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Abstract: Data management systems are increasingly used in industrial processes. However, data
collected as part of industrial process operations, such as sensor or measurement instruments data,
contain various sources of errors that can hamper process analysis and decision making. The authors
propose an operating-regime-based data processing framework for industrial process decision making.
The framework was designed to increase the quality and take advantage of available process data
use to make informed offline strategic business operation decisions, i.e., environmental, cost and
energy analysis, optimization, fault detection, debottlenecking, etc. The approach was synthesized
from best practices derived from the available framework and improved upon its predecessor by
putting forward the combination of process expertise and data-driven approaches. This systematic
and structured approach includes the following stages: (1) scope of the analysis, (2) signal processing,
(3) steady-state operating periods detection, (4) data reconciliation and (5) operating regime detection
and identification. The proposed framework is applied to the brownstock washing department of a
dissolving pulp mill. Over a 5-month period, the process was found to be in steady-state 32% of the
time. Twenty (20) distinct operating regimes were identified. Further processing with the help of
data reconciliation techniques, principal component analysis and k-means clustering showed that the
main drivers explaining the operating regimes are the pulp level in tanks, its density, and the shower
wash water flow rate. Additionally, it was concluded that the top four persistently problematic
sensors across the steady-state spans that would need to be verified are three flow meters (06FIC137,
06FIC152, and 06FIC433), and one consistency sensor (06NIC423). This information was relayed to
process experts contacts at the plant for further investigation.

Keywords: industrial data; data processing; steady-state detection; data reconciliation; operating
regime; framework

1. Introduction

Data available in today’s industrial processes are abundant and contain the knowledge
that can help plants with their decision-making processes. Examples of decisions include
identifying which products or recipes are not profitable (cost analysis), which generate
the most emissions (environmental analysis), which requires the most resources (energy
analysis), when should maintenance be performed (predictive maintenance), and how
to best schedule production (optimization analysis). However, big data does not always
include good data only; raw process data alone have no refined value and are of limited
use until they are converted or transformed into information. Measured process data
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from sensors and instruments are the source of process data, but are however inherently
corrupted and distorted by different types of errors and therefore data cleaning techniques
must be applied before incorporating these data in any analysis [1]. Plants need to pre-
process their big data to obtain useful good data of reproducible and reliable quality.

Measurements taken in industrial processes are generally impacted by errors that can
be grouped into three main categories: random and gross errors as well as abnormalities.
The presence of these errors can be evidenced by noise in process data and the inconsistency
between the measured values and the material, energy and momentum balances related to
the process. This makes the direct use of raw data inefficient. In order to overcome these
issues, data filtering and reconciliation have become established industrial practices [2].
Data processing is widely used for time series data coming from sensors, enabling improved
decision making [3–6]. Data manipulation approaches allow us to take full advantage of
the information collected and provide many benefits such as better plant knowledge,
reduced downtime (hence, throughput increase), decrease in maintenance costs, reduce
over-specified feed quality, increase in product quality, minimized energy consumption
and improved energy efficiency [7].

An adequate elimination of the errors present in the measurements enables us to
increase the effectiveness and efficiency of decisions related to the operation of chemi-
cal processes. The latter include the configuration of the control systems, detection and
diagnosis operating problems, planning, scheduling, and coordinating, identifying equip-
ment maintenance requirements, and real-time optimization of the process operations and
environmental, cost and energy analysis.

The operation of a process can exhibit different regimes (operating strategies) that may
be characterized by feedstock changes (nature or quality of feedstock), diverse operating
or processing conditions, different products runs and product switching periods, seasons,
production rates, maintenance periods, equipment modes, shutdown and ramping-up
periods, and recipes.

Segmenting industrial process sensor data (time-series data) into different operating
regimes opens the possibility of assessing energy (or resources) consumption, detecting
ineffectiveness and inefficiency, monitoring performance, cost, yield, and product quality
for each regime. This analysis should help dictate and direct the best way to operate a
plant; the identification of the most economic, effective, and efficient operating regimes
also determines the least interesting ones [1]. The detection and identification of these
regimes may also help debottleneck the process and impact the production coordination,
scheduling and planning of the plant.

Process decision making is directly dependent on an adequate interpretation of the
process variables trends. We have established that industrial process data must be processed
prior to taking any decisions. However, the complexity and specificity of chemical processes
require the consideration of a priori process knowledge when analyzing industrial data
for decision making in order to extract and analyze these trends and behaviors. The
decision-making process should not be disconnected from process knowledge, but must
exploit data-driven approaches. There is a need for a systematic methodology that would
balance both dimensions and prepare data for future decision-making applications; such
methodology is presently unavailable—frameworks presented in Section 2 have limited
scope or major limitations.

Therefore, this paper proposes an operating-regime-based data management frame-
work (data quality improvement strategy) that combines the interpretation of the process
operation (understanding of the process) with data-driven mathematical approaches for
design, production, process and/or operation related decision making. This systematic and
structured way to analyze historical process signals for making offline strategic decisions
puts a specific emphasis on operating regime detection and identification (ORDI). This
practical framework will be applied to the data of a brownstock washing department of a
dissolving pulp mill.
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To pull together this architecture, Section 2 presents the existing data processing frame-
works that are established for industrial decision making and reviews existing methods for
industrial process operating regime detection proposed in the literature. Then, Section 3
describes the steps employed to obtain the proposed operating-regime-based data process-
ing framework and Section 4 presents the framework based on the combination of process
knowledge and data-driven approach. This section demonstrates the applicability of the
framework as well on data from a dissolving pulp mill. Section 5 gives a conclusion of the
present work.

2. Review of Data Processing Frameworks for Industrial Decision Making

Industrial processes have a data management strategy (how data are collected, stored,
and accessed) as well as a data processing strategy (improving their quality), together they
lead to decision making. Software offering a range of data processing steps for various
decision-making nature are presented in [8]. The data manipulation and treatment steps
required vary from one application (decision) to another [8]. Data processing frameworks
employed for industrial decision making. focusing on offline process diagnostics, trou-
bleshooting, optimization, and cost analysis, are summarized in Table 1 to compare the
steps undertaken in each of these with what is proposed in this publication. The objective
is to assess the pros and cons of existing frameworks, and point out what is missing. Each
step could be performed with various techniques. The focus of this publication is not to
compare these techniques explicitly, but rather to develop a framework that contains all
necessary step, and that these steps are performed with techniques that consider process
knowledge as much as the data-driven aspects.

Table 1. Comparison of frameworks.

[9] [10] [1] [11] [12] This
Publication

Scope or final
application of
processed data

Simulation
calibration and

validation

Improve
accuracy and

precision
Cost analysis Optimization Optimization

Business
operation
decisions

Data synchronisation
and imputation No No No No No Yes

Inter- and Intra-unit
lag correction No No No No No Yes

Detection and
correction of outliers Yes Yes Yes No Yes Yes

Noise reduction Yes Yes Yes Yes Yes Yes

Steady-state
detection Yes Yes Yes Yes Yes Yes

Data reconciliation Yes Yes Yes Yes Yes Yes

Operating regime
detection No Yes Yes No No Yes

As data must be processed for a targeted specific application, it is critical to highlight
the scope of the analysis and take into consideration the period that is under study here.
Ref. [9] proposed a systematic strategy (Figure 1) to improve and validate a steady-state
simulation model of a recaustizing plant in a pulp mill. The processed and reconciled
data showed that the simulation is reasonable for practical application such as process
sensitivity analysis, investigation of pulp production increase and providing insight related
to capital effective options for plant upgrade alternatives.
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Figure 1. Strategy for improving data quality for simulation calibration and validation, adapted
from [9].

Based on Jiang’s work, Ref. [10] suggested a sequence of steps to increase value
by improving the quality of real-time process measurements (Figure 2). Bellec’s data
processing framework aims to improve the overall accuracy and precision of process
data. The selected data treatment techniques are suitable for online applications. Ref. [10]
claimed that by compiling steady-state reconciled data in different operating regimes,
plants can build a database of accurate process data. The database could lead to benefits
related to process operation and troubleshooting such as identification of process leaks and
instruments failures for improved process yield [10]. The understanding of the process
is improved from knowing the different process operating conditions and plant-wide, or
multi-unit-wide optimization could be done by coupling operational data and operating
cost data for specific products in particular operating regimes [10].
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Figure 2. Methodology to improve data quality proposed by Bellec et al., adapted from [10].

In 2011, Korbel proposed a framework (Figure 3) that uses plant-wide rectified process
data in cost analysis for identifying short- and long-term benefits, i.e., profitable and un-
profitable regimes [1]. The reconciled data obtained following the last step of his framework
is used for advanced cost analysis for production decision making; this operations-driven
cost analysis is performed through an activity-based cost modelling approach for a given
operating regime.
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Ref. [11] detailed the necessary steps to preprocess data before utilizing them in real-
time optimization for implementation. Moreover, Ref. [12] proposed a sequence of data
processing steps that lead to process optimization. For instance, they put forward that
the essential steps that need to be followed include: (1) data acquisition, (2) data treat-
ment, (3) steady-state detection, (4) data reconciliation, (5) optimization, and (6) solution
validation. During the data acquisition stage, the user specifies whether the algorithm
will operate offline, independent of the plant’s actual state, or online, where values are
directly retrieved from the process database. The proposed framework can be applied to
all decisions related to business operation, i.e., environmental, cost and energy analysis,
optimization, fault detection, debottlenecking, etc.

None of the aforementioned frameworks acknowledge the data synchronization and
imputation step. The importance of this step is explained in Section 4.2.

Regarding the inter- and intra-unit lag correction steps, Ref. [10] ensure that the lags
in the process are considered by retaining only steady-state periods longer than a threshold
value, i.e., the system delay plus a safety factor. Therefore, they targeted steady-state
periods long enough for them to compensate for the fact that the various departments in a
process are not synchronized.

Both Jiang’s and Bellec’s frameworks achieved the detection and correction of abnor-
mal measurements by employing a method based on wavelet transforms [13,14]. In the
second step of Delou’s framework, each input variable may undergo a linear transformation
to scale or change units, while also eliminating any unwanted or out-of-limit values. This
step is repeated iteratively until all potential errors have been eliminated.

Moving on to the noise removal step. For [9], the data processing step reduced errors
and extracted key process trends. To do so, the authors performed a multi-scale data
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processing using wavelet transform. They discarded random noise, and extracted process
trends by using an approach proposed by [13]. For Bellec, a data filtration technique also
based on wavelet transform [14] is used to correct random errors. For Korbel, noise and
abnormalities are extracted simultaneously from the process measurement trends by ap-
plying optimal wavelet transform parameters which are adjusted iteratively until optimal
data pre-processing and accurate steady-state detection are perceived to be achieved [1]. In
Reyes’s framework, signal denoising was performed using both short-time Fourier trans-
form, and wavelet transform, with a preference for the latter. The authors emphasized the
significance of selecting an appropriate mother wavelet and concluded that the Daubechies
wavelet family provided the most accurate results in their case.

In Jiang’s framework, the steady-state detection is performed using a method based on
wavelet transform presented by [13]. In Bellec’s work, steady-state operating periods are
carefully identified based on the approach mentioned in [14]. For Korbel, the identification
of steady-state operation is performed within each of the operating regime under analysis.
The denoised signals, series or trends are analyzed for steady-state occurrences using a
methodology based on wavelet transform presented in [15]. The detection of steady-state
periods is done in two steps, (1) univariately and (2) in a multivariate way by comparing the
whole set of key variable states over time. In Reyes’s framework, steady-state identification
is accomplished using the wavelet method proposed by [14]. Delou et al. mentioned how
steady-state detection becomes crucial before proceeding to the reconciliation stage, as it
ensures the reliable estimation of the optimization model parameters. Ref. [12] employed
two statistical tests to detect steady-state conditions.

The data reconciliation step is performed using the Sigmafine V. 3 software (Sigmafine,
2022) in Jiang’s framework. For Bellec, gross errors are corrected by using a weighted
least squares method. In Korbel’s framework, plant-wide data reconciliation assesses
the data validity by comparing them to the values of the underlying process model, i.e.,
a simulation that accounts for the material and energy balances and/or other laws of
conservation. The details behind the steps performed for data rectification are presented
in [1]. To detect gross errors, Reyes et al. employed Hampel’s redescending M-estimator
and minimized the generalized maximum likelihood objective function. This process was
carried out for 24 steady-state intervals, each containing 8000 data points. Regarding
Delou’s framework, data reconciliation is formulated as a nonlinear programming problem.
Once the reconciliation is performed, the optimization problem can be solved, and the
resulting solution can be validated.

Operating regimes should be considered in order to account for the mill or plant
variability. In [10] framework, the authors included a system status identification where
the main purpose is to identify the conditions of operation for the system under study
and select the data processing parameters associated with the identified process status
(operating regime). The selection is based on an offline investigation of all steady-state
operating conditions and that the parameters are set to achieve, as claimed by [10], optimal
results. Ref. [10] are vague regarding the optimality of the results, but process knowledge
seems to be involved. Additionally, in the validation step of the framework presented by
Bellec et al. on historical data from a paper machine, the authors included the notion of
operating regimes also known as modes or grades. They underlined that a process may
have many different steady-state operating regimes. Those are identified for the system
under study and then the characteristics associated with the different operating regimes
are compiled and stored in a database. The probability of occurrence, the duration of each
regime and the delay occurring between those are assessed. Additionally, the mean and
variance of process measurements within each operating regime are also compiled and
stocked in a database. These characteristics, associated with each process measurement
within an operating regime, are useful to properly identify the operating and processing
conditions of the studied process [10]. In Korbel’s framework, the initial step consists of
defining operating regimes, i.e., characterizing the operating differences that occur while
producing each specific product. According to [1], operating regimes are established when
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changes occur in process design, when different equipment are used, when changes occur
in production target or in setpoint control strategy as well as feedstock diversity.

Changes in processing conditions, such as long-term evolution and transition from
one regime to another, have often been ignored when analyzing industrial process data [16].
Modern automated data acquisition systems, improved data storage capacity and retrieval,
combined with the proliferation of inexpensive sensors and instrumentation massively
increased availability of data. This massive amount of data is not easy to interpret by
conventional means. To exploit and take advantage of this data, chemical engineers must
use data science tools, such as those discussed in this paper. Industrial (chemical) plants
commonly operate in a finite set of operating regimes, which may be classified as modes
where process variables vary within a relatively narrow band, i.e., are at steady-state [17].
On the other hand, transition or sequencing periods are characterized by large changes
in one or more variables [17]. The latter represent the state of the process between two
modes, e.g., a change in setpoint, the opening of a valve, and/or a change in equipment
configuration. Research has shown that the behavior of a process may differ greatly between
modes [16].

Archived process data can be used to cluster or characterize process states [18]. Heikki-
nen et al. grouped variables by the k-means algorithm into clusters that represent different
process states [18]. The state of the process is determined through data analysis. The
clusters are analyzed to indicate differences in process states by examining their properties
and by using process knowledge. A cluster representing periods of plant shutdown is
easily identified based on very low volumetric flow. Heikkinen et al. findings showed that
seasonality is one of the clearest distinguishing factors between clusters. One cluster is
prevalent in the summertime, another in the wintertime, a third represented periods when
the whole process is either out of control or shut down, and a fourth represented periods
when the process is unstable or unsteady. Various identified process states gave information
about its process behavior. This information is used to determine optimum setpoints for
key process variables within a process state. Process knowledge is needed for variable
selection and for associating and allocating process states to clusters (Figure 4).There is
always measurement noise that affects accuracy; therefore, the variables are filtered by a
moving average filter (Figure 4).
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The idea of using k-means clustering to create subsets representing process states is
taken up by Liukkonen et al. as well [16,19]. One of the most commonly used unsupervised
clustering methods is the k-means algorithm [20]. Perhaps the biggest issue when trying to
implement this technique is the requirement to set the number of clusters in advance; this is
rarely known for complex processes operating under unknown conditions or in a changing
environment [21]. Therefore, Ref. [21] used another unsupervised clustering technique to
detect operating regimes in condition monitoring data, e.g., vibration signals, called the
variational Bayesian Gaussian mixture.
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Traditional clustering techniques are computationally expensive and generally per-
form poorly on time-series data because they are intended for more time-independent
observations, Ref. [22] proposed a two-step clustering method based on principal compo-
nent analysis (PCA). Chemical plants normally operate in a number of operating states (e.g.,
plant start-up, grade change, shutdown), including steady state, and frequently switch
between them. Therefore, in the first step, process states are classified into modes, i.e., the
process unit operates in steady-state and transitions, using a novel multivariate algorithm
to segment historical data. A PCA algorithm is then used in the second step to compare the
different modes and transitions to cluster them based on their similarities. Process control,
simulation, fault detection, and alarm management are examples of applications whose
parameters must be adjusted to fit the current process state [22].

In practice, translating the obtained clusters to operating regimes periods requires
input from operating personnel, i.e., adequate knowledge of process history. When a clear
change appears in the operating regime, it might be something new, unknown, or something
very common and already identified, i.e., a specific operating mode, and the plant have
criteria to identify that regime. It takes well-defined criteria or targeted measurements to
know in which operating regime the process is operating under. Distinct operating regimes
should be named and characterized (is this regime repeatable, is it relevant to the process,
should engineering personnel know about it and act on it, etc.). Ref. [23] used cluster
analysis [24] as a framework to simultaneously identify process states, detect transition
periods between states, and label times of occurrence using historical time-series data. As
part of the cluster interpretation, the most desired operating regimes are identified on the
basis of knowledge of the process history.

Even if the notion of process knowledge is considered [18] or mentioned [23], studies,
approaches or frameworks that identify operating regimes using a combination of process
knowledge and data-driven approaches are lacking in the literature. Therefore, this paper
attempts to address this by setting-up an operating-regime-based data processing frame-
work in which regimes are considered and detected using both process knowledge and
clustering analysis (principal component analysis and k-means).

Prior to operating regimes detection, process data are reconciled. The idea of inte-
grating data reconciliation and principal component analysis have been presented before
for energy monitoring [25], fault detection [26,27], smart energy distribution network [28],
analytical chemistry [29], data processing [30] and improved data reconciliation [31,32].

Clustering in general, i.e., not only for industrial process operating regime detec-
tion, can be performed with a plethora of techniques and algorithms, some being very
recent. More details can be found in the following publications regarding expectation-
maximization algorithm [33–36], c-means [37–40], principal component analysis with
k-means algorithm [41–44], discriminant analysis [45,46], Kohonen neural network [47,48],
genetic algorithm [49–52] and graph clustering algorithm [53–56].

Therefore, compared to [9] framework, Ref. [10] considered operating regimes. To the
best of our knowledge, the operating regimes are manually identified by experts in the
process, no data-driven techniques were referred to. Additionally, the lags in the process are
considered but not systematically and rigorously accounted for; to eliminate them, Ref. [10]
retained only steady-state period that lasted a certain amount of time. Additionally, there is
no mention of an identification of steady-state periods for a whole system, i.e., a unit-wide
or plant-wide steady-state detection. With Korbel’s framework [1], the operating regimes
are defined based on process knowledge and sound engineering judgement. Therefore,
no data-driven techniques were mentioned for operating regime detection in Korbel’s
framework. Furthermore, there is no mention of data synchronization, imputation, inter-
and intra-unit lag correction. Hence, it is found in the literature that most of the data
management frameworks for offline decision making considered data processing steps
(noise reduction, outlier detection and data reconciliation), but their scope is not always
explicit, and operating regime detection is not systematically considered. Neither Reyes
et al. nor Delou et al. approach consider operating regimes detection. This paper proposes
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a framework that combine process knowledge and data-driven techniques at each step
and addresses these limitations. Using process operation knowledge in all steps of data
analytics is also addressed in [57]. They built an inferential sensor model to predict the
impurity in the product stream for the Dow data challenge problem.

3. Methodology: Operating-Regime-Based Data Processing Framework

This paper presents a systematic and structured approach inspired by the frameworks
presented in Section 2 to process industrial signals to assist in the making of strategic
management decisions. These decisions would be made offline. This framework, based
on the combination of process knowledge and a data-driven approach, considers a scope
definition, data processing, steady-state detection, data reconciliation and operating regime
detection (a specific focus is put on this last step). The proposed framework employed
various tools such as EXPLORE version 2.2.0.814 [58], MATLAB V. R2021a, Excel V. 2306
and IMPL-DATA V. Release 1.7.

As part of the framework proposed here, the data reconciliation is performed using
IMPL-DATA [59]. The latter is a data reconciliation modeling and solving platform, imple-
mented in Microsoft Excel, to perform any type of unit-wide and plant-wide nonlinear data
reconciliation application in off-line and on-line environments. IMPL-DATA is specifically
streamlined and suited to the interactive workflow of DR in terms of its gross error detec-
tion, identification, and elimination capabilities. Additionally, it contains a smart model
building capability to configure small to large nonlinear data reconciliation problems. The
straightforward formulation of these models is based on units such as mixers, splitters, and
processes interconnected via streams where quantity and quality meters (flows, holdups,
densities, etc.) may be assigned or mapped.

In summary, the suggested methodology exploits the advantages of data-driven
approaches and uses process expertise as complementarity information sources. This is a
generic approach that can be applied for a wide range of industrial processes.

To obtain this architecture, a literature review of existing data processing frameworks
is accomplished. Their strengths and weaknesses are highlighted. That leads to the formu-
lation of a series of steps (framework) that address the identified potential improvements
to existing frameworks; it is a synthesis of practical data management techniques. Then,
the proposed framework is tested in a case study. Finally, the limitations of the approach
suggested are presented in the conclusion for them to be addressed in future work.

4. Results and Discussion

Following the framework development, an application is demonstrated on data from
the brownstock washing department of a dissolving pulp mill in order to put this architec-
ture together and interpret data for decision making.

The following sections present a framework for which all steps consider the combi-
nation of process knowledge and data-driven approaches as well as its application to the
brownstock washing department on a dissolving pulp mill. The synthesized framework
have five major steps: scope definition, data processing, steady-state detection, data recon-
ciliation and operating regime detection. It is based on the limitations presented in Section 2.
The objective of the framework is to provide plant personnel with rectified and reconciled
data in each operating regimes to be used in various analysis (environmental, cost, energy,
debottlenecking, fault detection, troubleshooting, etc.) for improved decision making.

Measurements taken in industry contains several types of errors that can be grouped
under three main categories: abnormalities, random errors, and gross errors. These errors
are corrected in a series of five steps. First, given the fact that data are always processed
according to a specific and targeted goal, the objective of the analysis (the scope) is defined,
and data are collected (step 1). Then, data are processed, i.e., data undergo a synchro-
nization step, a lag correction, the abnormal operations are removed, and data are filtered
to remove unwanted high frequency components (step 2). The third step is to detect the
steady-state data series that will allow the data reconciliation step (step 4). In step #5, the
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various operating regimes are detected and identified. This framework is limited to offline
operating data (as opposed to real-time online process data) as they are an important source
of process insight.

The proposed framework focuses on data that are representative of normal and desir-
able operating conditions. Abnormal operations, fault detection and diagnosis are critical,
but are not the subject under advisement in this paper. Therefore, shutdown and startup
periods as well as outliers are removed, and steady-state periods are detected.

Lastly, all steps have their own internal feedback loop. For instance, in the data
reconciliation step, the moment one gross error is eliminated, another may be found; a
practical way to perform data reconciliation is to remove gross errors one at the time.

Figure 5 depicts the proposed methodological framework.
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4.1. Step 1: Scope Definition

Any data processing analysis starts by defining the objectives of the analysis, e.g.,
optimizing the production sequence, reducing the operating cost in a plant’s department,
identifying unprofitable operating regimes. It is critical to put forward why this analysis
is performed, what are the data used for and what is being studied. Therefore, the oper-
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ating regimes known and recognized by the process experts, i.e., the different recipes as
expressed in standard operating procedure that are related to the analysis objective, should
be acknowledged. Operating regimes are used to answer questions, solve problematics,
and make decisions in industrial processes. Depending on the question, the problematic or
the process decision to be made, specific operating regimes will be required.

“Top-down” operating regimes are defined using process knowledge, they are obvious
and easily detectable; process experts are aware of those. These operating regimes are
driven by changes in the control setpoint strategy caused by different operating conditions
(seasons, product, feedstock changes, production rate, maintenance, the usage of different
production lines, etc.). The fact to the matter is that those setpoints do not account for
everything happening in industrial processes. In fact, even if operating regimes are defined
by standard operating procedures (SOP), setpoints are changed by operators since a plant
is not 100% automated. The process can be operated in automatic or manual mode; some
variables are left in automatic control all the time while others are not. Furthermore, it
could be possible to observe differences in some variables when an equipment needs
maintenance, hence before and after maintenance. Moreover, equipment performance
changes all the time because of fouling, deterioration, therefore the recipe should be
adjusted accordingly. Hence, operators are acting when something changes in the process;
there could be a problem in the process, variation in raw material, hence the process needs
adjustments. Additionally, two different operators will not necessarily take the same action.
These considerations are made later on with the “bottom-up” operating regime detection
through clustering analysis and the drivers of these operating regimes are assessed (process
knowledge is necessary to understand why variables act as they do). In the scope definition,
only the “top-down” operating regimes are considered; the idea is to go as far as possible
using the recipes (SOP) considering what is required related to the scope, then those regimes
will be sub-categorized by using clusters.

The top-down analysis may be assimilated into a white-box approach since it puts
forward how a plant is supposed to operate, how it is designed, what grades are pro-
duced, what are the setpoints for those grades, what are the standard operating procedure
(SOP) says, etc. On the other hand, the bottom-up can be perceived as the black-box ap-
proach; process data, through clustering analysis, may uncover unknown elements about
the process.

Then, raw process data are collected over a period that is representative for the targeted
analysis. Every process generates a wide range of data types that are collected, gathered,
and stored in the process database/historian systems. These include process sensor data
(pressure, flow, temperature, level), lab results, manufacturing schedule, production mode,
product grade, and many others. Therefore, pertinent data must be gathered considering
the objective of the analysis.

4.2. Step 2: Signal Processing

Data must be synchronized to the same time step since they are often stored on the
change in value, which is not a regular frequency, and variables used in an analysis will
not necessarily be sampled at the same rate (for instance hourly for some lab data versus
by the second for some sensors). Compression is used to save data storage space, therefore
sensor data are often only logged when the values differ significantly from the previously
stored value (change-of-value basis), whereas lab data might be available once every hour
or every day. Therefore, to perform any analysis, all data should be synchronized, and
preferably, to the frequency of interest. Thus, if the sampling frequency of a variable is
lower than the frequency of interest for an analysis, data imputation must be performed
(linear interpolation of data, repeat the last valid value) [60]. On the other hand, if the
sampling frequency is higher than the frequency of interest, then the mean, the closest
value, the minimum value, or the maximum value over a sampling interval equal to the
desired time step must be considered, depending on the analysis.



Processes 2023, 11, 2376 12 of 37

For most analyses, it is not mandatory to have all the sampled data points values. For
instance, to determine a trend, a few missing values in a dataset are not a problem [61].
Larger segments without data are, however, unusable in most analysis. Therefore, missing
half of the values is a problem in the case of contiguously missing data that results in large
empty stretches, but, depending on the analytics algorithm, it might be less of an issue if
every other value is missing [61].

Once the synchronization process to set data on a regular time interval is done, the
lag is accounted for. For an analysis that is taken place inside one department (system or
unit) only, intra-unit lag correction is performed. On the other hand, a plant-wide analysis
considers inter-unit lag as well—that is, the lag from one unit to another. For instance,
when the production stops in the digester units of a pulp and paper mill, it takes a few
hours for the repercussions to be visible at the paper machine. The lag accounts for the time
required for the operations, the retention time, the transport time, etc. Lags vary according
to the production rate. By ignoring the lags, some correlations may be lost. Furthermore,
most of the subsequent steps involved in this framework employed reference variables
(independent variables that describe the process) to perform the analysis; therefore, all
variables must be aligned in time beforehand. The lag correction analysis is achieved based
on Fourier and cross-correlation analysis (software such as EXPLORE v. 2.2.0.814 [58] offers
this functionality) [62–65]. This approach is robust to noisy signals.

If the data processing framework is applied on batch processes (as opposed to con-
tinuous ones), dynamic time warping should be considered for a standardized reference
timeline in addition to the lag analysis as the different batches might have different batch
time. More information on dynamic time warping can be found in [66].

As part of the data processing phase, the shutdown and start up periods should be
removed. To do so, variables of reference are selected to detect those periods. Even when
the process is stopped, some pieces of equipment are still functioning, hence some sensors
are still collecting data and therefore could not be used as reference. Using reference
variables, specific periods are detected visually and deleted from the dataset by numerical
validation, i.e., all values under a certain limit that are not representative of the normal
and desirable operating conditions. The threshold values are specified by a process expert.
The removal of process shutdown and start up events from the reference variables are
mirrored onto the other variables used as part of the analysis (values at certain time stamps
will be eliminated for all variables). Lastly, additional data points beyond the specified
period which are impacted by a process shutdown (a time delay/interval or buffer around
these periods) are removed to account for the time required to shut the system and to
reach normal operations again. In other words, periods of downtime are extended to
include transient periods. The time intervals removed around downtime is chosen based
on operating practice and process expert judgement.

Alongside shutdown removal, an important step in signal processing is to detect
and remove outliers [67]. Therefore, once downtime periods are eliminated from the
dataset, outliers, i.e., observations that deviates from the expected behavior of a process
variable—values that are out of range, are removed. These values are often of short duration
and present abrupt changes in the signal. The fact that top-down operating regimes
are defined earlier on helps in the identification of outliers as segmenting process data
reduces variability (and the standard deviation), and thus makes it easier to detect process
deviations and avoid unnecessary rejects. Similarly as what is done for the shutdown and
start up periods, variables that represent the system under analysis (key process variables)
are used to detect outliers. The quartiles analysis [68] is used to identify and remove
outliers univariately in the key process variables [69]. This removal is reflected in all the
other variables. The quartiles analysis is based on the median and is therefore independent
from the distribution and more robust (and efficient) towards outliers detection.

Additionally, a spatial correlation-based outlier detection analysis is carried out using
principal component analysis (PCA) to validate the results of the quartile analysis. The
PCA identify the residual values by extracting the principal components of the dataset, and
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these are evaluated through detection mechanism such as Hotelling T2 score and squared
prediction error to find important discordant data points—observations falling outside the
(95% or 99%) confidence level of the model [70]. The Hotelling’s 95 or 99-percentile appears
as an ellipse on the score chart, showing how each observation fits within the model relative
to all the others. Data points around the outliers might also be removed to ensure that
the period of disruption, i.e., the period of abrupt change in the signal, is covered. Once
identified and removed, abnormal data points may be corrected using imputation. This
value can be predicted using previous data, interpolation or by using the mean value.
Lastly, abnormal data can also be labeled as missing data or non-naturally occurring
number (−99.999). References that considered PCA for outlier removal include [57,71].

Afterwards, in order to reduce noise that affect a signal by making it less representative
of the true process state (random errors) and, therefore, distinguish the process trend,
signals are filtered. Various sources of noise add a random component to the signal
fluctuations. To achieve that, the wavelet transform are used. Some approaches reported in
the literature are compared in [72]. It is highlighted that low-pass filters do not have the
ability to reduce noise present at different frequencies and that lead to the development
of multi-level analysis. In this category, the use of wavelet transform is preferred to that
of short time Fourier transform because of the weaknesses towards temporal localization
of the latter. The wavelet transform technique offers simultaneous localization in time
and frequency domain, it preserves important signal features while removing unwanted
components (noise); it is able to separate the finest details in signals. Finally, to ensure that
the filtering does not induce unwanted lag, a second lag analysis might be performed.

Similarly as for the outlier detection, the consideration of the inherent variability of the
data from the top-down operating regimes definition before noise reduction can benefit this
data processing step as the process noise amplitude can fluctuate with operating conditions,
and therefore the filter parameters must be adapted [73].

4.3. Step 3: Steady-State Detection

Industrial process signals describing a process cover both transient and steady-state
operations. The former happen between steady-state operating periods and occur because
of environmental changes, upsets, changes in setpoints, etc. Plants are tracking and
reporting what is happening during these transient periods; the analysis of these periods
includes how long they lasted, how to minimize the transition time and the asset reliability
(equipment failures happening during transient states). However, this framework focuses
on steady-state periods to provide a better understanding of how the process operates as
well as significant information for offline management decision making to improve the
process analytics. Therefore, transient periods are not considered.

In order to detect when a process is operating under steady-state conditions, the first
step consists of the identification of critical variables that will be used as the basis for the
steady-state detection (SSD). This identification is done using process knowledge. The
variables should be those that best characterize the stability of the system and should
additionally be independent, i.e., controlled by different setpoints or variables, and not
correlated, i.e., do not vary together at the same time. When all the key process variables
are simultaneously in steady-state, the system is said to have reached steady-state con-
ditions. An alternate solution would be to claim steady-state if some percentage of the
critical variables are at steady-state. This percentage value would vary depending on the
complexity of the process.

The SSD algorithm employed as part of this framework is inspired by the one presented
by Kelly and Hedengren in 2013 [74]. This window-based algorithm utilizes the Student-t
test to determine if the difference between the process signal value and its mean is above or
below the standard deviation times its statistical critical value—below would mean that
the time instant is steady whereas above would indicate that it is unsteady.

This approach offers a practical, efficient, and robust way to detect steady-state condi-
tions, the implementation is computationally simple (easy to apply/implement or easily
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implemented), the criteria are generalizable, the results are reproductible, easily inter-
pretable, and reliable, and lastly, process knowledge can and must be combined with the
approach—there are adjustable parameters.

Furthermore, this SSD algorithm can accommodate noisy data, multivariable analysis
and is scale independent. The computational load imposed by the approach is minimal
as it only involves calculation of a mean, standard deviation, and slope. Lastly, this
effective method gained industrial acceptance as it is simple both in concept and imple-
mentation. It has been extensively applied to commercial/industrial-scale multivariate
processes/processing units. The details of this algorithm are presented in Appendix A.

The algorithm proposed by Kelly and Hedengren was modified. First, in order to
increase the user input and process knowledge, the estimated standard deviation of the
noise can be provided to the algorithm if it is known by the user. When the standard
deviation is endogenously computed, the result is rather liberal (looser); it will most likely
be bigger than an externally supplied standard deviation that could be more conservative
(tighter/smaller).

Additionally, the modified steady-state detection algorithm detects when a steady-
state period starts and stops, and then calculates the span range for each period (Figure 6).
The span is a collection over multiple signals (all key process variables). The algorithm is
able to keep track of the date where steady-state periods are detected using a time index
vector. The start range returns the starting index when yt vector first becomes steady for all
found spans, then the stop range returns the time index when the last contiguous yt = 1
is obtained, i.e., when the yt vector switches from 1 to 0, and the span range returns the
number of data point or time index in the interval (the length of these spans in terms of the
number of indexes when it is contiguously steady). The span range considers additionally
the number of data points in the time-window. Finally, the SSD algorithm returns some
summary metrics based on the number of indexes per span such as the maximum and
minimum number of data points in a span, the span mean, mode, median and variance. All
data windows or span deemed acceptable (how reached a minimal period of time) are then
reconciled. This idea is consistent with the fact that in process operations, there are sporadic
and persistent steady-state periods. When looking for something that is persistently steady,
a minimal period for steady-state operation should be considered.
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Hence, following the detection of steady-state periods, a threshold (criteria) for the
minimal period of time for the steady-state operation to be deemed representative is
considered. The minimal steady-state period is established based on process knowledge;
this criteria is often set as the average time required to reach steady-state in the process. This
is a generally accepted justification for the threshold as it is generalizable, reproductible,
and robust.

4.4. Step 4: Unit-Wide Steady-State Data Reconciliation

Following SSD, the remaining time-series data are reconciled. Data reconciliation (DR)
consist of identifying measurement systematic (gross) error—inconsistencies with respect
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to known conservation laws—and more specifically persistent gross error. This is done by
fitting the data to the material and energy balances. This analysis does indicate the presence
of systematic error, but does not specify which instruments (sensors) are wrong—and
whether or not there are more than one sensor in fault.

The primary purpose of applying DR is to improve industrial plant data considering
the inherent uncertainty and complexity in the process measurement systems. This is done
by making sure they satisfy all material, energy, and momentum equality constraints or
balances and any other inequality constraints or bounds that may be justifiably included.
Therefore, DR leads to the identification/diagnosis of defective, faulty and/or inconsistent
measuring instrument. Furthermore, DR provide estimates of unmeasured quantities and
qualities to be used, for instance, in daily, weekly, or monthly process, production and/or
yield accounting reports. When substituting the raw measured values by the reconciled
and estimated (regressed) unmeasured variables, all balances equal zero.

The process of data reconciliation aims to align measured process data with the princi-
ples of conservation of matter. By solely relying on these conservation laws, gross errors
can be identified. However, if these laws do not reveal any errors, it does not mean that
the data are necessarily free of gross errors. More complex models, incorporating trans-
port phenomena, fluid mechanics, and reaction kinetics details, may uncover additional
errors. Material, energy, and momentum balances are typically just a subset of the available
constraints, and adding more constraints may uncover errors that were not detected using
only these three [75].

Prior to running the DR algorithm, the process variables are categorized as mea-
sured, unmeasured, or fixed (constant in the process). After running the solver, measured
variables can be indicated as redundant or not whereas unmeasured variables could be
marked as observable or not. This classification highlights which variables can be rec-
onciled (redundant variables), which ones can be estimated (observables) and, finally,
those whose reconciliation is not possible and whose accuracy remains unchanged (non-
redundant). A measurement is redundant when, if it is removed (marked as unmeasured),
that value/variable is still observable. On the other hand, an observable variable is one that
is uniquely calculated from the model and measurements. Even if data reconciliation can
only take place if there is redundancy (the data reconciliation algorithm still works even if
the DOF is null; however, all the sensors become non-redundant) in the system, i.e., there ex-
ists more constraints or model equations than unmeasured variables, observability is more
important. Among unmeasured variables, defining which may be calculated (which one are
solvable) is required. Indeed, unobservable variables are non-unique, not reliable and their
values are arbitrary in the sense that they only satisfy the model constraints numerically.

If there are unobservable variables in the system, there are three approaches to remove
the unobservabilities: (1) add new sensors which requires capital investments, (2) add more
equations if possible and (3) reconfigure and simplify the model to remove the unobservable
variables, i.e., the model perhaps can be too granular.

Employing the framework may lead to the recommendation of implementing ad-
ditional sensors to increase redundancy. The sensor network can be redesigned using
the data reconciliation concept. That could be achieved either by using an optimization
algorithm that would maximize observability, redundancy, and precision or manually with
a simulation, adding sensors one at the time, then running data reconciliation, and assess
if observability, redundancy, and precision were improved. That would maximize the
reliability of decision making based on data interpretation.

Following variables classification, a data reconciliation model based on physical mod-
els (thermodynamic, material and energy balance models) is built to identify inconsistencies.
This model represents the flowsheet of the plant or sub-plant, it is a subset of the equations
used in a process simulation. This step requires a profound comprehension of the process.
DR model relates to the fundamental laws of material, energy, and momentum conser-
vation, and it is also dependent of the processing operations (operating modes, grades,
equipment set-ups, start-ups, shutdowns, and switchovers as well as recycle/recirculation
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loops via bypassing, repetitive cleaning and purging, etc.). From a DR perspective, these
variations in the processing operations may be mathematically expressed using the notion
of temporary stream variables (versus permanent) with zero/one, open/closed, on/off or
active/inactive stream switches. Temporary streams can be switched on or off depending
on the state of the process. Usually, industrial plant operations know a priori when mode,
grade and/or any other type of processing logic changes will occur via their planning,
scheduling, and coordinating department. As such, before, during or after the changeover
occurs, manual and/or automatic indicators such as valve actuator positions, key process
conditions, and pump/compressor starts/stops will be available to aid in the determina-
tion of when and which stream switches changed. The DR model represents all possible
streams, both permanent and temporary. Most of the streams are permanent in industrial
processes—these are represented as solid lines in Figure 7. Nevertheless, when the process
conditions change (going into another operating mode), there are streams switches or
temporary streams (represented in dotted lines in Figure 7). Thus, when a process switches
to a different operating mode, some flows are no longer required whereas others may be
opened just for the time being. Therefore, handling those stream-switch configurations can
reliably indicate a certain mode, grade or changeover that occurred and thus reducing the
model gross errors possibility, plausibility, and probability of occurrence.
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Next, the model is validated, i.e., making sure that there are no model errors. More-
over, it should be validated for each “top-down” operating regime. Indeed, in order to
properly validate the model, the operating regimes should be acknowledged since for
every operating mode, the operations change, there might be different streams (temporary
streams). Therefore, if the operating mode changes, then the model could be wrong if it
is not changed properly. Hence, the temporary streams due to operating-mode or grade
switches are properly accounted for in the model structure.

Before validating the model, both model and measurement gross error are to be
expected in the process data sets. However, once it is done, data are only left with mea-
surement gross error; there should not be any more modelling errors. Moreover, when the
process is unsteady, there will be model gross error because the mass balance equation will
not equal zero. Therefore, in order to only identify measurements gross error, unsteady
periods are excluded from the analysis, i.e., this is one of the reason SSD is required.

As part of the model validation concept, a preliminary validation stage could be
performed if a simulation of the plant process (or some process units) is available. The
simulated values would be regressed against the DR model. If no gross errors are present,
then a proper (or the actual) validation is performed based on real process data. Afterwards,
gross error detection (GED) might take place.

All three concepts (pre-validation, validation, and GED) can use initial values or
starting guesses from the variables from a simulation base case. These may be used every
time the DR is run, as they “prime” the DR solver with default results. The initial values are
used for a warm start, they can influence the solution since it is a non-convex problem (i.e.,
multiple local optima exists), convergence to the global optimum cannot be guaranteed.
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Hence, the starting guesses may find a different local solution. Lastly, these values are only
used as default results and are updated during the reconciliation solving.

Once the process model is validated, it is used to analyze typically averaged or
aggregated steady-state industrial process data. All the time-windows that are found to be
statistically steady are reconciled. The steady-state data reconciliation (SSDR) is executed
for the number of spans detected; it is computed based on the average value of each variable
over the multiple time steps declared to be steady in the span. The SSDR algorithm is
detailed in Appendix B.

4.5. Step 5: Operating Regimes Detection and Identification

The fifth step of the proposed framework is to translate processed steady-state data
into operating regimes. This gives a snapshot of the plant and, therefore, the idea is to
perform a multivariate data analysis to detect what is the operating regime when the plant is
operating that specific way. In order to classify the snapshots, i.e., to identify the operating
regime, independent key process variables (variables of interests that are important in a
process unit) that distinguish the operating regimes are identified by process experts.

Starting from a “top-down” perspective, the steady-state processed data are used to
build a principal component analysis model. PCA exploits historical process data and
discovers hidden phenomena that may be useful for detecting unexpected/novel or un-
known operating conditions. The principal component analysis allows to represent process
variability and identify and understand significant correlations (between variables) that are
inherent to the plant operation. It groups together variables with similar characteristics
into clusters unmindful of the link between consecutive time steps. Standard PCA ignores
dynamicity (it is not a time-series technique), it is treating all data points (time increments)
equivalently, regardless of how far apart they are timewise [76].

Then, the principal components scores are used as input variables in a k-means clus-
tering algorithm [41–44]. Only the components that explain an important proportion (90%
for example) of the variation among the operation variables are selected. Based on the
result of the principal component analysis—starting with the number of clusters visible
on the score or loading chart—the number of clusters detected by the k-means algorithm
is changed incrementally. It is widely recognized that trial-and-error or multiple random
number of clusters to retain are tested [42]. The k-means algorithm is highly performant,
it can be used with large datasets. This unsupervised clustering algorithm offers many
insights, is simple to implement and the clusters it returns are effortlessly interpretable and
visualizable. Lastly, a priori subject matter knowledge can be used to set the number of
clusters [77].

These clustered data are assessed by process experts to highlight what makes a cluster
different from another and assess whether they all represent distinct operating regimes.
The cluster analysis gives process insight, i.e., existing regimes, actions took by operators,
consequence of actions, root cause analysis, cause–effect relationship, etc. This insight is
useful to make the process more effective, economical, efficient, helps understanding the
process, phenomenon, deviation, and improves decision making. This clustering analysis is
a precursor of decision making; subsequent analysis (cost analysis, environmental analysis,
energy analysis, etc.) is required in to act on the process.

Additionally, the contribution analysis and the loading chart [78] are employed to
identify which variables characterize each cluster and explain the variability between
steady-state operating regimes; hence, which variables are important for a particular
regime, i.e., which variables are affected by the different clusters. Lastly, the experts
confirm the operating regimes and explain the fundamental drivers behind them, i.e., the
variable of interest helps identifying the clusters.

These “bottom-up” operating regimes based on a data-driven approach as well as
process knowledge offer the opportunity to interpret and understand the process in more
depth. Those regimes could be linked with the way the plant is run by operators since they
might operate the plant differently when producing the same product.
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The identified operating regimes should be mutually exclusive. Hence, some variables
specific values must uniquely be attributable to one operating regime. In other words, there
is a unique set of parameters values to distinguish each regime. All operating regimes are
unique, and they cover all the possibilities for characterization variables (attributes).

Operating regime detection and identification allows improving process knowledge
as analyzing each cluster may lead to discovering unknown operation mode. On the other
hand, process knowledge is required to interpret the patterns extracted from the principal
component analysis and to achieve an accurate representation of the operating regimes in
complex processes. The PCA results interpretation must be performed by process experts,
and they should be cautious when doing so as the PCA blindly finds correlations; however,
the physical reality of the process plays no part in generating the statistical outputs [76].
Therefore, PCA results should be interpreted based on an understanding of the process
fundamentals. This is a task for process experts; the “bottom-up” operating regimes are
detected and identified by merging data-driven approach and process knowledge.

Performing all the previously mentioned data management steps on the raw process
data—including abnormal operations removal and noise reduction—maximizes the use-
fulness and truthfulness of multivariate analysis as a statistical analysis is only as good as
the raw data and pre-treated data represent the process more accurately [76]. Multivariate
analysis (such as PCA) are entirely data-driven techniques, and thus highly susceptible to
the issue of “garbage in, garbage out”. They are sensitive to outliers and instrument drift;
the latter can appear as a long-term trend to which multivariate algorithm could blindly
ascribe statistical significance [76].

Noise in process data represents a different problem. As each data point (one-hour
period for instance) is treated as a separate observation which bears little resemblance
to each other before bringing them all to the frequency analysis, some kind of smooth-
ing is therefore required; this filtering improves the multivariate analysis ability to find
correlations between variables [76]. Therefore, a direct use of the raw data would yield
meaningless multivariate analysis results, since the algorithm could, for instance, blindly
attribute most of the correlation to the start/stop phenomenon and not to actual changes in
the process [76].

To conclude the framework development, operating regimes resulting from the bottom-
up analysis are identified through a clustering analysis that is based on the combination of
principal component analysis, k-means algorithm, and process knowledge. Some of these
regimes are selected according to the scope to solve a management problem (related to
process design or operations).

4.6. Application: Brownstock Washing Department in a Dissolving Pulp Mill

An application is demonstrated on data from the brownstock washing of a dissolving
pulp mill (Figure 8) in order to illustrate the benefits of the proposed framework. This unit
is isolated by buffer tanks. Those tanks absorb process fluctuations, so events in one system
will not impact downstream systems. Therefore, the unit can be marked as independent
from the rest of the process. This system was chosen as it is the one showing the highest
redundancy (allows data reconciliation analysis); the pulp and paper mills are famously
known for their lack of redundancy. The results from a simulation of this department are
used to increase redundancy.

The implications of each step of the framework are shown here. This section is divided
in accordance with the main parts of the framework; scope definition, signal processing,
steady-state detection, unit-wide data reconciliation and operating regime detection and
identification. Each step plays a critical role in the whole framework, and together they
allow the use of rectified and reconciled (clean) segmented steady-state data for design
decision making.
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Scope definition
The intended use of the data is to assess how many bottom-up regimes can be detected

and identified in the brownstock washing (BSW) through the use of the framework when
the process is running smoothly (in steady-state). The top-down regime considered is the
summertime when a specific grade is being produced. Brownstock washing data that fit
this context is collected.

Signal processing
In this case, data synchronization and imputation are not required as all data points

are sampled at the same rate, i.e., a sampling interval or time step of 10 min (process experts
confirmed that a 10-min sampling interval is adequate for this SSD). A sampling interval
that reduces autocorrelation in the time-series process data is used. Additionally, as the
pulp crosses the whole unit in a few minutes (the overall residence time of the system is
around 10 min), there is no need for intra-unit lag correction. This is confirmed by using
the lag correction analysis offered in EXPLORE (version 2.2.0.814); a straight line means
that there is no lag detected (Figure 9). If a lag was present, the graphs would have shown
some waves and a cycle.

Processes 2023, 11, x FOR PEER REVIEW  20  of  38 
 

 

 

Figure 9. Lag analysis where X is the number of lags and Y is the correlation. 

From there, start up and shutdown periods are removed. To do so, three independent 

flow variables that describe the process are used as reference to detect those periods. The 

latter are removed by using threshold values specified by a process expert. A two‐ and 

four‐hour time interval are removed, respectively, before and after each upset periods to 

account for the time required to go into shutdown and restart the system. These time in‐

tervals are based on the time required for the thickener consistency measurement to resta‐

bilize itself after an upset. Lastly, the removal of process shutdown and start up from ref‐

erence variables is mirrored onto the other variables used as part of the analysis. 

Then, outliers are removed using quartile analysis as well as the principal component 

analysis (Figure 10). Similarly as what is done for the shutdown and start up periods, key 

process flow variables are used to detect outliers. This removal is reflected in all the other 

variables. Having  almost  20,000  data points,  outliers  are  not  corrected,  but  rather  at‐

tributed a NNON value. 

 

Figure 10. Outlier removal using principal component analysis (the outliers are in red). 

Last of all, the signals are filtered using wavelet transform (Figure 11). Given that the 

quality of wavelet transform denoising relies on the optimal configuration of its control 

parameters,  i.e., signal cut‐off  level (scale), wavelet function and threshold parameters, 

Figure 9. Lag analysis where X is the number of lags and Y is the correlation.

From there, start up and shutdown periods are removed. To do so, three independent
flow variables that describe the process are used as reference to detect those periods. The
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latter are removed by using threshold values specified by a process expert. A two- and
four-hour time interval are removed, respectively, before and after each upset periods to
account for the time required to go into shutdown and restart the system. These time
intervals are based on the time required for the thickener consistency measurement to
restabilize itself after an upset. Lastly, the removal of process shutdown and start up from
reference variables is mirrored onto the other variables used as part of the analysis.

Then, outliers are removed using quartile analysis as well as the principal component
analysis (Figure 10). Similarly as what is done for the shutdown and start up periods, key
process flow variables are used to detect outliers. This removal is reflected in all the other
variables. Having almost 20,000 data points, outliers are not corrected, but rather attributed
a NNON value.
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Last of all, the signals are filtered using wavelet transform (Figure 11). Given that the
quality of wavelet transform denoising relies on the optimal configuration of its control
parameters, i.e., signal cut-off level (scale), wavelet function and threshold parameters, the
selection is done through the use of process knowledge in order to retain only the trend
associated with the operation of the process.
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Steady-state detection
This section describes an industrial implementation of the proposed SSD algorithm.

The latter requires a data-vector of time-series data discretized into a time-ordered sequence
of uniformly distributed timestep of equal durations with the oldest data point referenced
as timestep one (1). The SSD algorithm also necessitates the tuning of the time-window,
threshold, standard deviation of the noise (if desired) and cut-off probability; these tuning
parameters are part of the configuration of the algorithm. This implies that some prior
knowledge and understanding of the process is necessary.

It is not uncommon for experts at the mill (or in plants in general) to be overoptimistic
on how well the process unit performs and mentioned how the process runs for many
consecutive days in steady-state, possibly overestimating the stability of the plant. There
are mainly two factors that may explain this. It might come from the fact that their steady-
state analysis is most of the time qualitative. This is what they aim, expect, and wish for,
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although without performing a quantitative data-driven analysis, there is no way to confirm
that the process is indeed at steady-state. On the other hand, detection of steady-state
periods might also be a visually subjective process expert decision. However, this visual
steady-state recognition approach requires continual human attention, and it is subject
to human error. More specifically, noisy measurements, slow process changes, multiple
dynamic trends, and change-of-shift timing are features that may compromise the visual
interpretation of data. The statistically-based SSD standardizes the procedure.

In the context of this application, the monitoring horizon is five months in the summer-
time whereas the time-window is four hours. The latter should have a number of samples
equivalent to three (3) to five (5) times the time constant of the overall process divided
by the sampling interval; it should be long enough for the variable to reach steady-state
or equilibrium. Here, experts stated that it corresponds to the average time required to
reach steady-state in the process. Since the time to reach steady-state varies with operating
conditions [73], an average provided by a process expert is used. Too short of a time-
window will not give sufficient time to the process to reach some level of stability, thus the
steady-state probability will always be low. On the other hand, a too long time-window
may lead to the false conclusion that the signal is steady when in fact it is not. Additionally,
long windows are not well suited for detecting unsteady behavior with short duration; it
is harder to detect. Therefore, the time-window must be long enough to account for the
system dynamics, but short enough to detect undesirable changes in the process value that
has short duration.

Additionally, since different variables present different dynamics, a slow process
should consider a longer time-window, while if the dynamics are fast, the time-window
duration should be shorter. Therefore, the time-window is the parameter that can account
for both the sampling interval as well as the process dynamics. Furthermore, it is possible
for every KPV to have its own time-window size [79].

The threshold is set at 95% confidence interval (Student-t score). This parameter is
related to the importance of a period to be labeled properly; for a critical application, a
higher α should be used. Therefore, if the steady-state detection is not extremely critical for
a particular application, a 5% probability of incorrectly rejecting steady-state is accepted.

Then, even if the standard deviation of the noise could be assessed by Equation (A5),
the latter is provided for all key process variables (KPV) targeted to detect steady-state
periods. As the standard deviation of the noise value increases, the maximum steady-state
span increases as well—more data are deemed at steady-state, the spans get longer.

The KPV selected by a process expert represents well the process and the operations
undertaken by the mill, they have a significant impact on the latter and they should have
the least autocorrelation as possible. Experts decide what is the minimum number of KPV
required to detect whether the process is at steady-state, and then set up the procedure
on that minimal set. For this application, a process expert at the mill mentioned that the
best indicator to know if the process is stable is when three distinct pulp flows meet the
steady-state conditions at the same time.

The SSD algorithm returns a probability that the data-vector is steady with a proba-
bility near one (1) and is unsteady with a probability near zero (0). The determination of
the probability limit which indicates a steady or unsteady signal is the responsibility of
the user. A suitable cut-off value of whether the process is deemed to be at steady-state
depends on the application. In this case, the cut-off probability is set to 95% (probability of
the time-window being steady) for each KPV. Once the tuning parameters are established,
the SSD function is called for every time-window until the end of the monitoring horizon.

This approach, which uses a combination of good judgment, knowledge and inter-
pretation of process operations, and statistics, has two different modes. The first one runs
every time step (sampling interval) continuously (every 10 min in this case)—it incremen-
tally moves over the smallest time step. Therefore, every 10 min, the algorithm is looking
back over the time-window duration, and it declares if the process is steady or unsteady
for the past 4 h. The second mode is the batch one where the algorithm runs every 4 h,
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still looking back, declares the whole time-window steady or unsteady, and then moves
forward to another time-window to conclude on its steadiness. However, in both cases,
the time-window duration is the minimal threshold of time for which the process can be
deemed steady or not, and for which the steady-state duration is judged representative; the
algorithm is not going to find anything less than the time-window. In other words, every
time the process is declared to be in SS, it lasted for the past time-window. As part of this
proposed framework, the first mode is preferred.

In order to label a period as steady, all the key process variables must be steady at the
same time, i.e., all KPV have a probability higher than 95%. It would also be possible to
label a period as being in steady-state if specified fractions of the KPV are in steady-state
at the same time. In this case, since there are only three of those, all three must meet the
probability threshold.

As a result, the algorithm evaluated that out of the five (5) months monitoring horizon,
the process is in steady-state 32% of the time. However, a major challenge in this case is the
constant starting and stopping of production lines and pieces of equipment. Consequently,
knowing that there are sporadic and persistent steady-state periods, a run length of a
minimum of 12 h is targeted to deem the period as persistently steady; when the process
runs reasonably steady for a while, these operating data might be used as a basis for
decision making. The run length is the amount of time or samples required to be confident
in declaring that the process is persistently steady. In the algorithm, a second routine
identifies the contiguous sets of steady data. This routine is a data function that determines
the statistics of the contiguous span of when the process is steady; a start, stop and span
range are assessed as well as the maximum and minimum number of data points in a
span, the span mean, mode, median and variance. The following table (Table 2) presents
information about the contiguous steady-state regimes collection.

Table 2. Information on the contiguous steady-state regimes collection.

Value

Minimum 24

Maximum 182

Mean 31

Median 26

Mode 24

Variance 214

However, considering only when the process unit is contiguously steady for longer
than the run length, a total of 20 spans are found. Once all steady-state periods are
detected, they all individually and separately go through the process of data reconciliation
to determine if there are measurement gross errors—each one of the contiguous steady-state
set respecting the run length becomes a dataset for data reconciliation.

Unit-wide data reconciliation for various datasets
As part of this framework, the data reconciliation problem is modeled from a math-

ematical programming perspective in opposition to a matrix algebra perspective. From
this standpoint, every stream variable has a reconciled value and an adjustment (revision)
value. In order to perform data reconciliation, a process model is built and validated. This
model consists of a set of equations (See Supplementary Material for the model). There
are sensor constraints equations, i.e., adjustment + reconciled = measurement, and model
constraints, which are all the laws of conservation of material, energy, and momentum, i.e.,
mixer, splitter, process, and density equations. The process recycling loops are included
in the DR model. These generates unbound variables which lead to an infinite number of
solutions. Hence, the simulation results are used to evaluate the split fraction and create a
hard constraint.
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The equations are a mixture of linear and non-linear constraints. This makes the DR
problem more difficult to solve, but it is important to represent the process in its most
fundamental way to reduce model gross errors. Having non-linear equations makes the
problem non-convex; the problem is subject to local solutions, there are local optimum.
Thus, the solver is run a few times and each time, it randomizes the initial values (starting
value generation). This also helps with convergence issues. IMPL-DATA can solve non-
linear data reconciliation problems.

Generally, adding constraints to any kind of mathematical minimization optimization
problem will either increase the value of the objective function or it will stay the same if
the information is redundant. The only way adding a constraint could reduce the objective
function value is if the solution is a local optimal (it converges to a different local optimum).

The model is validated when it is consistent with the simulation data (given some
tolerance). Hence, the process simulation is used for the validation of the data reconciliation
model. When the DR model is validated, it is possible to say in confidence that from now
on, only measurement GE will be identified.

In industry, not every stream has a flow and/or consistency measurement. This
application is no exception; measurements are very sparse. There are many unmeasured
and unobservable variables and not enough measurements to identify gross errors. Thus,
there is not enough redundancy in the mill; there is redundancy overall, but not around
some equipment. Therefore, redundancy is created using the simulation results (this is
not a common practice in DR). Hence, a sensor is assigned to all streams; the simulation
results are considered as measurements—the simulation approximates the real process. By
doing so, observability is increased. There is no level of acceptable observability, but IMPL-
DATA have a pre-solve observability functionality that can be applied to better determine
the observability, to improve the numerical robustness of the observability detection [80].
The pre-solve algorithm goes through the sparse unmeasured variables incidence matrix
and excludes variables that are strongly or guaranteed to be observable in the singleton
constraints [80]. Declaring these as observable shrinks the matrix. A large matrix has a large
condition number, therefore making the matrix smaller inertly means a smaller condition
number, which makes it more numerically reliable. Therefore, the pre-solve provides a
smaller matrix that has less constraints and variables to go ahead with the observability
detection analysis.

Additionally, to build a DR model, weights are assigned to measurements. These
weights reflect the reliability, precision, and accuracy of measurements. For instance,
temperature measurements tend to be more accurate than flow measurements, and more
specifically, steam flows are more problematic as they are harder to calibrate and need to
be corrected for temperature and pressure to get the flows right. On the other hand, liquid
flows are generally fairly good. Then, temperature measurements from thermocouple are
generally pretty decent, they do not drift much. Next, level measurements from tanks
are, most of the time, not even reconciled as plants probably have those values right since
the operators would not let tanks overflow or underflow. Lastly, pressure signals are
reasonably good and consistency data have a certain range where the sensor seems to work
reasonably well.

In this application, only flow and consistency measurements are being reconciled.
Measurements are given a tolerance or precision interval which is translated into a raw
variance where its inverse is used as an objective function weight in Equation (A8). As
consistency measurements present less variation than flow measurements, and are well
controlled, process experts decided to assign a tolerance value of 0.5% to consistency
measurements and a tolerance value of 2% to flow measurements. These tolerances are
for hard sensors (direct measurements); a tighter tolerance is put when the stream has a
physical sensor. However, for values assumed from the simulation (soft sensors), a larger
tolerance is considered as there is more uncertainty. Therefore, a suitable tolerance for
indirect (soft sensor) consistency measurements is 4% whereas 5% is assumed for flows.
Lastly, fixed variables are given a tolerance of 0%.
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Following the tolerance analysis, for every variable on all streams, there is something
indicating whether it is measured (1) or unmeasured (0). This is the sensor switch. When
there are a lot of zeros in the sensor switch, the results start showing unobservability,
and some flows present negative values (this is a sign of GE). Therefore, to maximize
observability, there is a tradeoff that must be found in labeling variables as unmeasured
and getting negative flows. The sensor switch helps in turning off the wrong sensors, either
hard or soft; to keep the sensor, a value of one (1) is used. Therefore, even if a sensor is
assigned to all streams, a value is assumed only for those having their sensor switch value
to one (1).

In addition to the sensor switches, which can indicate whether or not a sensor is
good, whether it may be trusted or not, stream switches manage permanent and temporary
streams. The latter must be considered to make sure that the reconciliation results make
sense. Since processes have different operating regimes, the DR model changes and must
therefore allow streams to be turned on and off, i.e., it is parameterized in the sense that
streams may be active or inactive. Logic is required to manage whether the streams are
active or not. For instance, when a stream has a flow sensor, the latter could be used as a
stream switch by setting the sensor value to zero when required.

When plants perform data reconciliation, it is mostly based on mass balance. However,
most of the flows in plants are volumetric. Therefore, to convert those to mass, density
measurements are required. The latter can be assumed, or calculated given an ad hoc
formula, density measurements can come from a simulator, or they could be taken every
week or every day at the lab. However, densities are not as good of a measurement as flow
or consistency because they are not continuous, they are sampled intermittently. Ultimately,
the reliability of the density data is poor primarily because there is little, if any, statistically-
driven measurement quality feedback being transferred or relayed back to the engineering,
operations, instrumentation, and maintenance departments. Additionally, they could be
wrong because they are based on assumptions about the process and operating modes that
do not necessarily apply. Given the inherent sparsity in the density measuring system, these
densities may be biased (wrong, not accurate), especially if these densities are operating-
condition or -mode dependent. Hence, many problems could come from inferring the
densities. Performing DR can help remove that bias provided that bad densities are
detected, identified, and removed from the data reconciliation problem.

Once all variables are accounted for and the model equations are set, a degree-of-
freedom analysis is assessed. A negative value of the degree-of-freedom (number of
variables—number of equations or constraints—number of measurements or fixed vari-
ables) is expected as the simulation values were used as measurements substitution. This
non-linear data reconciliation problem reconciles both volume flow and density simul-
taneously, involving volume, density, consistency, and mass balances. In the present
application, there are 53 sub-units, 107 streams, and 19 flow sensors as well as 4 con-
sistency sensors. The sub-units in the brownstock washing are mixers (18), splitters (9)
and processes (26). For mixers, both volume (28) and mass (18) balances or equations
are required, splitters count 46 equations, and lastly, process equations have a total of
38 mass balances and 30 volumetric equations. In addition to these, the BSW process
unit accounts for 107 density equations. Then, as each stream has a flow, consistency
and density value, there are 321 variables. Therefore, the number of variables, equa-
tions, and measurements (including those assumed from the simulation) yield a DOF of
321 variables− 267 equations− 90 measurements = −36.

In this analysis, the qualities/intensive (compositions—fractions, consistency,
properties—density, molecular weight, and conditions—temperature, pressure, velocity)
and quantities/extensive (flow, mass inventory, moles, volume, energy, and momentum)
are kept distinct to have different constraints on the individual variables: volumetric flow,
consistency, and volumetric flow*density*consistency (to obtain the mass flow). Both
variable categories are reconciled simultaneously.
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This DR problem only considers material balance (flow in − flow out = 0). How-
ever, if there is a hold-up unit in the model (tank, drum, vessel), the hold-up balance
(flow in − flow out + opening − closing = 0) could be performed considering measure-
ments of the level (hold-up, inventory). To do so, the opening hold-up is considered
as a fixed variable, meaning that it has 0 uncertainty, or its weight is infinity, and then only
the closing value is reconciled. Another way to do this would be to reconcile the difference
between the opening and the closing.

In summary, when performing data reconciliation, the first step is to find unobservable
unmeasured variables. DR would still run with these, but it would calculate numbers
that are completely meaningless since they are non-unique. Hence, from a mathematical
perspective, there is no issue; however, from an engineering perspective, unobservable
unmeasured variables may be problematic. If required, all unmeasured variables can be
made observable either by adding assumed values or shrinking the data reconciliation
model. Then, after running the algorithm, one must make sure that there is no negative
flows greater than constraint and convergence tolerances, because they mean that there are
measurement gross errors. In fact, negative flows could mean that their model directions
should be reversed. Once all the negative flows have been resolved, then gross error
detection may begin.

For this application, data reconciliation is run offline on averaged steady-state data.
However, data reconciliation is generally run online on hourly average steady-state data in
order to detect the most persistent or sustained sensor with GE. The execution frequency
of DR should be based on how many gross error could happen within that time frame.
The goal is to run it when there is zero or no more than one. As a matter of fact, as
there are sporadic and persistent GE, a monitoring report is available when reaching the
end of the reporting horizon (moment when conclusions about DR is made), such as a
shift, a week, or a month, to inform process experts about the most problematic sensors.
Hence, only persistent GE are recorded or added to the ongoing list; they may as well
be ranked. The ratio of the number of H0 acceptances over the duration of the reporting
horizon gives a probability of occurrence and indicates what percentage of the time a
sensor is persistently faulty. Therefore, deploying online unit-wide data reconciliation may
continuously improve the reliability of process data, assure that the sensor networks is
functioning with consistency and integrity, and provide the level of assurance required for
descriptive, predictive, and prescriptive analytics.

Nevertheless, in this case, DR is run on the averaged steady-state spans of arbitrary
duration, but always longer than the run length. Table 3 presents the objective function
value (Equation (A8)) for all spans. According to the total number of DOF and the 95%
confidence interval, the Chi-squared statistic is 85.965. The objective function values are all
greater than the chi-squared statistic, hence, out of the 20 steady-state span found from SSD,
all of them contain gross errors. Colum 3 of Table 3 gives the worst (biggest) maximum
power measurement test values (Equation (A9)) across all variables in each span. Lastly,
the next column provides the values of Equation (A10). Since all values are higher than
the Chi-squared critical value (with one less DOF), 84.821, there are more than one gross
error in each span. Therefore, it is difficult to isolate the most-likely bad sensors or to
reliably identifier of the sensors with the gross error. Considering all the measurements
in each span with a MPMT value close to the worst one, it was concluded that the top
four persistently problematic sensors across the steady-state spans that would need to be
verified are three flow meters (06FIC137, 06FIC152, and 06FIC433), and one consistency
sensor (06NIC423). This information is transmitted to process experts for them to take a
look at the problematic sensors. Knowing which sensors are faulty is important because
experts base their analysis (such as optimization) on these data, and until these sensors are
fixed, gross errors are present in the datasets.
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Table 3. Objective function value for all spans.

Spans Objective Function Worst MPMT Value Obj–MPMT

1 2069.364 30.383 1146.250

2 1960.541 29.919 1065.403

3 1899.865 28.611 1081.287

4 1944.359 28.350 1140.662

5 1870.016 27.920 1090.486

6 1910.728 28.635 1090.786

7 1914.603 29.442 1047.766

8 2144.591 30.767 1198.001

9 2077.743 31.400 1091.786

10 2128.247 30.996 1167.487

11 2106.752 30.351 1185.586

12 2041.512 29.570 1167.146

13 1922.061 29.515 1050.945

14 2033.123 29.566 1158.979

15 1861.946 29.297 1003.613

16 1928.288 29.459 1060.441

17 1685.618 27.045 954.180

18 1652.962 26.277 962.464

19 1706.588 25.994 1030.917

20 1832.242 26.900 1108.613

Operating regimes detection and identification
In general, in the pulp and paper industry, there is little to no acknowledgement of

the fact that a process has many different steady-state operating periods. In other words,
operating regimes are not explicitly considered for decision making [8]. However, the
value and potential of operating regime detection and identification is well recognized.
In the present study, a model based on principal component analysis as well as k-means
algorithm is used to identify the operating regimes of the brownstock washing department
of a dissolving pulp mill. In this application, five months of data are used to detect and
identify the process operating regimes.

The clusters apparent on the score chart of the PCA (Figure 12) were confirmed with
a k-means clustering analysis detailed in Section 4.5. The first and second components
separated the observations that are different and gathered the identical observations. The
variables that influence these clusters can be observed through a contribution analysis
(Figure 13). Analyzing the results with process experts, it is found that the main drivers for
the “bottom-up” operating regimes are the pulp level in tanks, its density, and the shower
wash water flow rate. The clusters represent changes in the operating conditions.

Clustered data can be difficult to interpret, and as they are interpreted by process
experts, errors can happen. Interpretation errors are part of a continuous improvement
process. Experts gain insight through the data processing framework.

Lastly, the loading chart of the first and second components is shown in Figure 14.
This chart identifies which variables characterized each cluster and explains the variability
between the different regimes. Variables close to the center of the chart do not have a lot of
importance for component 1 and 2 (in this case) whereas variables away from the center
and close to either component will be of great importance—further from the center, more
influence they have. Lastly, those located diagonally are influenced by both components.
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Figure 14 shows for instance that the pulp consistency explains a lot of variability in the first
component while the pulp density explains most the variability of the second component.
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5. Conclusions

With the quantity of process data being collected increasing year over year, actions
should be undertaken to put them to good use, and to do that, one must make sure that
the data is of good quality. Several authors proposed methodologies to manage, treat
and analyze process sensor data and to use them for decision making [1,9–12]. However,
these data processing frameworks missed few critical steps and did not explicitly consider
operating regimes nor mention the concept of unit- or plant-wide analysis, even though
industrial applications of operating regime detection are extensive. This paper proposes an
operating-regime-based data-driven industrial framework for improved process decision
making. In this first part, the latter is established. Its value will be further explored in
future work, where the processed data from the framework will be used for improved
decision making. Examples of decisions that may be taken based on the offline analysis of
processed historical data include identifying which products or recipes are not profitable
(cost analysis), which generate the most emissions (environmental analysis), which require
the most resources (energy analysis), when should maintenance be performed (predictive
maintenance), and how to best schedule production (optimization analysis).

The proposed framework employed to make strategic decisions based on historical
data exploits advantages from both process knowledge and data-driven approaches. The
former is a critical complementary information source. On the other hand, data-driven
approaches (including PCA) help to understand the process further and can extract and
unlock hidden knowledge that is not accessible from process knowledge. It allows enrich-
ment and updating of existing process knowledge to take accurate management decisions
for complex processes.

This combination of process expertise and data-driven approaches starts with the
scope definition which is the objective of the analysis. Then, given that the means and
variances of the data signals change with operating conditions, top-down operating regimes
must be considered early on in the framework.

Once the data are collected, data pre-processing is performed and steady-state periods,
intervals or windows are detected. The steady-state detection algorithm provides a reliable
and effective way to identify when each key sensor reading is stationary over a suitably
chosen time-window. Given that most management decisions, as well as design and
diagnostics, are based on the steady-state representation, it is easier to understand and is
more practical. Then, unit-wide steady-state data reconciliation is performed. The averaged
variable values over the duration of each steady-state span are used for all individual data
reconciliation runs. This step highlights persistently faulty sensors in the process and allows
ranking them according to their probability of occurrence. Additionally, in opposition to
common belief, if there are gross errors in the measurements, then the reconciled values are
in fact less reliable than the original raw data as these outliers can unpredictably distort
and bias all related or co-incident process variables involved in the model.

The last step of the proposed framework is the “bottom-up” detection and identifi-
cation of operating regime. In industrial processes, there are often various component
material recipes used, different products or grades made, the operating conditions may
change, the feedstock may vary (slightly or not), the weather may change, different oper-
ators may operate the process differently, etc. All of these aspects may lead to different
operation regimes in a plant. Some of the aforementioned changes are known; however,
some may be hidden in process data. Therefore, operating regime detection can yield
knowledge otherwise not available, provide insights for management decision making
and thus potentially create opportunities for better process operations. Putting forward
the synergy between process experts and mathematical techniques help detect operating
regimes and thus better understand how processes, production, and plant work, and can
lead to substantially improved process analytics. Incorporating operating regime detection
as described in this framework is an enabler to reach the full potential of process data for
decision making.
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An application of the developed framework in a brownstock washing unit was demon-
strated. We showed that this data treatment tool can be implemented in the process
industries. In light of the case study results presented in Section 4.6, we believe that the
framework could produce interesting results if deployed in mills, plants, and other types
of processing facilities. Furthermore, such applications could help improve the framework
and strengthen the link between both process knowledge and data-driven dimensions of
the analysis.

The insights generated by the framework will be demonstrated for the optimization of
the brownstock washing department operations in future work; the identified steady-state
operating regimes will be used for enhanced process decision making. This will enable the
analysis of cost-efficiency for various operating regimes. More specifically, future work
planned by the authors will include an activity-based costing analysis subsequently of
the data processing framework application. Production costs are inevitably related to the
operating regime and plants need to know where they stand to assess these costs. This
future work will also analyze further what explain the changes in operation between the
different steady-state operating regimes, and how does they affect the operating cost.

Industrial data must be processed (cleaned) and their context should be acknowledged
(operating regimes) by coupling mathematical methods with process expertise for proper
and improved decisions, actions to be taken on the process and/or modification made on the
process. These strategic decisions might represent important changes for plants and should
therefore be devoted a proportional amount of time. Nevertheless, the data processing
techniques used in each step of the framework could employ artificial intelligence and
machine learning algorithms in the future. It is however critical to leverage process
knowledge and make sure that this aspect is not lost. Therefore, an area of improvement
might be to look into automate the data processing steps to make them less time-consuming,
without losing the required user input. Even if the data treatment steps are automatic,
the data interpretation part must be manual. Understanding complex processes and
interpreting data automatically may be one day doable with artificial intelligence and
machine learning algorithms. Lastly, future work could address the application of a data
processing framework for real-time online decision making. i.e., how to perform each of
the framework’s steps online in real time.
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Appendix A

It is assumed that any process signal may be represented as

xt = mt + µ + at (A1)

where m is a non-zero slope, t the relative time within a window (the cycle count), mt is
the deterministic drift component, µ is the sample mean or arithmetic average over the
time-window with zero slope and at is the independent and identically distributed random
error series or white-noise sequence with zero mean and standard deviation σa. The t index
indicates the cycle at which the sample is collected.

By taking the discrete difference of xt and its immediate past time-shifted value xt−1,
the following equation is obtained

xt − xt−1 = m + at − at−1 (A2)

where at− at−1 has an expected value of zero with a standard deviation of 2σa by definition.
Therefore, the drift slope m can be estimated as

m =
1

n− 1

n

∑
t=2

xt − xt−1 (A3)

with n sampled values in the window which are equally spaced in time.
The intercept or mean µ is obtained through Equation (A4)

µ =
1
n

(
n

∑
t=1

xt −m
n

∑
t=1

t

)
(A4)

Next, the standard deviation of the noise is estimated as

σa =

√
1

n− 2

n

∑
t=1

(xt −mt− µ)2 (A5)

The latter could also be provided to the algorithm if it is known by the user, and thus
Equation (A5) is ignored. The standard deviation obtained from this equation is rather
liberal (looser); it will most likely be bigger than an externally supplied standard deviation
that could be more conservative (tighter/smaller).

Both the mean and standard-deviation are corrected for the drift component.
Lastly, considering a specified Student-t critical or threshold value at a particular

significance level α and degrees-of-freedom n (the DOF is the number of sample in the time-
window), the null hypothesis that the process signal is steady may be tested. Therefore, if

|xt − µ| ≤ tcriticalσa then yt = 1 else yt = 0 (A6)

The null hypothesis is rejected (the window is flagged as unsteady) when yt = 0
whereas a value of one means that the null hypothesis is accepted, all of the points in the
time-window are deemed to be at steady-state. Therefore, if the measurement minus the
estimated mean divided by the standard deviation is greater than the tcritical , then one can
be (1− α )% confident that it is unsteady. The null hypothesis presumes that there is no
autocorrelation in the time-series process data. If there is autocorrelation, the variance will
be inflated. Therefore, to ensure that the approach will be insensitive and immune to any
autocorrelation in data fluctuations, providing the standard deviation is recommended.

After performing the Student-t test individually on all data points of a variable (tag),
the algorithm returns the frequency of yt = 1. The sum of yt divided by n (the non-missing
data amount number in the time-window) represents the probability of the null hypothesis
to be true; it is the percentage of time within the window that the process variable is deemed
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to be at steady-state. For instance, a value of 95% would indicate that 5% of the points are
not at steady-state.

The algorithm calls this routine (Equations (A1)–(A6)) for each time-window with
an increment of one time-interval. In other words, all equations are computed over the
time-window continuously (for all samples in the monitoring horizon) given a sliding
window. At every time points, the algorithm is looking back at the time-window minus
one data point as it includes itself. In the end, every data point has a steady-state flag.

In this algorithm, the samples with time index lower than the time-window (1 to
window-1) always have a returned probability of 0 to be in steady-state as there is not
enough past data, they are always declared to be unsteady; the algorithm is using a sliding-
window that is looking back at the window size. Therefore, after the sample (window),
there is enough points so that the algorithm is able to evaluate the probability.

This methodology considers domain-knowledge; it is a combination of process ex-
pertise and statistics. The algorithm is subjective as there are a lot of parameters that may
impact whether or not a data point accept or reject the null hypothesis, i.e., the process is at
steady-state: the number of samples in the time-window, the alpha value (for the threshold,
the Student-t critical value) and the standard deviation. In the algorithm [74], the cut-off
probability (the sum of yt over n) is also tunable, it could be a setting of the algorithm;
however, in this paper, the control limit for the probability is assumed to be 1− α. Therefore,
for a given time-window, a probability of being steady is assigned by counting the number
of time-points that exceed 90%, 95% or 99% confidence-interval defined by the Student-t
statistic. If the probability is greater than some upper limit such as 90%, 95% or 99%, then
the time-samples are declared steady, else unsteady.

The significance level α represents the probability of a type I error, or the probability
of rejecting the null hypothesis when it is true (false positive/false alarm). Therefore, a
95% confidence interval means that when the null hypothesis is actually true, it will be
falsely identified as being unsteady (rejected) 5% of the time. Therefore, alpha is related
to the importance of a process value being truly at steady-state. There is also the type
II error (significance level β), or the probability of accepting the null hypothesis when
it is false (false negative/missing alarm). Theoretically, if steady-state is critical for a
specific application, the SSD must ensure a low probability of a type II error; however, this
algorithm does not consider it.

As part of this algorithm, the incoming process signals must contain contiguous
data points. Therefore, missing data points are given a non-naturally occurring number
(NNON) of−99.999. These NNON are always considered as unsteady. Furthermore, all the
equations presented earlier are handling missing data as they are assessed considering only
non-missing data points; there must be at least the number of sample in the time-window
of non-missing data for the SSD algorithm to proceed, else it returns a probability of 0
for unsteady.

The SSD algorithm is performed on all the reference variables, univariately, but always
considers the presence of the others. To manage multiple process signal that collectively
determine whether a system is steady, i.e., multi-univariate SSD, the individual significance
level αi is evaluated based on Equation (A7). The validity of this equation is predicated on
independence of all key process variables. The sole difference between strict univariate
and multi-univariate SSD (where there are two or more key independent process variables
considered) is the threshold value (more specifically the alpha value). The latter is reduced
from the overall process alpha value following the Sidak significance level adjustment
equation [74]

α′ i = 1− k
√(

1− αprocess
)

(A7)

where k is the number of key independent variables, αprocess is the desired overall level of
significance, αi is the required level of significance for each individual variable. Therefore,
using α′ i in the Student-t statistic instead of αprocess results in a larger critical value for the
same DOF for an individual signal. In a nutshell, the exact same calculation are used for
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each variable; however, when looking at more than one, αi is used instead in the Student-t
statistic. In a multivariable analysis, we are more cautious about rejecting steady-state
conditions and more accepting towards the acceptance of steady-state conditions.

Cross correlation between variables is handled by including key process variables that
are not correlated, therefore strategically selecting the variables. Additionally, since cross
correlation affects the statistical level of significance, the Sidak adjustment is considered in
the SSD algorithm. Otherwise, to properly handle cross-correlation across multiple tags, a
multivariate statistic such as the Hotelling should be used.

Appendix B

Data reconciliation consider the impact of process measurement instrumentation
by using a tolerance (weight) metric, i.e., the raw sensor or measurement variances are
supplied. This metric involve sensor precision, accuracy, and reliability. It considers the
type and brand of instrumentation and the measurement data quality. The measurement
error tolerance is two times the standard-deviation. Hence, the variance is equal to the
square of half the tolerance.

Data reconciliation is based on statistics. A well-established method to detect one or
several gross errors is the objective function or global test [81]. This analysis is a multivariate
test. The null hypothesis for DR is there is no gross error. This hypothesis is rejected when
the objective function is greater than the Chi-squared statistic (χ 2

)
. On the other hand, if

its value is less than or equal to its Chi-squared upper control limit, there is no statistically
detectable gross error, H0 is accepted—that means that statistically, all of the measurements
are consistent with the model. For the Chi-squared statistic, the degree-of-freedom λ equals
to the number of balance equations minus the number independent unmeasured variables.
It can be assumed that all unmeasured variables are independent, which means that they
are all observable. Coupled with a specified level-of-significance α, yields its critical value
χ2 and provides an upper bound or threshold limit for the hypothesis testing.

When DR is performed, there are an infinite number of feasible solutions that satisfies
the material, energy, and momentum balance. Every feasible solution is consistent, meaning
that it satisfies all of the balances and constraints. The algorithm seeks the one that
minimizes an objective function that reads a weighted sum of squares of residuals:

Objective f unction = ∑
(raw measurement− reconciled value)2

raw variance
≤ χ2

α,λ (A8)

In Equation (A8), the adjustments of measured variables are weighted, squared, and
minimized. However, unmeasured variables do not contribute to the objective function
since their weight is zero (0.0). On the other hand, one of the most important pieces of
information that comes out of the data reconciliation solving process is the reconciled
variances (calculated via the propagation of errors) of all measured variables. The latter
provide the gross error detection statistics presented below.

If the null hypothesis H0 is rejected, the first hypothesis alternative, H1, is that there is
only one gross error whereas the second alternative, H2, is stating that two or more gross
errors exist. Therefore, employing the maximum power measurement test statistic (MPMT)
gives the opportunity to assess where the GE are in the data set [81]. This is achieved by
comparing the MPMT values to a critical value (the Student-t distribution) for statistical
significance for each raw variable. The MPMT is calculated as follows:

MPMT =

√
(raw measurement− reconciled value)2

reconciled variance
≤ Student

α
′ ,ν (A9)

where α′ is the Sidak significance level adjustment and ν is the number of measure-
ments (sensors).
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Hence, there is the overall or global hypothesis that there are no gross errors, then
there are the individual hypothesis tests for each sensor; the hypothesis test is whether or
not an individual sensor is in gross error. Following the calculation of MPMT for every
measurement (sensor), the square of the MPMT maximum absolute value is subtracted
from the DR objective function value (weighted sum of squares of residuals).

Objective f unction−max
(∣∣∣MPMT2

∣∣∣) ≤ χ2
α,λ−1 (A10)

If that difference is less than or equal the Chi-squared critical value (with one less
DOF), H1 is accepted, and if it is greater, then H2 is accepted. When H1 is accepted, the
statistical power of the MPMT can isolate the most-likely bad sensor, it is a reliable identifier
of the sensor with the gross error. If H2 is accepted, then a combinatorial search, also known
as a subset-selection enumeration search, is necessary to identify multiple gross errors
although serial elimination (remove or delete one measurement at the time) may or may
not be effective [80]. In other words, there is no easy way to find multiple gross errors, it
becomes a combinatorial problem, and it is even more difficult as the number of expected
gross errors needs to be known a priori. Nevertheless, this statistical test is useful when
there is a single gross error in the system. In this case, the MPMT statistic can reliably
indicate the problematic sensor or instrument—it will be flagged as being in gross error.
However, if multiple gross errors exist, then maximum power is not guaranteed, and a
more sophisticated analysis is necessary.

Serial elimination can be used to identify two or more gross errors [82]; the first
gross error is identified using the maximum absolute MPMT statistics, its corresponding
measurement is eliminated, and the DR is repeated.

Consequently, limiting the DR to a scope where one or even two gross errors are
expected is the most tractable approach to accurately and precisely detecting, identifying,
and eliminating true gross errors in industrial plant data. In that regard, the DR routine is
intended to be executed on a regular basis (say on an hourly average frequency) on-line in
real-time at a unit-wide level for volume-only and/or volume-density-mass reconciliation.
It is also possible to collect past measurement data, and run the DR algorithm off-line (in
the past) on hourly averages. A daily plant-wide DR would highlight a lot of gross errors
and closing the balance would be nearly impossible. Therefore, by running the GED more
often, i.e., on a shorter time interval (every hour instead of every day), and on a smaller
scope/scale (unit-wide instead of plant-wide), the ability to diagnose gross errors easily
and accurately increases.

As part of the DR algorithm, a distinction is made between sporadic (transient) and
sustained (persistent) gross error [83] by pairing the temporal context to the DR problem.
First, when a gross error is detected whether it is sporadic or sustained is unknown. In order
to distinguish between the two, the number of times a sensor shows up as being inconsistent
with the material and energy balances over a monitoring horizon (the probability) is
computed; the occurrence is logged and recorded. This metric identifies the most sustained
gross errors by ranking the probability of occurrence for the sensors. IMPL-DATA is
detecting which of the sensors are persistently in gross error versus sporadically. Generally
speaking, the plant personnel will only act on the sustained ones. In other words, data
reconciliation focuses on diagnosing persistently or sustained defective, faulty, or bad
measurements. Data reconciliation is used to screen the data for persistent gross error
and for plant personnel to fix them over time by recalibrating the sensor for instance.
Additionally, as mentioned, unless the gross errors are eliminated, the only recourse is to
use the raw values with regard to further analysis and reporting since the reconciled values
are unreliable.

The data reconciliation stage will avoid removing sensors and instruments. Instead,
the sensors declared as persistently in gross error (over a long period) following the DR
are flagged and are only ignored temporarily in the DR problem. Specifically, gross error
measurements are set to unmeasured variable in the reconciliation, which is identical to
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eliminating the sensor value. In order to achieve that, the measurement raw variance is
set to be very large, hence its weight becomes null in the objective function. In addition
to the probability of occurrence, there is also the notion of severity, i.e., the degree to
which the sensors exceed their statistical threshold tolerances. Therefore, based on this
quantitative analysis that consider both metrics, justified and appropriate action may be
taken to eliminate the most likely gross errors by sensor recalibration, reconfiguration,
repair, replacement or modification of its tolerance or uncertainty.

Gross error detection is applied to improve the accuracy in measured data and to iden-
tify instrumentation problems that require special maintenance and correction. Moreover,
detection of persistent gross errors can reduce maintenance costs and provide smoother
plant operation. Eliminating gross error allows to respect material balances to within
statistical error every hour, shift, day, etc.

Data reconciliation is primarily focused on the detection, identification, and elimina-
tion of gross errors. There seems to be a wide-spread misconception in industry that after
performing data reconciliation on process data, the reconciled values are better than their
raw measurements, and that reconciled data should be used for subsequent analysis. In
the absence of model gross errors, the reconciled values are by definition consistent with
respect to its sensor certainty and model constraints and may be considered as conforming,
to some degree, to their true values. Yet, if the dataset contain gross error, all the recon-
ciled numbers may in fact be worse than the raw readings given that all (weighted) least
squares methods systematically smear or spread the effects of gross errors throughout
the model and ultimately corrupt and distort the accuracy of the reconciled data. Even if
data reconciliation provides reconciled values, they are rarely employed; the end game
of data reconciliation is never to get reconciled values. This is explained by the fact that
if there is one gross error in the system (most of the time there are more than one), all
the reconciled values are wrong—if one measurement is bad, they are all bad, the whole
recipe is wrong. When there is gross errors in a dataset, the latter will propagate into the
hole system. Additionally, when there are more than one gross error in the system, it is
practically impossible to determine which one are bad. It may sound counter intuitive,
but it is better to use the raw, unreconciled measurements for all subsequent analysis such
as optimization.

However, if it turns out that after DR, there are no statistically detectable gross errors
(all the sensors are consistent and all of their errors are random), then the raw values
and the reconciled values can both be used. The only difference between the raw and
the reconciled numbers, is that the reconciled values completely satisfy statistically all of
the constraints, they close all of the material, energy, and momentum balances perfectly,
whereas the raw values, technically do not.

Nevertheless, the objective function (global test) could either be the sum of squares
of residuals (L2- or Euclidean-norm), i.e., raw measurements minus reconciled, or it may
be the sum of weighted absolute deviations (L1- or Manhattan-norm), i.e., the absolute
value of the residual divided by the standard deviation [84]. When performing DR with
the 1-norm, the reconciled values are less impacted and sensitive to gross errors (biases or
outliers). Hence, if one really wishes to use the reconciled values, while keeping in mind
that it is not possible to be a 100% gross error-free, the 1-norm is an interesting alternative
and may be considered instead of the 2-norm whereby the reconciled values may exhibit
less corruption and distortion.
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