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Abstract: A new fault location method based on the three-terminal travelling wave method is
proposed for the fault location problem of multi-branch overhead line–cable transmission lines.
Firstly, the process of fault travelling wave propagation in overhead transmission lines and the
phenomenon of refraction are analysed, and an improved phase-mode transformation is introduced
to decouple the electromagnetic coupling and perform fault phase selection. Secondly, the Pearson
correlation coefficient is introduced to compare the similarity of the current travelling waveforms at
different measurement points in order to implement fault segmentation. To solve the problems of
the complexity of the fault travelling wave propagation process and the difficulty of identifying the
travelling wavehead, the Hilbert–Huang transform is used to extract the fault signal characteristics,
and the travelling wave arrival moment is accurately calculated by the sampling error correction
method to determine the fault location. Finally, the accuracy and stability of the method are verified
via a simulation test on the MATLAB/Simulink platform. The results show that the proposed
positioning method combining the three-terminal travelling wave method with HHT and sampling
error correction can locate the fault location more accurately, and it has good potential for application
in the engineering field. It provides a new technical means for fault location in overhead transmission
lines, which is expected to become one of the most important technologies in the future power system.

Keywords: fault location; three-terminal travelling wave method; fault zone determination; Hilbert
yellow transformation; sampling error correction

1. Introduction

More and more hybrid overhead lines are appearing today. Such hybrid lines can
combine the advantages of overhead lines and cable lines, e.g., certain long-distance
transmission lines, which can take the form of hybrid lines to reduce the overall cost
of using pure cable lines. On the other hand, the hybrid line is more flexible and can
be used according to the specific situation. However, hybrid lines are more difficult to
manage and have a relatively high failure rate due to their complex structure. At the same
time, the hybrid line has the characteristics of both cable lines and overhead lines, and
troubleshooting is more difficult. The problem of reducing the fault location error of hybrid
overhead lines and improving the operational reliability of hybrid lines has been the focus
of scholars’ attention.

After decades of research, development, and application, it is apparent that the com-
monly used transmission line fault methods are the impedance ranging method, the fault
analysis method, the intrinsic frequency method, and the travelling wave ranging method.
Among them, impedance ranging is based on Ohm’s law; it calculates fault impedance
from voltage and current signals to determine the fault location. It is widely used because
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of its low cost and the fact that it is not limited by communication conditions [1]. However,
the transmission lines in the impedance ranging method are mostly equated using the cen-
tralised parameter model, ignoring their capacitive parameters, and when the transmission
lines reach a certain length, the distribution effect makes the voltage and current along the
transmission lines vary more obviously in the form of hyperbolic curves, which is difficult
to ignore. Therefore, the fault location study of long-distance transmission lines that ignore
their capacitive effects will significantly reduce measurement accuracy, which will lead to
large errors in actual engineering applications [2]. Among the fault analysis methods, there
are the single-end fault analysis method and the double-end fault analysis method, but
the double-end fault analysis method has a data synchronisation problem. Some authors
in the literature [3] have proposed an algorithm that combines parameter detection with
double-end fault ranging, which overcomes the asynchronous problem of double-end mea-
surement data in the traditional ranging method by calculating the non-synchronous angle;
this algorithm is simple, requires minimal calculation, is unaffected by transition resistance,
and has a wide range of applications. Related publications in the literature have [4] used
the iterative search method for fault location based on the distributed parameter model.
This method does not require the data synchronisation of the measurement system at
both ends and can still maintain good distance accuracy at a lower sampling frequency.
However, the fault line parameters are susceptible to environmental temperature changes,
skin effect, and other factors, which will directly affect the distance measurement results of
the fault analysis method. Therefore, it is most reasonable to use real-time line parameters
for distance calculation, but in practical engineering applications, off-line data are mostly
used for calculation, which makes the positioning error increase. Among the aforemen-
tioned methods, the inherent frequency method is also widely used. When faults occur
in different lines, the fault travelling waves can be decomposed into different continuous
spectra due to the differences in their travelling wave propagation paths, and the inherent
frequency method is used to locate faults by studying the characteristics of the fault travel-
ling wave spectrum and using the relationship between the frequency components in the
travelling wave and the fault distance [5]. In the literature [6], some authors have proposed
determining the fault location using the inherent frequency of the travelling wave and
simulating and verifying it for conventional transmission lines. However, this method is
only applicable to cases where the line protection device is tripped after a fault occurs, and
the application is small. In the literature [7], it has also been found that a travelling wave
spectrum can be influenced by the equivalent impedance of the line terminals. The authors
extracted the main frequency of the fault travelling wave, determined the travelling wave
velocity at this frequency, and combined it with information such as the fault reflection
angle for fault location. Some authors in the literature [8] have used variational modal
decomposition to identify and obtain the eigenfrequency, which simulates and analyses
the T-shaped transmission line, proving that the method has high-range accuracy, that it is
highly adaptable, and that it is less affected by confusion. Some authors in the literature [9]
also propose the use of the atomic decomposition algorithm to identify the eigenfrequency
after a rough analysis of the main frequency by FIR filter. Others [10] have used the Prony
algorithm with high fitting accuracy to extract the eigenfrequency; it has been verified
via simulation that this method locates more efficiently than the fast Fourier transform
method. However, the harmonics and noise generated during the operation of the system,
as well as the folded reflection phenomenon generated during the propagation of the
travelling wave, will affect the identification of the intrinsic frequency and thus the ranging
accuracy. The travelling wave ranging method is used to obtain the time difference between
different refracted travelling waves arriving at the measurement point by analysing the
complex folded reflection phenomenon generated by the wave impedance discontinuity
points encountered during the transmission of the faulty travelling wave to achieve fault
location [11]. The single-ended and double-ended travelling wave methods both need
to calculate the travelling wave speed by substituting it into the ranging equation, while
the travelling wave speed is prone to changes in line parameters, the environment, and
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other factors, which brings certain errors to the fault location. The authors of [12] proposed
the use of this end, the opposite end, and the line adjacent to the end of the three points
of the three-end travelling wave method; this method is not affected by wave speed and
can eliminate the line arc sag caused by the distance measurement error and distance
measurement results. Compared to the single-ended travelling wave method, the double-
ended travelling wave method is more accurate and reliable. In [13], the three-terminal
travelling wave method was applied to a T-shaped line, and the wavelet transform and
mode extremes were used to identify the fault travelling wavehead, and the simulation
results verified that this method is still applicable in the fault line with branches and that
it has high distance measurement accuracy. In [14], the three-terminal travelling wave
method was applied to build a simulation model after the Ha-Zheng ±800 kV bipolar
EHV DC transmission project, and it was verified through extensive simulations that this
method is not affected by the fault type, thus further indicating that the three-terminal
travelling wave method is robust and highly applicable. Compared with the single-ended
and double-ended travelling wave methods, the three-terminal travelling wave method
can eliminate the influence of travelling wave speed and line arc sag on ranging accu-
racy by adding more measurement points, and it is applicable to various fault types with
higher accuracy.

The Pearson correlation coefficient, which is a measure of waveform similarity, is used
to determine the fault segment based on the three-terminal travelling wave method and
the characteristics of large differences in the current travelling waveforms on both sides
of the fault point. The Hilbert–Huang Transform (HHT) is used to extract the eigenvalues
of the fault signal. The complex multi-component signal is adaptively decomposed from
high to low frequencies by HHT, and the instantaneous frequencies and instantaneous
amplitudes of each component are derived to obtain the time-frequency distribution of the
original signal, and the initial travelling wave arrival time is further corrected by using the
sampling error correction method to improve the accuracy.

2. Transmission Line Travelling Wave Transmission Characteristics and Travelling
Wave Distance Measuring Method
2.1. Travelling Wave Propagation Process in Overhead Lines—Cable Hybrid Transmission Lines

Figure 1 shows a folded reflection diagram of the fault travelling wave after an earthed
short circuit in the overhead line–cable hybrid line.
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Figure 1. Fault line refraction reflection of overhead line–cable hybrid transmission line. Figure 1. Fault line refraction reflection of overhead line–cable hybrid transmission line.

In a hybrid overhead contact line, a fault travelling wave will propagate through the
line when a fault occurs. A fault travelling wave is a special electromagnetic wave caused
by sudden changes in voltage and current, and it usually has a high frequency component.
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Fault travelling waves propagate in the line along the transmission line characteristics
of the conductor and also reflect and refract between the overhead line and the cable.
In a complex overhead line–cable hybrid line, the propagation path and transmission
characteristics of the fault travelling wave will vary depending on various factors, such as
line topology, conductor diameter, distance, and cable characteristics. Typically, the fault
travelling wave will propagate along the vertical distance between the adjacent wires of
the line, and its speed will depend on factors such as the transmission characteristics of the
line and the equivalent inductance of the cable. During transmission, the amplitude of the
fault travelling wave decays, and the rate of decay depends on the resistance of the line
and the resistance and conductance of the cable.

In hybrid overhead lines, the complexity of the propagation path and the transmission
characteristics of the fault travelling waves make accurate fault diagnosis difficult.

2.2. Phase-Mode Transformation of Three-Phase Transmission Lines

In the actual operation of power systems, the use of three-phase transmission lines
causes the electromagnetic coupling phenomenon between the phase and ground lines,
which needs to be decoupled and analysed before using the travelling wave ranging
method.

In a three-phase lossless commutated line, the three-phase voltages and currents, as a
function of position x and time t, are given by:

− ∂iA
∂x = (C0 + 2Cm)

∂uA
∂t − Cm

∂uB
∂t − Cm

∂uC
∂t

− ∂iB
∂x = −Cm

∂uA
∂t + (C0 + 2Cm)

∂uB
∂t − Cm

∂uC
∂t

− ∂iC
∂x = −Cm

∂uA
∂t − Cm

∂uB
∂t + (C0 + 2Cm)

∂uC
∂t

(1)


− ∂uA

∂x = Ls
∂iA
∂t + Lm

∂iB
∂t + Lm

∂iC
∂t

− ∂uB
∂x = Lm

∂iA
∂t + Ls

∂iB
∂t + Lm

∂iC
∂t

− ∂uC
∂x = Lm

∂uA
∂t + Lm

∂uB
∂t + Ls

∂uC
∂t

(2)

where C0 is the capacitance of each phase-to-ground fault; Cm is the capacitance between
phases; Ls is the self-inductance of each phase; Lm is the mutual inductance between phases.
Convert (1) and (2) coefficients into matrix form; then, (3) can be obtained:{

− ∂i
∂x = C ∂u

∂t
− ∂u

∂x = L ∂i
∂t

(3)

capacitance, and inductance matrices, respectively:

C =

C0 + 2Cm −Cm −Cm
−Cm C0 + 2Cm −Cm
−Cm −Cm C0 + 2Cm

 (4)

L =

 Ls Lm Lm
Lm Ls Lm
Lm Lm Ls

 (5)

However, matrices C and L in the above equation contain non-diagonal elements,
which increases the difficulty of the solution process. Therefore, the phase-mode transfor-
mation is used to convert the voltage and current phase components into the corresponding
mode components with the following component transformation relations:{

u = Tuum
i = Tiim

(6)
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The fluctuation equation can be obtained by taking the second derivative for the
position x and time t: {

∂2um
∂x2 = T−1

u LCTu
∂2um
∂t2

∂2im
∂x2 = T−1

u LCTi
∂2im
∂t2

(7)

In Equation (7). {
T−1

u LCTu = Λu
T−1

u LCTi = Λi
(8)

Under the mode space, the non-diagonal elements of the capacitance and induc-
tance coefficient matrices are zero, and the coefficient matrices are exchangeable matrices;
therefore, there is:

CL = LC (9)

Substituting into (8) gives: {
Λu = Λi = Λ

Tu = Ti
(10)

In Equation (10), Tu and Ti can be calculated by the eigenvalues, but their values
are not unique, and the mode component consists of the zero-mode component and the
line-mode component, where the line-mode component consists of the α mode and β mode
components.

The conventional phase-mode transformation equation is as follows:

Tu = Ti =

1 1 1
1 a2 a
1 a a2

 (11)

Its inverse transformation is:

T−1
u = Ti

−1 =
1
3

1 1 1
1 a a2

1 a2 a

 (12)

In the formula, α = ej 2
3 π .

The common phase-mode transformations are the Kellenbühl transform [15] and the
Clark transform [16], but these two phase-mode transformations cannot identify the faulty
phase by a single modulus, which leads to the introduction of an improved phase mode
transform to solve this drawback.

Let the inverse matrix of the modified phase-mode transformation matrix S be

S−1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (13)

If the various fault types need to be distinguished by the α component and the β
component, then there are {

a21 6= a22 6= a23 6= 0
a31 6= a32 6= a33 6= 0

(14)

set up

P = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31
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The inverse is performed to obtain the phase mode matrix S as

S =


a22a33−a23a32

p
a13a32−a12a33

p
a12a23−a13a22

p
a23a31−a21a33

p
a11a33−a13a31

p
a13a21−a11a23

p
a21a32−a22a31

p
a12a31−a11a32

p
a11a22−a12a21

p

 (15)

The analysis shows that, for the modified phase-mode transformation to meet the
requirements, it is necessary that

a11 = a12 = a13
a21 6= a22 6= a23 6= 0
a31 6= a32 6= a33 6= 0

a22a33 − a23a32 = −a21a33 + a23a31 = a21a32 − a22a31

(16)

According to the conditions in Equation (4), the phase-mode transformation matrix can
be constructed to increase electromagnetic coupling and the single modulus for fault phase
selection, and the matrix is not unique; thus, the following phase-mode transformation
matrix is used:

S = 24

8 4 4
8 1 −5
8 −5 1

 (17)

Its inverse matrix expression is given by

S−1 =

1 1 1
2 1 −3
2 −3 1

 (18)

For different phase-mode transformation matrices, the relationship between the cur-
rent component and the mode component is iαβ0 = S−1iabc. Where the three-phase current
component and mode component are both related by the following equation:

i0 = ia + ib + ic
iα = 2ia + ib − 3ic
iβ = 2ia − 3ib + ic

(19)

When a ground fault occurs in phase A, from the boundary conditions, ib = ic = 0,
and this can brought into Equation (19) so that the following can be obtained:

i0 = ia
iα = 2ia
iβ = 2ia

(20)

The above steps can be followed to derive the relationship between the zero-mode
component, α mode component, and β mode component for different fault types.

The line mode components (α mode component and mode component β) obtained by
using this phase-mode transformation matrix are not zero in all kinds of faults, and the fault
type can only be determined by the value of α mode component or β mode component,
and the zero-mode component only appears in the event of a ground short circuit, so it
can easily determine whether ground short circuit occurs. The relationship between the
zero-mode component, α mode component, and β mode component for different fault
types is shown in the Table 1 below.
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Table 1. Boundary conditions and current modulus values for various fault types. In the table, G is
the ground fault.

Failure Type Boundary Conditions α Modal Value β Modulus 0-Mode Component

AG i f b = i f c = 0 2i f a 2i f a i f a

BG i f a = i f c = 0 i f b −3i f b i f b

CG i f a = i f b = 0 −3i f c i f c i f c

ABG i f c = 0 2i f a + i f b 2i f a − 3i f b i f a + i f b

BCG i f a = 0 i f b − 3i f c −3i f b + i f c i f b + i f c

ACG i f b = 0 2i f a − 3i f c 2i f a + i f c i f a + i f c

AB i f c = 0, i f a = −i f b i f a 5i f a 0

BC i f a = 0, i f b = −i f c 4i f b −4i f b 0

AC i f b = 0, i f a = −i f c 5i f a i f a 0

ABC i f a + i f b + i f c = 0 2i f a + i f b − 3i f c 2i f a − 3i f b + i f c 0

Of all the short-circuit faults in the power system, single-phase earth faults are the most
likely to occur; thus, single-phase earth faults are the focus of the analyses and research
presented in this paper.

2.3. Three-Terminal Travelling Wave Method

The distance measuring principle of the travelling wave method mainly includes the
single-ended distance measuring principle and the double-ended distance measuring prin-
ciple [17], where the former calculates the fault distance by measuring the time difference
between the first travelling wave arriving at the end of the line and its reflected wave [18]
and the latter uses the absolute time difference between the arrival of the travelling waves
at both ends of the line to calculate the distance between the fault point and the ends of
the line [19,20]. The single-ended travelling wave method and the double-ended travelling
wave method distance measurement principle must use the preset wave speed rather than
the real-time wave speed of the line to calculate the fault distance; if the two are not the
same, it will bring errors to the distance measurement results. The three-ended travelling
wave method is based on the double-ended travelling wave method and adds additional
measurement points by increasing the number of measurement points to eliminate the
travelling wave speed, making it more difficult to measure the physical quantity. The fault
travelling wave arrives at the measurement ends M, P, and N at tM, tP, and tN , respectively,
and PN is the fault line. A schematic diagram of the three-terminal travelling wave method
is shown in Figure 2.
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Figure 2. Principle diagram of the three-terminal travelling wave method.
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Let the absolute moment of fault occurrence be t0; assuming that the travelling wave
propagation speed on the lines dMP and dPN is vMP ≈ vPN = v, then

(tN − t0)v = dN f
′

(tP − t0)v = dP f
′

(tM − t0)v = dM f
′

dP f
′ + dN f

′ = dPN
′

(21)

where dMP
′ and dPN

′ are the paths through which the fault travels; dP f
′ and dN f

′ are the
physical lengths of between the fault points and measurement point P and measurement
point N, respectively.

If the line tower blocking distance and arc pitch are similar, the path through which
the travelling wave propagates can be considered as the value after increasing the field line
length data by a certain factor ε, that is

(tN − t0)v = εdN f
(tP − t0)v = εdP f
(tM − t0)v = εdM f

εdP f + εdN f = εdPN

(22)

where, dMP and dPN represent the line tower distance and the sum of the field line length,
respectively; dP f and dN f represent the fault point to the measurement point P and mea-
surement point N of the field line length, respectively. After the simplification of the above
formula analysis, the following can be obtained:

(1) When the fault occurs in the MP interval,

dN f =
(tN − tM)dMP

2(tM − tP)
+

L
2

(23)

(2) When the fault occurs in the PN interval,

dN f =
L
2

(
1
2

2tN − tP − tM
tM − tP

+
1
2

)
(24)

Under the known conditions of dMP and dPN , the three-terminal travelling wave
method removes the effect of wave speed, and the expression of dN f only needs to measure
three time parameters. Specifically, when the fault travelling wave reaches the three
points—M, P, N—for the first time, the identification of travelling wavehead first arrival
time is easier and more accurate than the identification of the second time taken to reach the
measurement point after reflection; compared to the single-ended travelling wave method,
the double-ended travelling wave method has a higher measurement accuracy [21]. The
three-terminal travelling wave method is used to calculate the fault distance because, when
the two adjacent sections of the line geographical location and climate conditions are similar,
the travelling waves in the two sections of the line can be regarded as the same wave speed
propagation; without the introduction of travelling wave propagation speed, it is difficult
to measure the physical quantity, and the method in the tower distance and line arc sag is,
to a certain extent, similar to the previous case to eliminate the impact of line arc sag on the
accuracy of distance measurement.

3. Mixed-Line Fault Segment Determination and Fault Signal Feature Extraction

Firstly, the entire hybrid transmission line is replaced into multiple cell segments, and
the fault current travelling waves are collected at the boundary points of each segment,
and the Pearson correlation coefficients of the current travelling waves of each segment
are compared to determine the fault occurrence segment and improve the accuracy of
fault location.
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The technical difficulty of using the travelling wave ranging method for fault location
lies in extracting the characteristics of the fault signal, i.e., determining the arrival time of
the fault travelling wavehead, and the commonly used wavehead identification methods
are Fourier transform, wavelet transform, mathematical morphology method, and Hilbert–
Huang transform. The Fourier transform method is able to detect the sudden change point
by extracting the mode maximum value of the travelling wavehead, and the rate of change
in the travelling wave signal tends to be zero according to this feature after the transfor-
mation, but the Fourier transform method has certain limitations for non-smooth signals.
Consequently, some scholars have proposed the use of the wavelet transform method to
identify waveheads. The wavelet transform method has the function of time-frequency
localisation, but it can only perform mechanical decomposition without adaptivity. Re-
garding the use of the mathematical morphology method to identify waveheads, it is more
prone to its own inherent structure, and the fault travelling wave propagation path in the
attenuation and other phenomena render the corresponding algorithm inapplicable. The
Hilbert–Huang transform method used in this paper can adaptively decompose complex
multi-component signals from high to low frequencies and obtain the instantaneous fre-
quency and amplitude of each component to obtain the time-frequency distribution of the
original signal [22].

3.1. Pearson Correlation Coefficient

The Pearson correlation coefficient is commonly used to measure the correlation
between two variables X and Y [23,24]; the calculation is used to measure the similarity of
the current travelling waveform on both sides of the fault point.

The ratio of the covariance and standard deviation of the two variables X and Y is the
Pearson correlation coefficient between the two variables ρ(X,Y), as shown in the following
formula:

ρ(X,Y) =
cov(X, Y)

σxσy
=

E[(X− µy]
σxσy

=

n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)

2 n
∑

i=1
(Yi −Y)2

(25)

From Equation (11), it can be seen that when the two waveforms are more similar in X
and Y, the Pearson correlation coefficient of ρ(X,Y) is approximately equal to 1; when the
two waveforms are differ more, the Pearson correlation coefficient of ρ(X,Y) is not equal
to one.

The Pearson correlation coefficient is determined by both the covariance and standard
deviation values of the two variables. Although the covariance value alone can also
measure the similarity of waveforms, the covariance is susceptible to the influence of the
magnitude [25]; combining the covariance and standard deviation to judge the similarity
of waveforms yields higher accuracy and correctness.

3.2. Zone Detection

When a fault occurs, the measured fault current travelling wave signals at points M,
P, and N are i1, i2, and i3 respectively, and three Pearson correlation coefficients can be
obtained by combining these three fault current signals in two groups. When the fault
occurs in the MP section of the overhead line, the measuring points P and N are located on
the same side of the fault point, and their current waveforms are very similar, while the
measuring points P, N, and M are located on both sides of the fault point, and their current
waveforms are very different.
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3.3. Hilbert–Huang Transformations Basic Theory

(1) Instantaneous frequency
In non-linear signal analysis, transient characteristics, including transient amplitude,

transient frequency, and transient phase, are important [26].
Let X(t) be an arbitrary time series signal which is transformed via the Hilbert–Huang

method to Y(t); then, the relationship is as follows:

Y(t) =
1
π

+∞∫
−∞

X(t)
t− τ

dτ (26)

X(t) =
1
π

+∞∫
−∞

Y(t)
t− τ

dτ (27)

In the above equations, X(t) and Y(t) are complex conjugate pairs, and both have
time series correlation, meaning that the analytic signal is as follows:

Z(t) = X(t) + jY(t) = A(t)ejθ(t)

A(t) =
√

X2(t) + Y2(t)
θ(t) = arctan( Y(t)

X(t) )

(28)

where A(t) is the instantaneous frequency of the signal, and θ(t) is the frequency phase of
the signal. Another instantaneous parameter can be obtained from θ(t):

f (t) =
1

2π

dθ(t)
dt

(29)

(2) Intrinsic modal function
In practice, the signal often contains more than one oscillation mode. Through the

above analysis, it can not be decomposed into the full frequency of the original signal; the
signal should first be decomposed into a number of intrinsic mode functions (Intrinsic
Mode Function, referred to as IMF).

The IMF has the following conditions:

1© The number of zeros in the original signal equals or differs by one from the number
of extreme points, and the decomposed IMF has an extreme value greater than zero
and a minimum value less than zero.

2© The upper and lower envelopes are zero, and the upper and lower envelopes are
local maxima and minima, respectively. This requirement ensures the symmetry of
the IMF and prevents large fluctuations in the instantaneous frequency due to the
asymmetry of the signal, giving the required instantaneous frequency a practical
physical meaning.

(3) Empirical modal decomposition
The most important part of HHT is Empirical Mode Decomposition (EMD), which

separates multiple IMFs from a non-stationary non-linear complex signal known as the
screening process because most signals cannot satisfy the IMF conditions at any time, so
the signal must first be screened; then the IMFs are subjected to the Hilbert transform. This
process means that the IMF components can be linear or non-linear [27].
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The EMD decomposition steps are as follows:

1© Calculate all polar values of the original signal X(t) and fit the upper and lower
envelopes.

2© Calculate the average of the upper and lower envelopes e1 and the original signal
X(t) minus e1 to obtain the new sequence h1:

h1 = X(t)− e1 (30)

If h1 satisfies the IMF condition, then h1 is the first IMF component of the original
signal, which is noted as c1 = h1.

3© If h1 does not satisfy the condition, repeat steps (1) and (2) to obtain h1 as the original
signal and the up and down packets of h1.

The complex line is recorded as e11; calculate h11 = h1 − e11 and determine whether
h11 meets the conditions of IMF. If it does, record h11 as c1; if it does not, continually repeat
steps (1) and (2) until h1k meets the conditions and record h1k as c1.

4© Separate the first IMF component c1 from:

r1 = X(t)− c1 (31)

5© Repeat the above steps for c1 as the original signal until a component satisfying the
IMF condition is obtained as c2. Repeat this process to obtain n IMF components of
the original signal X(t). 

r1 − c2 = r2
. . .

rn−1 − cn = rn

(32)

6© The loop termination condition is that the remaining quantity rn is a monotonic
function, i.e., there are no longer any extreme and extreme small values from which
the IMF component can be extracted. The final decomposition takes the form of

X(t) =
n

∑
i=1

ci(t) + rn (33)

where ci is the IMF component of the original signal X(t), and rn is the residual.

The EMD decomposition tree of the original signal X(t) is shown in Figure 3:
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Figure 3. EMD tree.

The first IMF component of the original signal is the highest frequency component
and contains important information about the fault location, so the first IMF component of
the original travelling wave signal is used for fault location.

The EMD decomposition flow chart is as follows (Figure 4).
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3.4. Hilbert’s Boundary Spectrum and Energy Spectrum

As introduced in the previous section, the original signal X(t) is decomposed to obtain
the IMF components, and each IMF component is subjected to Hilbert Spectrum Analysis
(HSA) using the following equation:

ĉi(t) =
1
π

∫ +∞

−∞

ci(t)
t− τ

(34)
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The resolution signal is

zi(t) = ci(t) + jĉi(t) = Aiejϕit (35)

Among them, {
Ai(t) =

√
ci

2(t) + ĉi
2(t)

ϕi(t) = arctan[ ĉi(t)
ci(t)

]
(36)

The instantaneous frequencies of each IMF component are

ωi(t) =
dϕi(t)

dt
(37)

The original signal s(t) is expressed as

s(t) = Re[
n

∑
i=1

Aiejϕit] = Re[
n

∑
i=1

Aiej
∫

ωi(t)dt] (38)

The Hilbert spectrum of the signal is

H(ω, t) = Re[
n

∑
i=1

Aiej
∫

ωi(t)dt] (39)

Integrating H(ω, t) over time, the Hilbert’s boundary spectrum is obtained as follows:

h(ω, t) =
T∫

0

H(ω, t)dt (40)

Furthermore, Hilbert’s energy spectrum can be obtained E(ω):

E(ω) =

T∫
0

H2(ω, t)dt (41)

when a short-circuit fault occurs in the power system, the fault point generates a high-
frequency fault travelling wave that contains rich fault information, and this signal is a
sudden change signal with singularity. Therefore, the identification and analysis of the
fault travelling wavehead becomes the key to fault location.

Due to the short duration of the fault transient process of the power system, the
transmission process of the fault travelling wave is accompanied by folding reflection and
attenuation phenomena, and the propagation characteristics and attenuation characteristics
of different modes and frequency components are different, which makes the identification
and detection of the travelling wavehead more difficult [28]. Therefore, the EMD decompo-
sition of the faulty travelling wave signal is selected to extract each IMF component, the
Hilbert transform of the IMF1 component is used to obtain its instantaneous spectrum, and
the first high-frequency mutation point of the spectrum is used to determine the arrival
time of the transient travelling wavehead to realise the fault location via the travelling
wave ranging method [29].

3.5. Sampling Error Correction

An important factor affecting the accuracy of fault location is the size of the sampling
frequency of the travelling waveform. The higher the sampling frequency, the higher the
accuracy of the travelling waveform arrival time identification; however, the more complex
the high-frequency noise components, the greater the impact on the travelling waveform
identification. As the sampling frequency increases, the larger the amount of data acquired
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by the travelling waveform ranging equipment, the longer the processing time, which is
not conducive to the rapid acquisition of fault distance [30].

The sampling error correction method is used to further reduce the error without in-
creasing the sampling frequency. The wavelength diagram of the local travelling waveform
is shown in Figure 5, and the sampling error correction steps are as follows.
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Figure 5. Local travelling wave waveform. (a) Faulty travelling wave local diagram. (b) Local
waveform of the IMF1 component. (c) Local derivative diagram of the fault travelling wave.

(1) To determine the approximate time of arrival of the fault travelling wavehead. Let
the fault current travelling waveform be as it is shown in Figure 5a. We assume that the
arrival time of the true wavehead is located at point P and that a and b are the adjacent
sampling points on both side of the true wavehead. After HHT decomposition, it can be
roughly determined that the arrival time of the travelling wavehead is located at point
a or b. Figure 5b can be obtained by locally enlarging the IMF1 component after EMD
decomposition. From the above analysis, it can be seen that the true implementation of
the wavehead point P is the mutation point, a localisation derivative absolute value of
the largest point; with increasing closeness to point P, the derivative value becomes larger.
When farther away from point P, the derivative value is smaller. After using the derivative
to obtain Figure 5c, consequently, A, B should be the points a, b corresponding to the
absolute value of the derivative. Set point a to the wavehead point P distance for 1− x.
The distance from point b to point P for x, 1 is the unit sampling frequency time interval,
which, according to Figure 5c, can be obtained when there is a point b before the existence
of a smaller value of the derivative of the point a. This means that the true-implementation
wavehead, having been calculated from the point b sampling time in advance, is located
between points a and b (slightly closer to point b).

(2) The calculation of the actual wavehead—the previous step in the analysis can be
derived from the moment of arrival of the true wavehead for the derivative of the absolute
maximum value of the point, and in the analysis of the discrete sampling signal, it is
generally used to approximate the derivative of the shape of the difference; therefore, the
closer the true wavehead is to the travelling waveform, the greater the value of difference,
that is, the larger the derivative; similarly, the farther away from the true wavehead, the
smaller the value of the derivative. There is a linear relationship between the value of the
derivative at any point and the distance from the wavehead.

B
A

=
1− x

x
(42)
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Namely:

x =
A

A + B
(43)

Assuming that the measured point b is equal to the number of sampling points N,
the actual position of the travelling wavehead should be equal to the number of sampling
points according to the above formula N − x. By substituting the sampling-error-corrected
arrival position of the travelling wavehead into the range equation in the previous section,
the range error can be reduced.

4. Multi-Branch Overhead Line–Cable Hybrid Line Fault Location Method

Fault location flowchart of a hybrid overhead power line using the travelling wave
ranging principle is in Figure 6 below.
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Step 1: To obtain current information at each node, appropriate sensing devices, such
as inductive sensors, need to be installed in the power system, and the data should be
recorded and analysed by connecting to a data acquisition system. This can be achieved
using a large number of high-accuracy sensors and data acquisition systems, and the data
can be processed and analysed to improve the quality and accuracy of the results.

Step 2: The improved phase-locking technique can effectively decouple the original
fault current signal to eliminate problems such as electromagnetic coupling, and the im-
proved phase-mode transformation is usually used to achieve signal decoupling. The phase
relationship and time-shift relationship of the signal obtained in step 1 are constrained to
a phase-mode reference waveform to achieve signal decoupling and improve calculation
accuracy and precision.
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Step 3: The Hilbert–Huang transform is used to decompose and analyse the phase-
mode transformed signal to determine the peak time of the transient travelling wave. The
signal obtained after the phase-mode transformation in step 2 is first decomposed into
several intrinsic mode functions (IMF) via Empirical Mode Decomposition (EMD), which
is called the screening process because most of the signals cannot satisfy the IMF condition
at any time. Since most signals cannot satisfy the IMF condition at any time, the signals
must first be screened, and then Hilbert Spectrum Analysis (HSA) is performed for each
IMF component. By analysing the spectrum and finding the first high-frequency mutation
point, the peak time of the transient travelling wave can be determined to improve the
accuracy and reliability of the results.

Step 4: The sampling error correction method can improve the accuracy and precision
of the results; the error correction method mentioned in 2–6 above is used in the true
implementation of the wavehead arrival time for the derivative of the absolute maximum
value of the point, so the high-frequency mutation points obtained in step 3 will use the
difference form to approximate the derivative to obtain a more accurate wavehead time.

Step 5: The results obtained are recorded and organised, and an error analysis is
performed using uncertainty analysis methods to evaluate the degree of influence of
various errors on the accuracy and reliability of the results to ensure the reliability and
accuracy of the results. In this step, the results are calculated and compared using other
algorithms and the HHT used above, and then the errors are calculated under different
transition resistances to verify the correctness of the algorithm.

5. Overhead Line–Cable Hybrid Line Fault Location Simulation Analysis
5.1. Simulation Model

We used the MATLAB power system toolbox to build a multi-branch overhead line–
cable hybrid line with a total length of 70 km, branch I length of 40 km, voltage level of
110 kV, and 50 Hz dual power supply system and performed sampling for a total duration
of 0.05 s. After 0.016 s, a single-phase ground fault occurred, and the transition resistance
was 100 Ω; the overhead line length was 50 km, and the cable line length was 20 km. The
branch I overhead line length was 30 km, and branch I cable line length is 10 km, as shown
in Figure 7.
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In total, six fault points were randomly selected: overhead line section—6 km, 34 km;
cable section—54 km, 63 km; branch I overhead line—6 km; branch I cable section—33 km.
After carrying out the single-phase ground-short-circuit situation simulation analysis, the
final fault location was determined. The distance measurement error is

ε% =
fault location/km − fault ranging/km

total line length/km
(44)

5.2. Fault Zone Determination

The Pearson correlation coefficient is used to compare the zero-mode components of
the current travelling waves collected at points J, K, and L to determine the fault zone, and
the sampling frequency (1 MHz) is consistent with the subsequent fault location.

Taking the example of a single-phase earth short circuit on a 6 km overhead line, the
fault waveforms collected at points J, K, and L are in Figure 8 below.
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Calculate the Pearson correlation coefficients between the measurement points J and
K, J and L, and K and L, respectively.

From the below Table 2, the ρ(J, K) and ρ(J, L) values are close to −1, indicating that
the point J and point L, K waveforms differ; the ρ(K, L) value is close to 1, indicating that
the point K, L waveform is more similar to the judgement of the fault that occurred in the
overhead line JK section.

Table 2. Pearson correlation coefficients between J and K, J and L, and K and L. (Fault on JK section
of overhead line).

ρ(J,K) ρ(J,L) ρ(K,L)

Pearson
correlation
coefficient

−0.9295 −0.9154 0.9076

Following the same steps as above, the remaining fault points (11 km, 34 km, 54 km,
63 km, branch I—6 km, branch I—33 km) were determined by the fault section, and the
relative Pearson coefficients and the fault section determination results for different fault
locations are shown in Table 3.

Table 3. Pearson correlation coefficients between J and K, J and L, and K and L.

Fault
Location

/km
ρ(J,K) ρ(J,L) ρ(K,L) Fault

Section

34 −0.9102 −0.9042 0.9628 Overhead line JK
section

54 0.9882 −0.7493 −0.7621 Cable KL
section

63 0.9819 −0.7458 −0.7573 Cable KL
section

Pearson correlation coefficients between D and E, D and F, and E and F are in
Table 4 below.

Table 4. Pearson correlation coefficients between D and E, D and F, and E and F.

Fault
Location/km ρ(D,E) ρ(D,F) ρ(E,F) Fault

Section

Branch I
6 km 0.1733 −0.2783 0.0261

Overhead line
DE

section
Branch I

33 km 0.9997 −0.2017 −0.2022 Cable EF
section

The simulation analysis shows that it is feasible to use the Pearson correlation coeffi-
cient to compare the similarity of the current travelling waves on both sides of the fault
point for fault zone determination.

5.3. Fault Location Based on Travelling Wave Ranging Method

The three-terminal travelling wave method avoids the identification of the folded
reflection wavehead by increasing the number of measurement points, and the calculation
no longer includes the travelling wave propagation speed parameter, which can eliminate
the influence of line arc sag on the distance measurement accuracy to a certain extent when
the tower distance and arc sag are similar.
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(1) Overhead line fault location
Taking the example of a single-phase earth short circuit on a 6 km overhead line, the

waveform of the zero-mode component of the measuring point JK1 is in Figure 9 below.
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The EMD decomposition of the zero-mode component yields the following waveforms
for each IMF component (Figure 10).
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Figure 10. Point zero-mode components of each IMF component diagram.

The Hilbert transform is applied to the IMF1 component to obtain its local instanta-
neous spectrum as follows (Figure 11).
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Where the local spectra of the IMF1 components at point J is as follow (Figure 12).
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Where the local spectra of the IMF1 components at point K is as follow (Figure 13).
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Analysis of the instantaneous spectrum shows that the first arrival time of the fault
travelling wave at point J is 0.0160283 s, so the first arrival time of the fault travelling wave
at point JK1 is 0.0160833 s, and the first arrival time at point K is 0.0161923. The location
of the fault at 6.19 km can be obtained by calculating Equation 9 of the principle of the
three-terminal line wave method introduced above.

(2) Cable fault location
Considering the occurrence of a single-phase ground fault at 54 km of the cable section,

EMD decomposition of the zero-mode components of K, KL1, and L is carried out, and the
Hilbert transform of each IMF1 component obtained is used to obtain their local transient
spectra, which are shown in Figures 14–16.

Analysis of the instantaneous spectrum shows that the first arrival time of the fault
travelling wave at point K is 0.0160463 s, so the first arrival time of the fault travelling wave
at point KL1 is 0.0160683 s, and the first arrival time at point L is 0.0161803. The location of
the fault at 54.018 km can be obtained by calculating Equation (9) of the principle of the
three-terminal line wave method introduced above.
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Regarding the 11 km, 34 km, and 63 km fault locations, as in the above analysis, the
simulation results of the three-terminal travelling wave method obtained the different fault
ranges and distance measurement error values, which are shown in Table 5.
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Table 5. Simulation results of the three-terminal travelling wave method at different fault locations.

Fault Location Fault Ranging Distance Measurement Error ε%

6 km 6.019 km 0.38%
34 km 34.060 km 0.12%
54 km 54.018 km 0.09%
63 km 64.330 km 1.65%

Branch I 6 km 6 km 0%
Branch I 33 km 32.991 km 0.09%

5.4. Comparative Analysis of Three Travelling Wave Ranging Methods

The results derived from using the single-ended, double-ended, and triple-ended
travelling wave methods to obtain the fault location errors for different fault locations are
shown in Table 6.

Table 6. Simulation results of three travelling wave ranging methods for different fault locations.

Failure Location
/km Failure Distance Measurement/km Distance Measurement Error ε%

Single Ended
Method

Double Ended
Method

Three Terminal
Method

Single Ended
Method

Double Ended
Method

Three Terminal
Method

6 5.587 5.925 6.019 6.88 1.25 0.38
34 34.462 36.581 34.06 13.59 7.59 0.12
54 52.811 54.87 54.018 22.02 1.88 0.09
63 63.453 60.01 64.33 7.19 4.98 1.65

Branch I 6 km 7.626 5.467 6 5.42 1.78 0
Branch I 33 km 34.226 31.12 32.991 12.26 1.88 0.09

To better elucidate that the three-terminal travelling wave method has higher accuracy,
the Table 6 was plotted as a bar graph, as shown in Figure 17.
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As can be seen from Figure 17, the three-terminal travelling wave method has a smaller
measurement error and good range stability compared to the single- and double-ended
travelling wave methods.



Processes 2023, 11, 2381 23 of 29

5.5. Comparison of Simulation Results Based on the Three-Terminal Travelling Wave Method
under Different Analysis Methods

Due to the different sampling frequencies, the detected fault travelling wave consists
of discrete points with different time intervals, and when the fault travelling wavehead is
located between two sampling points, the exact location of the fault travelling wavehead
cannot be obtained accurately. In this section, the sampling error correction method
proposed in Section 4 is simulated and analysed on the basis of the three-terminal travelling
wave method. After HHT of the zero-mode component of the faulty travelling wave (carried
out according to the previous section), the approximate arrival time of the wavehead was
determined, and the local zero-mode component was derived and substituted into the
sampling error correction Formulas (3)–(20) to calculate the fault distance.

In order to verify that the HHT algorithm after sampling error correction has high
accuracy, it was analysed and compared with the wavelet transform method fault location
results; the resulting zero-mode components were subjected to wavelet transform with
the basis function of db5 scale parameter of 3, and the mode value of the singularity was
large enough to be extracted after selecting a suitable threshold, and the wavehead was
determined to reach the measurement point moment, and the fault distance was calculated
by substitution into the three-terminal travelling wave method.

The simulation results of fault location using three different methods based on the
three-terminal travelling wave method using wavelet transform, HHT, and HHT combined
with the sampled error correction at different fault locations are shown in Table 7.

Table 7. Simulation results of the three-terminal travelling wave method at different fault locations
under different analysis methods.

Fault Location/km Fault Ranging/km Distance Measurement Error
ε/%

Distance
Measurement

Algorithm

Wavelet
Transform HHT HHT + Sampling

Error Correction
Wavelet

Transform HHT HHT + Sampling
Error Correction

6 6.818 6.019 6.003 1.636 0.38 0.06
34 34.375 34.06 34.045 0.75 0.12 0.09
54 54.167 54.014 54.016 0.835 0.09 0.08
63 62.5 64.33 62.988 2.5 1.65 0.05

Branch I 6 km 6.276 6 6 0.92 0 0
Branch I 33 km 33.12 32.991 32.005 1.2 0.09 0.05

The 3D bar charts of the error results of the three-band travelling wave method with
different signal extraction methods at different fault locations are shown in Figure 18 below.
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From the above analysis, it can be seen that the range error of the three-terminal
travelling wave method using wavelet transform and HHT for different fault locations
is greater than the range error derived from using the combined method of HHT and
sampling error correction proposed above, and the range error under this method was less
than 1%, which meets engineering requirements.

5.6. Simulation Analysis of Hybrid Overhead Lines Based on the Three-Terminal Travelling Wave
Method for Short Circuits Due to Different Transition Resistances

When faults occur at different locations, the contact objects between the fault point
and the earth are also varied, resulting in different transition resistances, and to verify
that the three-terminal travelling wave method of combined with HHT and sampling
error correction has strong adaptability under different transition resistance conditions, the
simulation analysis in this subsection was carried out according to the above method.

This subsection was a similar location to the one in which a fault occurred in the 6 km
overhead line section in the example used for the different transition resistance short circuit
simulation analysis; the metallic short circuit and transition resistance had values of 50 Ω,
75 Ω, and 100 Ω, respectively. The bus J side, overhead line cable junction point K and bus
L side by different transition resistance short circuit waveform is as follows (Figure 19).
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Figure 19. Waveforms of zero-mode components at points J, JK1, and K for different transition
resistance short circuits. (a) Zero-mode component at point J for different transition resistances.
(b) Zero-mode component at point JK1 for different transition resistances. (c) Zero-mode component
at point K for different transition resistances.

From the above figure, it can be seen that the different transition resistance values only
affect the magnitude of the zero-mode current component and not the trend and location of
the sudden change in the zero-mode current component waveform. Therefore, in the case
of a short circuit across different transition resistances, determining both the fault segment
by using the waveform similarity and the fault location by using the sudden change in the
wavehead of the fault travelling wave are still applicable.

Based on different fault locations via metallic short circuit and the transition resistances
of 50 Ω, 100 Ω, 200 Ω, the fault zone Pearson correlation coefficients can be determined,
and the results are shown in Table 8.

Table 8. Pearson correlation coefficients at points J, K, and L for different transition resistances.

Fault
Location

/km

Transition
Resistance

/Ω
ρ(J,K) ρ(J,L) ρ(K,L) Fault Section

6

Gold property short circuit −0.9589 −0.9269 0.9157
Overhead line

JK segment
50 −0.9365 −0.9221 0.9048
75 −0.9425 −0.9236 0.9024
100 −0.9365 −0.9208 0.9007

34

Gold property short circuit −0.9796 −0.9501 0.9258
Overhead line

JK segment
50 −0.9776 −0.9482 0.9207
75 −0.9756 −0.9456 0.9160
100 −0.9719 −0.9437 0.9074

54

Gold property short circuit 0.9936 −0.9166 −0.9083
Cable

KL segment
50 0.9934 −0.9167 −0.9079
75 0.9932 −0.9168 −0.9176
100 0.9929 −0.9169 −0.9072

63

Gold property short circuit 0.9932 −0.9365 −0.9301
Cable

KL segment
50 0.9727 −0.9366 −0.9266
75 0.9668 −0.9383 −0.9212
100 0.9718 −0.9336 −0.9086

Pearson’s correlation coefficients at points D, E, and F for different transition resis-
tances are in Table 9 below.
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Table 9. Pearson’s correlation coefficients at points D, E, and F for different transition resistances.

Fault
Location

/km

Transition
Resistors

/Ω
ρ(D,E) ρ(D,F) ρ(E,F) Fault Section

Branch I
6 km

Gold property short circuit 0.1784 −0.2713 0.0297
Overhead line
DE segment

50 0.1757 −0.2724 0.0278
75 0.1745 −0.2730 0.0269
100 0.1733 −0.2783 0.0261

Branch I
33 km

Gold property short circuit 0.9998 −0.2057 −0.2062
Overhead line

EF segment
50 0.9998 −0.2033 −0.2039
75 0.9997 −0.2024 −0.2030
100 0.9997 −0.2017 −0.2022

Based on different fault locations via metallic short circuit and transition resistances
of 50 Ω, 100 Ω, 200 Ω, the three-terminal travelling wave ranging method sampling error
correction was used to obtain the fault location ranging results shown in Table 10.

Table 10. Simulation results of the three-terminal travelling wave method for fault location via
different transition resistances short circuits.

Fault Location
/km

Transition Resistors
/Ω

Fault Ranging
/km

Distance
Measurement Error ε

/%

6

Gold property short
circuit 6.008 0.016

50 5.979 0.042
75 6.042 0.085
100 6.003 0.060

34

Gold property short
circuit 33.995 0.010

50 33.995 0.010
75 34.025 0.049
100 34.045 0.090

54

Gold property short
circuit 54.010 0.050

50 53.986 0.068
75 54.015 0.074
100 54.016 0.008

63

Gold property short
circuit 62.993 0.035

50 62.991 0.045
75 62.991 0.045
100 62.988 0.063

Branch I 6 km

Gold property short
circuit 5.423 0.019

50 6.027 0.090
75 6.029 0.096
100 6 0

Branch I 33 km

Gold property short
circuit 34.007 0.033

50 34.017 0.083
75 34.006 0.032
100 32.991 0.090
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As can be seen from the data in Table 10, the proposed algorithm can accurately
determine the fault zone when short-circuited by different transition resistances, and the
determination results are all consistent with the fault zone, and the fault distance error
using the three-terminal travelling wave method is mostly less than 1%, which meets the
distance accuracy requirements.

5.7. Simulation Results Based on the Three-Terminal Travelling Wave Method for Different
Short-Circuit Faults

Two-phase grounded short circuits can cause damage to electrical equipment, system
overvoltage, insulation breakdown, and other hazards. Three-phase short-circuits can
cause high short-circuit currents, excessive forces on electrical equipment, temporary drops
in system voltage, and other hazards. The hazards caused by the two short circuits are
enormous. This subsection simulates the BC two-phase ground fault and the three-phase
fault and calculates the fault distance and the distance error at different fault locations for
the two faults, and the simulation results are shown in Tables 11 and 12.

Table 11. Simulation results of the three-terminal travelling wave method at different fault locations
for BC ground shorts.

Fault Location Fault Ranging Distance Measurement Error ε%

6 km 6.042 km 0.08%
34 km 34.029 km 0.06%
54 km 54.015 km 0.07%
63 km 63.015 km 0.08%

Branch I 6 km 6.02 km 0.07%
Branch I 33 km 33.008 km 0.09%

Table 12. Simulation results of the three-terminal travelling wave method at different fault locations
during a three-phase short circuit.

Fault Location Fault Ranging Distance Measurement Error ε%

6 km 6.008 km 0.02%
34 km 34.019 km 0.04%
54 km 54.005 km 0.03%
63 km 63.008 km 0.04%

Branch I 6 km 6.012 km 0.04%
Branch I 33 km 33.005 km 0.05%

As can be seen from the data in Tables 11 and 12, the proposed algorithm is able to
accurately determine the fault zones when different faults occur, and the results are all
consistent with the zones in which the faults occur.

6. Conclusions

By collecting the fault current travelling wave at each point on the transmission line
and using the improved phase mode transform, Pearson correlation coefficients, and HHT
for decoupling and fault section judgement, the fault point was finally located via using the
three-terminal travelling wave method and sampling error correction. Experiments were
performed using MATLAB (ver. R2021a) simulation software to verify the universality of
the method.

We used Pearson’s correlation coefficient to measure waveform similarity, which
reduces the difficulty of fault location for hybrid lines to single overhead lines or cable
lines. The HHT was used to analyse the zero-mode component of the fault and correct the
sampling error, and the fault section determination was combined with the three-terminal
travelling wave method to improve the ranging accuracy.
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The model of the dual power supply network was established in MATLAB/Simulink,
and six fault points were selected for the simulation experiments. The influence of different
sampling frequencies on the range accuracy was analysed, and it was proven that the
range error decreases as the sampling frequency increases. By comparing the single-ended,
double-ended, and triple-ended travelling wave methods, it was proven that the triple-
ended travelling wave method has the advantage of higher ranging accuracy.

It was verified that the locating results of HHT combined with the sampling error
method are better than the locating results of single wavelet transform and HHT. Simulation
experiments were carried out by selecting different transition resistances and various short-
circuit faults, and the results show that the method can accurately determine and locate
faults under various fault conditions, and the locating error is less than 1%, which meets
the engineering requirements.
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