant FFT processor based on FPGA. Inst.
Eng. Technol. J. 2019, 2019, 7424–7427. [CrossRef]

23. Rajasekhar, T.; Ram, M.S.S. Low area high-speed LC-CSLA-FFT architecture for radix-2 decimation in frequency algorithm. J. Adv.
Res. Dyn. Control Syst. 2018, 10, 811–826.

24. Rajasekhar, T.; Ram, M.S.S. Low power VLSI implementation of real fast Fourier transform with DRAM-VM-CLA. Microprocess.
Microsyst. 2019, 69, 92–100.

25. Kumar, A.; Kumar, A.; Devrari, A. Hardware Chip Performance Analysis of Different FFT Architecture. Int. J. Electron. 2020,
108, 1124–1140. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/joe.2019.0353
https://doi.org/10.1080/00207217.2020.1819441

	Introduction
	Literature Survey
	Problem Statement
	RFFT Architectures
	Dual RAM-Based RFFT Architecture
	Single RAM-Based RFFT Architecture

	Proposed Memory-Based Protection Techniques for Parallel RFFTs
	Using Error Correction Codes (ECCs)
	Using Parity Sum of Squares (SOSs)
	Using Parity-SOS-ECC

	Experimental Results and Discussion
	Conclusions
	References

