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Abstract: Bolted joints are widely used in aeroengine rotor systems to connect multiple components
into an integrated structure and provide sufficient stiffness. The mechanical properties of a bolted
joint have a significant effect on rotor dynamics. For modern aeroengine designs, the blade-tip
clearance is gradually reduced to improve efficiency, which may lead to rubbing damage and affect
safe operation. The mechanical properties of a bolted joint change significantly during the blade–
casing rubbing process and influence the dynamic properties of the rotor system. Based on the finite
element (FE) modeling method, a 15-node bolted joint rotor system model is established in this paper,
in which the bolted joint is represented by a 2-node joint element, and the blade–casing rubbing force
is considered. The Newmark method is used to solve the motion equations. The dynamic model is
validated by comparing the frequency response characteristics for different numbers of blades with
the results provided in other published studies. Based on the established model, the effects of the
rotational speed, number of blades, and rubbing stiffness on the dynamic responses, normal rubbing
forces, and bending stiffness of the bolted joint are evaluated by numerical simulation. The results
show that the response amplitude and bending stiffness of the bolted joint change significantly under
blade–casing rubbing faults, and the mean value of the vibration response deviates significantly from
0 as the number of blades increases. Meanwhile, the amplitude of the frequency component f VC and
the maximum value of the normal rubbing force also increase as the number of blades increases. The
main contribution of this paper is the establishment of a new model for a bolted joint rotor system,
considering the time-varying bending stiffness of the bolted joint and the blade–casing rub fault,
comparing the simulation results to obtain some general results bridging the current research gap.
Meanwhile, the numerical results in this paper can provide a cognitive basis for the blade–casing
rubbing fault mechanism of a bolted joint rotor system under the influence of speed, number of
blades, and rubbing stiffness. The nonlinear dynamic characteristics observed in the present paper
can be applied to the blade–casing rubbing fault diagnosis of turbomachines.

Keywords: dynamic analysis; bolted joint; rotor system; blade–casing rubbing fault; bending stiffness

1. Introduction

The bladed rotor is widely used in aeroengines (see Figure 1) for the transmission of
power. In recent years, engineers have focused on reducing the blade–casing clearance
to improve efficiency [1]. However, reducing the clearance increases the risk of blade–
casing rubbing, leading to efficiency loss and affecting safe operation. Moreover, the
mechanical properties of the bolted joint in an aeroengine rotor system change significantly
during a blade–casing rubbing fault, which may further increase the vibration amplitude
due to softening of the bolted joint bending stiffness [2]. This might result in complex
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system vibration behavior and put security at risk. Hence, comprehensive research on the
behavior of bolted joint rotor systems with blade–casing rubbing faults will help to control
aeroengine safety risks.
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Many researchers have revealed the nonlinear effects of a blade-casing rub on rotor
dynamics. Kou et al. [3] derived an improved dynamic model of a rotor system with
wide-chord blades and pointed out that the swing motion may induce the edge failures of
the blade. Jin et al. [4] established a finite element model of a dual-rotor-bearing system
with coupling misalignment and blade–casing rubbing fault, and the component mode
synthesis method was employed for order reduction of the established model. After
comparing the numerical and experimental data, they came to the conclusion that when
a blade–casing rubbing fault emerges, the casing vibration behavior is more sensitive
than is the rotor. Yang et al. [5,6] analytically studied the nonlinear vibration features
of a pedestal looseness rotor system undergoing a blade–casing rubbing fault. A blade-
rotor-casing model was developed by Ma et al. [7]; they also examined the complex
vibration characteristics brought on by a blade–casing rubbing defect. Using the finite
element approach, Ma et al. [8] developed an excellent model of a shaft-disk-blade system
and then discussed the impact of blade stagger angles, speeds, and casing stiffness on
rubbing-induced dynamic phenomena. Zeng et al. [9] proposed an analytical model for
blade–casing rubbing force, and the established model was verified using a dedicated test
rig. Colaïtis et al. [10] presented a numerical simulation strategy based on the harmonic
balance method to qualitatively characterize the blade dynamic features when blade casing
contact occurs. Piollet et al. [11] established a 3D finite element model based on the open
NASA rotor 37 compressor blade, and a benchmark for simulation and analyses was
proposed. A parametric study on a misaligned rotor system with blade-stator contact was
performed by Thiery et al. [12], and the dynamic properties of the coupling fault were
revealed. A blade–casing rubbing fault in a Jeffcott rotor led Thiery et al. [13] to create
a mathematical model of a bladed rotor to study the nonlinear dynamic behavior of the
rotor. Through mathematical analysis and experimental investigation, Torkhani et al. [14]
investigated the effects of the partial rubbing of a blade and stator on rotor dynamics.
By accounting for the blade–casing rubbing problem, Wang et al. [15] proposed a dual-
rotor-support-casing system model. They then carried out numerical and experimental
research to examine the system’s dynamic performance. In order to clearly describe the
literature gap and the main current research contents regarding blade rubbing fault, the
main research concerning the blade rubbing fault from the above literature is listed in
Table 1. Based on a survey of the literature and Table 1, it can be noted that researchers
are focused on the rub-impact between the integrated rotor-blade system and the casing.
However, the rub-impact that occurs in the bolted joint rotor system has scarcely ever been
investigated. According to the actual design of the aeroengine, a detailed investigation is
required to comprehend how rub-impact affects the stiffness properties and rotor dynamics
of the bolted joint rotor system.
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Table 1. The main focus regarding the blade rubbing fault of the current investigation.

References Type of Rubbing
Fault Research Contents Typical Features

Kou et al. [3]
Local rub-impact fault
between wide-chord

blades and the casing.

Established an improved dynamic
model of a rotor system with

wide-chord blades, explore the impact
of the gyroscopic effect and swing

motion on rub-impact.

The swing motion may induce edge
failures of the blade and aggravate the
rub-impact fault, while the gyroscopic

effect weakens the swing motion.

Jin et al. [4]
Local blade–casing

rubbing fault of a dual-
rotor-bearing system.

Established a finite element model of a
dual-rotor-bearing system with

coupling misalignment and
blade–casing rubbing fault, exploring

the nonlinear dynamics of the system at
different rotational speed ratios.

There are complex frequency
components in a dual-rotor-bearing

system with blade–casing rubbing fault,
including the fundamental frequency of

the high and low-pressure shaft, the
blade passing frequency, and their
multiple frequency components.

Yang et al. [5,6]

Multiple local
blade–casing rubbing

faults of the rotor
system.

Studied the nonlinear vibration
features of a pedestal looseness rotor
system undergoing a blade–casing

rubbing fault.

The pedestal looseness would
exacerbate the degree of rubbing fault

and lead to the fault occurring in
advance.

Ma et al. [7,8]
Local blade tip

rubbing between the
blade and casing.

Established a rubbing fault considering
the effects of an elastic casing and
examined the complex vibration

characteristics with the change in speed
brought on by a blade–casing rubbing

defect.

The 2T-period motion introduced by
the rubbing fault would be more

apparent with increased speed and
would appear to impact resonance.

Zeng et al. [9] Local blade–casing
rubbing.

Proposed an analytical model for
blade–casing rubbing force, studied the

dynamic behavior of the blade with
different incursion depths, and verified
the numerical result using a dedicated

test rig.

A larger incursion depth would lead to
an increase in the maximum value of

the rubbing force, and the normal and
tangential rubbing force conform to

Coulomb’s law of friction.

Piollet et al. [11] Local blade–casing
rubbing.

Established a 3D finite element model
of a NASA rotor 37 compressor blade,

investigated the system’s response with
different contact severity, and proposed

a benchmark for simulation.

The lower contact severity would
weaken the amplitude of the system.

Thiery et al. [12,13]

Local blade–casing
rubbing fault

considering the
deform elastically of

the blade.

Studied the nonlinear dynamic
behavior of the bladed rotor by creating
a mathematical model and performed a
parametric study on a misaligned rotor

system with blade-stator contact.

The nonlinear dynamics of system are
similar to simple bladed Jeffcott rotors
when scaled with the number of blades.

Torkhani et al. [14]
Light to heavy

intermittent local
blade–casing rubs.

Investigated the effects of the varying
degrees partial rub of a blade and stator
on rotor dynamics, both experimentally

and numerically.

The increase in imbalance causes a
heavier contact over a longer duration,
and the contact effect would cause an
abrupt increase in the rotor resonance

frequency.

Wang et al. [15]

Local blade–casing
rubbing fault

considering the
deformations of the

blade and casing.

Proposed a dual-rotor-support-casing
system model and investigated the
effect of blade rubbing fault on the
nonlinear dynamics of the system.

The blade passing frequency and its
multiple frequency components allow

for effectively distinguishing the
blade–casing rubbing fault.

The bolted joint, which is one of the commonly employed structures used to join
nearby components into integrated systems, can present enough stiffness to guarantee
the integrity of the rotor system in an aeroengine [16–19]. However, several researchers
via numerous in-depth surveys detected that the bolted joint structure exhibits intricate
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mechanical properties. Zhou et al. [20] explored the effect of thread tooth profile, thread
pitch, and the modulus ratio of bolt to nut on load distribution in threads using the
ABAQUS codes, showing that the nut shape exerts significant effects on load distribution in
the threads. Mir-Haidari et al. [21] suggested that the inconsistency between the numerical
model and actual structure should be attributed to the higher nonlinear behavior of the
bolted joint, proposing an analytical model which could accurately reflect the nonlinear
dynamics of bolted joint. Zhou et al. [22] thoroughly investigated the effect of preload
on the reliability of the bolted joint using finite element software; the result shows that
there was a significant influence on the reliability of the bolted joint due to the change
in preload. Therefore, the complex mechanical properties of the bolted joint increase
the difficulty of analyzing the rotor dynamics under blade–casing rubbing faults. Du
et al. [23] established the dynamic model of a tie-bolt rotor, based on the proposed virtual
material method. Zhang et al. [24,25] analyzed the dynamic properties of a multi-disk rod
fastening rotor system subjected to rub-impact failure and a cracked shaft. Zhao et al. [26]
proposed a modeling method for the bolted joint structure in the rotor system considering
the elastoplastic deformation at the mating interface, and the effectiveness of the model
was verified by experimental results. Yu et al. [27] performed a simulation and experiment
to reveal the effect of damping nonlinearity introduced by the spigot on a bolted joint
rotor system. Li et al. [28,29] performed a numerical simulation to study the steady-stress
distribution at the mating interface of a gas turbine tie-bolt rotor under different load
conditions. Zhao et al. [30] and Wu et al. [31] proposed an assembly method of the contact
stiffness matrix of the bolted joint and shaft elements for dynamic modeling of the rod-
fastening rotor-bearing system. Zou et al. [32] analyzed the influence of the pretightening
state at the mating surface of a bolted joint in a certain type of aeroengine rotor system
on the rotor dynamic characteristics through finite element simulation and experimental
study. Li et al. [33] found that the increase in bolt loosening degree and bolt in regards to
looseness will lead to a decrease in natural frequencies and an increase in resonant response
amplitudes through numerical and experimental study. Only the bolted joint modeling
technique and the motion stability of the bolted joint rotor system—with or without a fixed-
point rubbing fault—were taken into account in the above research. However, researchers
have rarely explored the relationship between the blade–casing rubbing fault’s influence
law, the bolted joint’s stiffness properties, and the vibration response. Because of the
high speed and high load characteristics of the aeroengine rotor system, the instantaneous
energy introduced by the blade–casing rub is considerable [3]. Therefore, the bolted joint
bending stiffness characteristics and vibration response behavior of a bolted joint rotor
system with multiple blades under a rubbing fault should be studied.

The major goal of this research is to identify the blade casing rub-impact dynamic
properties of a rotor-bearing system with a bolted joint while taking into account the time-
varying bending stiffness of the bolted joint. A blade–casing rubbing model of the bolted
joint rotor system is created based on the finite element (FE) modeling approach and the
bolted joint element presented in our earlier work [34]. In the current study, the Newmark
approach is used to solve the nonlinear vibration responses of the rotor system and to
demonstrate the changes in bending stiffness of the bolted joint under blade–casing rubbing
faults. The remainder of the present work is organized as follows: the motion equations for
the bolted joint rotor-bearing system with rubbing faults in the blade casing are derived in
Section 2. In Section 3, the established model is verified by comparing the response spectra
under the condition of different numbers of blades with the results in other studies. The
result of the mathematical analysis of the rotor system at various rotational speeds, with
different numbers of blades, and with various rubbing stiffnesses, are discussed in detail in
Section 4. Finally, Section 5 summarizes the key conclusions. The novelty of the present
work can be summarized as follows. This work presents: (1) a dynamic model of a bolted
joint rotor system considering the time-varying bending stiffness of the bolted joint and the
blade–casing rub fault; (2) the nonlinear dynamics of a bolted joint rotor system and the
mechanical properties evolution process of the bolted joint, evaluated with the changes in
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rotational speed; and (3) the effect of the number of blades and casing stiffness on rotor
system nonlinear dynamics and the mechanical properties of the bolted joint.

2. Motion Equations for a Rotor System with Blade–Casing Rubbing Fault

Figure 2 is an FE model schematic of a bolted joint rotor-bearing system that considers
the blade–casing rubbing fault. The number of blades and rotor–stator clearance are
taken into account for establishing the blade–casing rubbing force model, in which the
deformations of the blades are ignored. Neither the vibration nor the deformation of
the casing are considered in the present paper. The bolted joint is simulated through the
bolted joint element proposed in our previous work [34]. By combining the FE modeling
method [35,36], the bolted joint rotor-bearing system will then be modeled dynamically. It
should be mentioned that the bolted joint rotor-bearing system established in the present
work is a mathematical model which fails to display the practical model structure; the
overall bolted joint rotor system described in Figure 2 is simply the schematic diagram of
the FE model.
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2.1. Blade–Casing Rubbing Force Model

The blade–casing rubbing force acting at the ith blade is illustrated in Figure 3, where
Fni denot the normal force, Fti defined the tangential force, ωr is the rotating speed, and θbi
represents the angle between the ith blade and the y-axis. The coordinate shown in Figure 3
is fixed at the location of the disk center when the rotor is not deformed, and then the angle
θbi can be calculated by the following equation [37]:

θbi = 2πi/N + ωrt (1)

where i represents the ith blade, N is the number of uniformly distributed blades, and t
represents the time instant.
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The blade is considered to be non-deformed during the rubbing procedure because the
blade of the aeroengine rotor system is short and has relatively high stiffness. Therefore, the
first mode of the blade is much higher than the maximum rotational and critical rotational
frequency of the system, which indicates that the resonance behavior would not occur
between the blades and the rotor system. By neglecting the bending deformation of the
blade, the displacements at the ith blade tip in the x and y directions can then be calculated
as follows: {

xbti = xd + (rd + lb) cos(θbi)
ybti = yd + (rd + lb) sin(θbi)

(2)

where xd and yd represent the vibration displacements of the disk at time instant t, rd is the
radius of the disk, and lb is the length of the blade.

Let δi be the clearance between the ith blade and casing. The normal force introduced
by the rubbing at the ith blade tip can be written as follows:{

Fni = kr × (ri − δi), ri ≥ δi
Fni = 0, ri < δi

(3)

where kr is the casing stiffness, ri is the radial displacement at the ith blade tip, and
ri =

√
xbti

2 + ybti
2.

The tangential force at the ith blade tip can be expressed as follows:

Fti = f · Fni (4)

where f is the friction coefficient.
The rub forces at the ith blade tip in the x and y directions can then be calculated as{

Fxi = −Fni cos θi + Fti sin θbi
Fyi = −Fni sin θi − Fti cos θbi

(5)

When a rubbing fault develops, the sum of the rubbing force acting on N blades of
rotor can be described using the sum of the force components operating in the x and y
directions, as follows: 

Fx =
N
∑

i=1
Fxi

Fy =
N
∑

i=1
Fyi

(6)

2.2. Rolling Bearing Force Model

Two identical ball bearings maintain the rotor assembly in place. The Hertz contact
theory may be used to calculate the bearing force, meeting the following hypotheses:

(a) The inner race is connected to the rotating shaft, and the outer race is connected to the
bearing house so that no relative slippage occurs during operation of the rotor system.

(b) The rolling ball exhibits pure rolling, without a sliding motion, and the displacement
between the balls is equal during operation.

Figure 4 shows a schematic diagram of the bearing, where Nb is the number of rolling
balls and ωc is the rotational speed of the cage, which can be calculated by

ωc = ωr · ri/(ro + ri) (7)

where ro denotes the radius of the bearing outer race, and ri denotes the radius of the
bearing inner race.

For the ball bearing, the compliance and stiffness will occur in periodic variation due
to the periodic varying of the contact position between the races, which lead to a so-called
varying compliance (VC) vibration. The VC vibration is an inherent characteristic and
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always exists, even if under normal conditions. The VC vibration is in connection with the
bearing structure parameter, and it can be given by:

ωVC = ωc × Nb (8)

The angle location of the ith rolling ball at time instant t can be expressed as

θi = 2π(i− 1)/Nb + ωct (9)

Based on the Hertz contact theory, the normal contact force between the ith rolling ball
and raceway is obtained as [4–6]

fbi = Kc(δbi)
3/2 = Kc(x cos θi + y sin θi − γ0)

3/2 · H(x cos θi + y sin θi − γ0) (10)

where Kc represent the Hertz contact stiffness; H (δbi) is the Heaviside function, where the
contact deformation δbi = xcos θi + ysin θi − γ0; γ0 is the bearing clearance
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Finally, the bearing forces in the x and y directions generated by the rolling of the balls
can be expressed as

Fbx =
Nb
∑

i=1
fbix =

Nb
∑

i=1

[
Kc(x cos θi + y sin θi − γ0)

3/2 · H(x cos θi + y sin θi − γ0)
]

cos θi

Fby =
Nb
∑

i=1
fbiy =

Nb
∑

i=1

[
Kc(x cos θi + y sin θi − γ0)

3/2 · H(x cos θi + y sin θi − γ0)
]

sin θi

(11)

2.3. Dynamic Model of Bolted Joint

The left and right shafts are connected by the bolted joint to produce an integrated
rotor structure, as shown by the schematic diagram of a bolted joint rotor system in Figure 2.
According to the global coordinate, the bending stiffness and lateral stiffness between the
adjacent disks should be defined to connect the left and right shafts. Figure 5 shows the
stiffness model between the adjacent disks of the bolted joint at the xz–plane, where the
bending stiffness should be simulated by a piecewise linear stiffness model [2,38]. This
is because tangential damping has almost no effect on the dynamic characteristics of the
system [2]; only the macroscopic change of stiffness is considered, while failing to take into
account the effect of the contact state of the mating interface on stiffness in the present work.
In this paper, the lateral effect between the adjacent disks is simulated by a combination of
a linear spring and a damping [see Figure 5b].
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Figure 5. Stiffness between adjacent disks of a bolted joint in the xz–plane: (a) bending stiffness; (b) 
simple linear spring–damping model. 
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According to our previous work [34], the bolted joint can be modeled by the jointed
element, which is based the Lagrange method, and whose mass, stiffness, and gyroscopic
matrices are shown in Appendix A. Then, the governing equations of the bolted joint can
be expressed as

Me
J

..
qe

J +
(

Ce
J −ωrGe

J

) .
qe

J + Ke
Jq

e
J = Qe

J (12)

where Me
J , Ce

J , Ge
J , and Ke

J are the mass, damping, gyroscopic, and stiffness matrices of the
jointed element, which are shown in Appendix A; qe

J represents the displacement vector of
the bolted joint; and Qe

J is the force matrix expressed by

Qe
J =

[
m1eωr

2 cos(ωrt) m2eωr
2 sin(ωrt) 0 0 m1eωr

2 cos(ωrt) m2eωr
2 sin(ωrt) 0 0

]T (13)

The proposed jointed element has eight degrees of freedom, and the displacement
vector qe

J can be written as:

qe
J = [u1 w1 θ1 ϕ1 u2 w2 θ2 ϕ2]

T (14)

where u, w are the lateral displacements along the x and y axes, respectively; θ, ϕ are the
rotational angles of the x- and y-axes, respectively; and subscripts 1 and 2 are associated
with the two disks.

Additionally, the bolted joint’s bending stiffness demonstrates piecewise linear prop-
erties, which can be written as [2]

kθ =

{
kθ1, |Φ|≤ |Φ0|
kθ2, |Φ|> |Φ0|

(15)

where kθ denote the bending stiffness between the adjacent disks; kθ1 and kθ2 represent the
bending stiffnesses at the first and second bending stages, respectively; Φ0 is the relative
rotation angle at the transition point; and Φ is the rotation angle between the adjacent disks,
which can be calculated by Equation (15).

Φ =

√
(θ1 − θ2)

2 + (ϕ1 − ϕ2)
2 (16)

The bending stiffness of the bolted joint should be determined using the following
equation when the bending stiffness approaches the second bending stage [39]:

k̃θ2 = kθ2 −
Φ0

Φ
(kθ2 − kθ1) (17)

2.4. Global Motion Equations of Bolted Joint Rotor–Bearing System

The rotor shafts are modeled by the Timoshenko beam element, where the left shaft is
dispersed into five shaft segments, and the right shaft is dispersed into eight shaft segments,
as shown in Figure 2a. The bearing force acts on nodes at both ends of the rotor, and the
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rigid disks of the bolted joint are located on the right node of the left shaft and on the left
node of the right shaft [see Figure 2a]. The left and right shafts of the rotor system are
connected through the bolted joint, which is simulated by the joint element described in
Section 2.3. Based on the FE modeling method, the motion equations of the left and right
shafts can then be written as

Ms
L

..
qs

L + (Cs
L −ωrGs

L)
.
qs

L + Ks
Lqs

L = Qs
L (18)

Ms
R

..
δ

s
R + (Cs

R −ωrGs
R)

.
δ

s
R + Ks

Rδs
R = Qs

R (19)

where Ms
L and Ms

R are the mass matrices of the left and right shafts; Cs
L and Cs

R are the
damping matrices of the left and right shafts; Gs

L and Gs
R are the gyroscopic matrices of

the left and right shafts; Ks
L and Ks

R represent the stiffness matrices of the left and right
shafts, respectively; qs

L and qs
R are the displacement vectors corresponding to the left and

right shafts; and Qs
L and Qs

R represent external force matrices. The mass, inertial, stiffness,
and gyroscopic matrices of the beam element can be found in Appendix B. Although the
FE modeling method can simulate the nearest state of the true structure, the excessive
consideration of these factors would lead to a huge solve cost and even difficulty in
convergence.

Based on the rotor dynamics and the motion equations of the bolted joint, left shaft,
and right shaft presented in Equations (11), (16) and (17), the dynamic model of the bolted
joint rotor system can be written as

M
..
q + (C−ωrG)

.
q + Kq = Fg + F (20)

where M represents the mass matrix of the bolted joint rotor system, C represents the
damping matrix of the bolted joint rotor system, G represents the gyroscopic matrix of the
bolted joint rotor system, K represents the stiffness matrix of the bolted joint rotor system,
q represents the displacement vector, F represents the external force vector of the overall
rotor system, and Fg represents the gravity vector. The assembly methods of the mass,
stiffness, and gyroscopic matrices of the beam elements and jointed element are shown in
Figure 6.
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Rayleigh damping is adopted to model the global damping matrix of the bolted joint
rotor system in the present paper. This can be expressed as [40,41]

C = aM + bK (21)
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The Rayleigh damping coefficients a and b can be calculated by Equation (22).{
a = 4π f1 f2(ξ1 f2 − ξ2 f1)/

(
f 2
2 − f 2

1
)

b = (ξ2 f2 − ξ1 f1)/π
(

f 2
2 − f 2

1
) (22)

where f 1 and f 2 are the 1st and 2nd natural frequencies of the rotor system, and ξ1 and ξ2
are the modal damping ratios corresponding to f 1 and f 2, respectively.

To demonstrate the overall process of the modeling and solving in a more intuitive
way, a detailed process of the numerical integration of the system, the calculation of the
bending stiffness, and the assessment of rubbing fault are described in Figure 7.
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3. Verification Based on Response Spectra

The analytical and experimental data of a blade–casing rotor-bearing system from
Ref. [4] are presented here to confirm the accuracy of the developed model. The detailed
parameters of the rotor system and the experiment facility can be obtained from [4]. The
outcome shows that when blade–casing rubbing problems occur, the rubbing frequency
(equal to the product of the number of blades and the rotational frequency) is noticeable.
The same numerical analysis conclusion can be found in [7,14,37]. Meanwhile, several
researchers conducted corresponding blade–casing rubbing fault experiments using differ-
ent types of rotor experiments and also captured the same behavior [4,6,15]. Therefore, in
this section, the response spectra of the rotor system used in the present work, with blade–
casing rubbing faults under different numbers of blades, are used to verify the established
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model. The physical parameters of the bolted joint rotor system with blade–casing rubbing
are presented in Table 2. Table 3 is a list of the ball bearings’ structural parameters. The
bolted-joint rotor system’s waterfall diagrams can be obtained by applying the Newmark
method. Then, a comparison among the working condition without blade–casing rubbing
fault and the rubbing condition are presented for three different numbers of blades: N = 2,
4, and 6. The rotation speed is defined as ωr = [6000:24,000] rev/min for the above working
conditions, and the comparison results are shown in Figure 7.

Table 2. Physical parameters of bolted joint rotor system with blade–casing rubbing.

Physical Parameter Value Physical Parameter Value

Length of the left shaft ll (m) 0.1 Friction coefficient f 0.1
Length of the right shaft l2 (m) 0.16 Casing stiffness kr (N/m) 5 × 106

Length of the blade lb (m) 4.5 × 10−3 Density of the shaft ρ (kg/m3) 7850
Radius of the shaft rs (m) 0.04 Poisson ratio of shaft element v 0.3
Diametral moment of inertia of disk 1 Jd1 (kg·m2) 7.5 × 10−3 Eccentricity of disk 1 e1 (m) 0.01 × 10−3

Diametral moment of inertia of disk 2 Jd2 (kg·m2) 7.5 × 10−3 Eccentricity of disk 2 e2 (m) 0.01 × 10−3

Polar moment of inertia of disk 1 Jp1 (kg·m2) 0.015 Mass of disk 1 m1 (kg) 0.1
Polar moment of inertia of disk 2 Jp2 (kg·m2) 0.015 Mass of disk 2 m2 (kg) 0.1
Elastic modulus of the shaft E (Gpa) 210 Radius of disk 1 rd1 (m) 7.3 × 10−3

Initial blade–casing clearance δ (m) 0.1 × 10−3 Radius of disk 2 rd2 (m) 7.3 × 10−3

Table 3. Structural parameters of ball bearings.

Radius of Outer
Race r0 (mm)

Radius of Inner
Race ri (mm)

Numbers of
Ball Elements Nb

Contact Stiffness
Kc (N/m3/2)

Bearing Clearance γ0
(µm)

63.9 40.1 8 13.34 × 109 5

Figure 8a shows the waterfall diagram of the rotor system within ωr = [6000:24,000] rev/min
when the rubbing fault does not occur, in which the fundamental frequency fr, varying
compliance (VC) frequency fVC, and their combination frequency components are the main
frequency components. When the blade–casing rubbing force acts on the rotor system with
2 blades, the waterfall diagram corresponding to ωr = [6000:24,000] rev/min, as shown
in Figure 8b. Harmonic 2fr emerges, and the combined frequency components fVC and
fr appear in the three-dimensional spectrum simultaneously. This is because, under the
blade–casing rubbing fault condition, the fault feature frequency manifests as the passing
frequency of the blade, which is equal to N·fr, resulting in an increase in the amplitude
corresponding to the harmonic 2fr. Similarly, as shown in Figure 8c,d, when N = 4 and
6, the passing frequency of the blade (equal to N·fr) appears in the waterfall diagrams
with a rubbing fault. Therefore, the increased passing frequency of the blade can be seen
as the typical characteristic of the blade–casing rubbing fault. Similarly, the same result
could be observed in other researchers on the dynamic investigation of rotor systems
with blade–casing rubbing faults. In Ref [4], researchers using a dual-rotor experimental
rig to capture the blade–casing rubbing fault feature, which manifests as the increase in
amplitude passing frequency of the blade. Yang et al. [6] noted the same behavior using
the finite method and a dual-rotor-support-casing test rig: the increase in the amplitude
of the harmonic N·fr when the blade–casing rubbing fault occurred was analytically and
experimentally investigated. Ma et al. [7] and Wang et al. [15] also captured the increase
in the amplitude of the harmonic N·fr using numerical simulation and experimentation.
Hence, the correctness of the established model in the present paper could be proven from
both numerical and experimental investigation, to a certain degree. It is worth noting that
the low-frequency subharmonic motion introduced by the resonance of the ball bearing
is not found in the system’s waterfall diagrams. This is mainly attributed to the impact
effect between the ball and the bearing ring being more obvious at a low rotation speed,
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which would more likely generate a subharmonic vibration, while the bearing movement
is relatively stable at a high rotation speed, and the response amplitude of the system
is magnified, which will cause the subharmonic vibration to become imperceptible and
even disappear. Particularly for the rotor system with the rubbing fault, the response
amplitude of the system is significantly higher than the subharmonic vibration due to the
extra excitation generated by the impact effect, which causes the subharmonic vibration to
become ultimately become imperceptible.
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4. Numerical Simulation Results and Discussions

In this section, the Newmark method is used to solve the equations of motion. To avoid
the transient solutions, we neglect the time-domain data of the first 150 cycles produced
by numerical integration. Then, to study the blade–casing rubbing characteristics of the
bolted joint rotor system, the waterfall diagrams, time-domain waveforms, spectra, normal
rubbing force, and bending stiffness of the bolted joint are investigated deeply. The effects
of the number of blades and the casing stiffness are discussed in detail in this section. The
detailed structure dimensions and physical parameters of the bolted joint rotor-bearing
system are listed in Tables 2 and 3.

4.1. Effects of Rotational Speed

In this section, we investigate the impact of the rotational speed ωr on the dynamic
response properties of the bolted joint rotor system under the blade–casing rubbing faults.
The number of blades is defined as N = 8. By using the Newmark method, the spectrum
cascades of disk 1, bending stiffness of the bolted joint, and amplitude-frequency curve are
obtained, as shown in Figure 9, where the speed varies from 600 rev/min to 2400 rev/min
in steps of 120 rev/min.

In Figure 9a, the fundamental frequency is denoted by fr, and the VC frequency
introduced by the ball bearing is denoted by fVC. Frequency components such as fr, fVC,
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and the combined harmonics of fr and fVC appear in the waterfall diagram. In addition, the
passing frequency of the blade, that is, 8·fr, is excited due to blade–casing rubbing. The
bending stiffness of the bolted joint structure during rotor operation, with time varying
from 0.1 s to 0.13 s, is shown in Figure 9b. It can be seen that the bending stiffness changes
continuously over time. This is because the bending stiffness enters the first and second
stages as the relative angle between the adjacent disks constantly changes during operation,
which can be explained by Equation (16). Moreover, the maximum value of bending
stiffness decreases significantly with increasing rotational speed.
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Figure 9. System response characteristics of the rotor system and bending stiffness of the bolted joint
undergoing blade–casing rubbing fault: (a) waterfall diagram; (b) bending stiffness.

The time-domain waveform, frequency spectrum, normal rubbing force, and bending
stiffness at ωr = 6000, 12,000, and 18,000 rev/min, respectively, are displayed in Figure 10
to further investigate the impact of speed on the system’s nonlinear dynamic. The funda-
mental frequency, VC frequency, its harmonics, and the passing frequency of the blade
(N·fr) are illustrated in the frequency spectra. It should be mentioned that the amplitude
corresponding to the fundamental frequency gradually increases with the change of speed
and surpasses the amplitude of the VC frequency when the speed reaches a relatively high
value of ωr = 18,000 rev/min. Moreover, the passing frequency of the blade is always
contained in the frequency spectra due to the rubbing fault occurring within the speed
range. As observed from the diagrams of the normal rubbing force, a slight decrease in the
maximum normal rubbing force can be found. According to Ref. [8], the normal rubbing
force increases significantly as the rotational speed increases. The difference between the
present work and Ref. [8] exists because the impact effect is weakened when the maximum
amplitude of the system response decreases within the speed range of interest.

In Figure 11, the maximum and minimum values of the system responses and bending
stiffnesses of the bolted joint at ωr = 6000, 12,000, and 18,000 rev/min are demonstrated.
In Figure 11a, the maximum and minimum amplitudes of the system responses at disk 1
are plotted, where the dynamic response amplitude of disk 1 decreases with an increase in
rotational speed, as does the minimum value of the system response amplitude. Meanwhile,
a decrease in the difference between the maximum value and minimum value of the
system response can also be found as the speed increases, as shown in Figure 11a. This
phenomenon occurs because the rubbing force decreases as the rotational speed increases,
which is caused by a weakening of the impact effect due to a decrease in the maximum
amplitude of the system response. For the bending stiffness of the bolted joint, Figure 11b
demonstrates that the maximum bending stiffness decreases significantly when increasing
the operating speed, but the minimum value of the bending stiffness changes slightly.
To explain this phenomenon, the rotation angle between the adjacent disks at ωr = 6000,
12,000, and 18,000 rev/min with time varying from 0.1 s to 0.13 s are obtained and shown
in Figure 12. The obvious maximum value amplification phenomena of the rotation angle
between the adjacent disks can be observed with increasing rotational speed, which leads
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to the bending stiffness entering the second bending stage and a decrease in the maximum
value of the bending stiffness.
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Figure 10. Vibration responses of a bolted joint rotor system with the blade–casing rubbing fault at 
different rotational speeds: (a) 6000 rev/min; (b) 12,000 rev/min; (c) 18,000 rev/min. 
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are plotted, where the dynamic response amplitude of disk 1 decreases with an increase 
in rotational speed, as does the minimum value of the system response amplitude. Mean-
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Figure 11. Maximum and minimum values of the system responses and bending stiffness of a bolted 
joint under different rotational speeds: (a) system response; (b) bending stiffness of bolted joint. 
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Figure 12. Rotation angle between the adjacent disks of a bolted joint during operation at: (a) 6000 
rev/min; (b) 12,000 rev/min; and (c) 18,000 rev/min. 
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significant impact effect with 2 blades under the blade–casing rubbing fault, which makes 
the parameter value of the relative angle between disk 1 and disk 2 fluctuate over a wide 
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ues of bending stiffness under the condition of N = 2 are greater than those in other cases. 
Moreover, it can be seen that the bending stiffness decreases as the number of blades in-
creases, and is even lower than the working condition without blade–casing rubbing faults 
when N = 8. 
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mation about rotor dynamic properties. To gain more insight into the dynamic perfor-
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Figure 11. Maximum and minimum values of the system responses and bending stiffness of a bolted
joint under different rotational speeds: (a) system response; (b) bending stiffness of bolted joint.

It should be mentioned that the relative angle between the adjacent disks of the bolted
joint—where angle rotation along the x- and y-axes should be considered—is the rotation
angle between the adjacent disks. In the present work, the rotation angle between the
adjacent disks is calculated by Equation (15).
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Figure 12. Rotation angle between the adjacent disks of a bolted joint during operation at: (a) 6000 
rev/min; (b) 12,000 rev/min; and (c) 18,000 rev/min. 
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Figure 12. Rotation angle between the adjacent disks of a bolted joint during operation at:
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4.2. Effects of Number of Blades

The impact of the number of blades on the vibration characteristics of a rotor system
with a bolted joint was the main focus of this parameter analysis. From Figure 8, it can be seen
that the passing frequency of the blade appears in the spectra when blade–casing rubbing
faults occur. The bending stiffness of the bolted joint within ωr = [6000, 24,000] rev/min
with the number of blades given as N = 0, 2, 4, and 6 are shown in Figure 13, with the
aim of ascertaining the impact of the number of blades on the bending stiffness of the
bolted joint This shows that the volatility of the bending stiffness is more intense due to a
significant impact effect with 2 blades under the blade–casing rubbing fault, which makes
the parameter value of the relative angle between disk 1 and disk 2 fluctuate over a wide
range. This can also explain why the difference between the maximum and minimum
values of bending stiffness under the condition of N = 2 are greater than those in other
cases. Moreover, it can be seen that the bending stiffness decreases as the number of blades
increases, and is even lower than the working condition without blade–casing rubbing
faults when N = 8.

Time-domain waveforms and frequency spectra can help to reveal further information
about rotor dynamic properties. To gain more insight into the dynamic performance of the
bolted joint rotor system with blade–casing rubbing fault, the time-domain waveforms,
frequency spectra, normal rubbing force, and bending stiffness at ωr = 12,800 rev/min
for different numbers of blades are obtained and are shown in Figure 14. Comparing
the frequency component of the rotor system with and without the blade–casing rubbing
fault, as seen in Figure 14, the most intuitive phenomenon is that the nonlinear feature
of VC vibration and the passing frequency of a blade are highlighted in the presence of
blade–casing rub-impact. That can be attributed to the fact that the impact effect between
the ball and the race of the bearing is aggravated under the blade–casing rub-impact. The
amplitude of the frequency component fVC increases as N increases in the spectra, which can
also indicate the aggravation of the bearing VC vibration. For the time-domain waveform
of system, its complexity when a rubbing fault occurs and the response amplitude both
change slightly as the number of blades increases. Moreover, the mean value of the system
response is close to 0 for the working condition without a rubbing fault [see Figure 14a].
However, as the number of blades increases, the mean value of the vibration response
deviates significantly from 0. This is also because the VC vibration under blade–casing
rub-impact is more severe, and the impact force acting on disk 1 results in the mean value
of the system responses deviating from the shaft axis. As for the normal rubbing force, the
maximum value becomes greater due to the increase in the number of blades, described
from 32.6 N to 37.7 N to 53 N. Moreover, the maximum and minimum values of the bending
stiffness change significantly as the number of blades increases, which indicates that the
number of blades has a significant effect on the bending stiffness of the bolted joint.

The maximum and minimum values of the system responses and bending stiffness
of the bolted joint with various numbers of blades are presented in Figure 15 to further
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demonstrate the impact of the number of blades on the system responses and bending
stiffness of the bolted joint. The maximum value of the system response increases obviously
when a rubbing fault occurs. The difference between the maximum and minimum values
of the waveform with 2 blades is larger than that observed for the other numbers of blades
[see Figure 15a]. This is because the impact effect is more obvious under the working
condition of 2 blades subjected to a rubbing fault. As seen from Figure 15b, the amplitude
of the normal rubbing force decreases as the number of blades increases. The primary cause
is that as the vibration worsens over time due to a rubbing problem, and the rotation angle
between the jointed disks rises, thus causing the bolted joint to approach its second stage
of bending stiffness.
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Figure 14. Vibration responses of a bolted joint rotor system at 12,800 rev/min: (a) without rubbing 
fault; (b) N = 2; (c) N = 4; (d) N = 6. 

The maximum and minimum values of the system responses and bending stiffness 
of the bolted joint with various numbers of blades are presented in Figure 15 to further 
demonstrate the impact of the number of blades on the system responses and bending 
stiffness of the bolted joint. The maximum value of the system response increases obvi-
ously when a rubbing fault occurs. The difference between the maximum and minimum 
values of the waveform with 2 blades is larger than that observed for the other numbers 
of blades [see Figure 15a]. This is because the impact effect is more obvious under the 
working condition of 2 blades subjected to a rubbing fault. As seen from Figure 15b, the 
amplitude of the normal rubbing force decreases as the number of blades increases. The 
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Figure 14. Vibration responses of a bolted joint rotor system at 12,800 rev/min: (a) without rubbing 
fault; (b) N = 2; (c) N = 4; (d) N = 6. 
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4.3. Effects of Casing Stiffness

This section performs a frequency sweep analysis in advance to thoroughly understand
the impacts of the casing stiffness on the blade–casing rubbing behavior of a bolted joint
rotor system. The speed range is defined as ωr = [6000, 24,000] rev/min, and the number of
blades is set to N = 4. Figure 16 shows waterfall diagrams of the bolted joint rotor system
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with casing stiffness kr = 0 N/m, 1 × 106 N/m, 3 × 106 N/m, and 5 × 106 N/m. When
the contact stiffness increases, the amplitude of the passing frequency of the blade (N·fr)
increases significantly, while the frequency component remains consistent. This effect is
explained by the fact that the frequency component N·fr will become more evident, as the
rubbing force increases simultaneously with the casing stiffness. In order to further explore
the effect of casing stiffness on the nonlinear dynamics of the system, the time-domain
waveforms, frequency spectra, normal rubbing force, and bending stiffness with casing
stiffness kr = 0 N/m, 1 × 106 N/m, 3 × 106 N/m, and 5 × 106 N/m are obtained by
numerical simulation at a speed of 12,800 rev/min, as shown in Figure 17.
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Figure 16. Waterfall diagrams of a bolted joint rotor system with different casing stiffnesses:
(a) kr = 0 N/m; (b) kr = 1 × 106 N/m; (c) kr = 3 × 106 N/m; (d) kr = 5 × 106 N/m.

According to the Figure 17, the maximum value of the normal rubbing force increases
with increasing casing stiffness, resulting in the mean value of the system response continu-
ing to move away from 0, while the mean value of the system response is close to 0 when
kr = 0. In addition, with the increase in the casing stiffness, the maximum and minimum
values of the system response continue to increase. That is because the larger casing stiff-
ness would introduce a high rubbing force, which would lead to VC vibration becoming
more severe and the impact force acting on disk 1 increasing, resulting in the mean value of
the system responses deviating from the shaft axis. The amplitude of the VC frequency fVC,
the passing frequency of the blade N·fr, and the rubbing force increase in response to casing
stiffness can also demonstrate this behavior. Moreover, the maximum bending stiffness
decreased significantly when the casing stiffness increased to kr = 5 × 106 N/m. This is
due to the fact that when the lager rubbing force emerges on the bolted joint’s disk, the
relative angle of the joint increases, resulting in the bending stiffness reaching the second
bending stage.
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Figure 17. Vibration responses of bolted joint rotor system at 12,800 rev/min: (a) kr = 0 N/m; (b) kr = 
1 × 106 N/m; (c) kr = 3 × 106 N/m; (d) kr = 5 × 106 N/m. 
Figure 17. Vibration responses of bolted joint rotor system at 12,800 rev/min: (a) kr = 0 N/m;
(b) kr = 1 × 106 N/m; (c) kr = 3 × 106 N/m; (d) kr = 5 × 106 N/m.

5. Conclusions

In this work, a dynamic model of a bolted-joint rotor-bearing system was established
in order to investigate the vibration properties of the rotor system and the bending stiffness
of a bolted joint subjected to blade–casing rubbing faults. The model took into account
the rubbing-impact between each blade and the case, as well as the bolted joint’s piece-
wise linear bending stiffness. Based on the developed model, quantitative research was
performed to determine the effects of the rotational speed, the number of blades, and
the casing stiffness on the system response and bending stiffness. The following are the
primary conclusions obtained by numerical analysis:

1. When a rubbing fault occurs, the time-domain waveform becomes complicated, and
the response amplitude changes slightly as the number of blades increases. As
the number of blades increases, the mean value of the vibration response deviates
significantly from 0.
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2. The frequency component fVC’s amplitude increases as the number of blades rises,
and this increase in frequency also obviously raises the maximum value of the normal
rubbing force. Furthermore, as the number of blades rises, the bending stiffness falls
and eventually becomes even lower than it was under working conditions.

3. As the number of blades rises, the amplitude of the normal rubbing force decreases
as the rotation angle between the adjacent disks increases; meanwhile, the bending
stiffness of the bolted joint enters the second stage as a result of the vibration gradually
being aggravated by the rubbing fault.

4. The rubbing effect becomes greater at a larger casing stiffness, and the amplitude of
the passing frequency of the blade will increase significantly as the contact stiffness
increases.

It should be emphasized that the main novelty of the present work is the proposed new
dynamic model of a bolted-joint rotor-bearing system considering the time-varying bending
stiffness of the bolted joint and the blade–casing rub fault. This includes an innovative
analysis of the effects of the rotational speed, number of blades, and rubbing stiffness on
the dynamic responses, normal rubbing forces, and bending stiffness of the bolted joint.
However, this investigation is still focused on the local blade–casing rubbing fault of the
rotor system. Indeed, there are numerous forms of blade–casing rubbing fault in the actual
working condition of an aeroengine, such as intermittent rubbing faults, continuous full
annular rubbing faults, etc. Therefore, the intermittent and continuous full annular rubbing
faults will be further considered in our future work.
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Nomenclature

Fni, Fti Normal and tangential force generated by the blade–casing rubbing (N)
N Number of uniformly distributed blades
xd, yd Vibration displacements of the disk (m)
rd Radius of the disk (m)
lb Length of the blade (m)
kr Casing stiffness (N/m3/2)
ri Radial displacement at the ith blade tip (m)
Fx, Fy Rubbing force acting on the rotor (N)
ro, ri Outer and inner radius of the bearing (mm)
Kc Hertz contact stiffness (N/m3/2)
Fbx, Fby Bearing forces in the x- and y-directions
Me

J , Ce
J , Ge

J , Ke
J Mass, damping, gyroscopic, and stiffness matrices of the jointed element

qe
J Displacement vector of the bolted joint

Qe
J Force matrix of the bolted joint
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kθ Bending stiffness between the adjacent disks of the bolted-joint structure
kθ1, kθ2 Bending stiffnesses at the first and second bending stages
Ms

L, Cs
L, Gs

L, Ks
L Mass, damping, gyroscopic, and stiffness matrices of the left shafts

Ms
R, Cs

R, Gs
R, Ks

R Mass, damping, gyroscopic, and stiffness matrices of the right shafts
qs

L, qs
R Displacement vector of the left shafts and right shafts

Qs
L, Qs

R Force matrix of the left shafts and right shafts
M, C, G, K Mass, damping, gyroscopic, and stiffness matrices of the rotor system
q Displacement vector of the rotor system
F, Fg Force matrix and gravity vector of the rotor system
f1, f2 The first and second natural frequencies
fbi Normal contact force between the ith rolling ball and the raceway
a, b Rayleigh damping coefficients
Nb Number of ball elements
N Number of uniformly distributed blades
Greek letters
ωr Rotating speed
θbi Angle between the ith blade and the y-axis
δi Clearance between the ith blade and casing
ωc Rotational speed of the cage
ωVC Frequency of varying compliance vibration
γ0 Radial clearance of the bearing
δbi Contact deformation of the bearing
γ0 Radial clearance of the bearing
Φ Rotation angle between the adjacent disks
Φ0 Relative rotation angle at the transition point
ξ1, ξ2 Modal damping ratios

Appendix A

The mass, stiffness, and gyroscopic matrices of the jointed element are shown as
follows:

Me
J =



m1
0 m1
0 0 Jd1 sym
0 0 0 Jd1
0 0 0 0 m2
0 0 0 0 0 m2
0 0 0 0 0 0 Jd2
0 0 0 0 0 0 0 Jd2


(A1)

where mi and Jdi (i = 1, 2) represent the mass and diametral moment of inertia of the disks
of the bolted joint, respectively.

Ke
J =



ks
0 ks
0 0 kθ sym
0 0 0 kθ

−ks 0 0 0 ks
0 −ks 0 0 0 ks
0 0 −kθ 0 0 0 kθ

0 0 0 −kθ 0 0 0 kθ


(A2)



Processes 2023, 11, 2379 22 of 25

where kθ and ks represent the bending stiffness and lateral stiffness of the bolted joint,
respectively.

Ce
J =



cs
0 cs
0 0 cθ sym
0 0 0 cθ

−cs 0 0 0 cs
0 −cs 0 0 0 cs
0 0 −cθ 0 0 0 cθ

0 0 0 −cθ 0 0 0 cθ


(A3)

where cθ and cs represent the bending stiffness and lateral damping of the bolted joint,
respectively.

Ge
J =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −Jp1 0 0 0 0
0 0 Jp1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Jp2
0 0 0 0 0 0 Jp2 0


(A4)

where Jpi (i = 1, 2) represent the polar moments of inertia of the disks of the bolted joint.

Appendix B

The mass matrix of the beam element can be written as

Me
T =

ρAl

(1 + ϕs)
2



MT1
0 MT1
0 −MT4 MT2 symm

MT4 0 0 MT2
MT3 0 0 MT5 MT1

0 MT3 −MT5 0 0 MT1
0 MT5 MT6 0 0 MT4 MT2

−MT5 0 0 MT6 −MT4 0 0 MT2


(A5)

where
MT1 = 13

35 + 7
10 ϕs +

1
3 ϕ2

s , MT2 =
(

1
105 + 1

60 ϕs +
1

120 ϕ2
s

)
l2

MT3 = 9
70 + 3

10 ϕs +
1
6 ϕ2

s , MT4 =
(

11
210 + 11

120 ϕs +
1

24 ϕ2
s

)
l

MT5 =
(

13
420 + 3

40 ϕs +
1

24 ϕ2
s

)
l, MT6 = −

(
1

140 + 1
60 ϕs +

1
120 ϕ2

s

)
l2

ϕs =
12EI

GAs l2 , As =
6A(1+µ)

7+6µ , I = π
64
(

D4 − d4)
(A6)

where D, d, and l denote the outer diameter, inner diameter, and length of the beam element;
E, G, µ, and ρ represent the elastic modulus, shear modulus, Poisson ratio, and density of
the beam element; A, I, As, and ϕs are the section area, second moment of area, effective
shear area, and shear deformation coefficient of the cross-section of the beam element.
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The inertial matrix of the beam element of the shaft can be expressed as

Me
R =

ρI

l(1 + ϕs)
2



MR1
0 MR1
0 −MR4 MR2 symm

MR4 0 0 MR2
−MR1 0 0 −MR4 MR1

0 −MR1 MR4 0 0 MR1
0 −MR4 MR3 0 0 MR4 −MR2

MR4 0 0 MR3 −MR4 0 0 MR2


(A7)

where
MR1 = 5

6 , MR2 =
(

2
15 + 1

6 ϕs +
1
3 ϕ2

s

)
l2

MR3 = −
(

1
30 + 1

6 ϕs − 1
6 ϕ2

s

)
l2, MR4 =

(
1

10 −
1
2 ϕs

)
l

(A8)

The stiffness matrix of the beam element of the bolt-joint rotor system can be calculated
by

Ke
B =

EI
l3(1 + ϕs)



KB1
0 KB1
0 −KB4 KB2 symm

KB4 0 0 KB2
−KB1 0 0 −KB4 KB1

0 −KB1 KB4 0 0 KB1
0 −KB4 KB3 0 0 KB4 KB2

KB4 0 0 KB3 −KB4 0 0 KB2


(A9)

where
KB1 = 12, KB2 = (4 + ϕs)l2, KB3 = (2− ϕs)l2, KB4 = 6l (A10)

The gyroscopic matrix of the beam element of the rotor system is expressed as

Ge =
ρI

15l(1 + ϕs)
2



0
G1 0
−G2 0 0 antisymm

0 −G2 G4 0
0 G1 −G2 0 0
−G1 0 0 −G2 G1 0
−G2 0 0 G3 G2 0 0

0 −G2 −G3 0 0 G2 G4 0


(A11)

where

G1 = 36, G2 = 3l − 15lϕs, G3 = l2 + 5l2 ϕs − 5l2 ϕ2
s , G4 = 4l2 + 5l2 ϕs + 10l2 ϕ2

s (A12)
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