
Citation: Li, W.; Zhang, Y.; Wang, D.;

Chen, C.; Li, Y.; Zhao, Y.; Zhang, S.;

Ren, J.; Qin, Y. Theoretical Basis and

Technical Method of Permeability

Enhancement of Tectonic Coal Seam

by High Intensity Acoustic Wave In

Situ. Processes 2023, 11, 2372. https://

doi.org/10.3390/pr11082372

Academic Editors: Junjian Zhang and

Zhenzhi Wang

Received: 30 June 2023

Revised: 2 August 2023

Accepted: 2 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Theoretical Basis and Technical Method of Permeability
Enhancement of Tectonic Coal Seam by High Intensity
Acoustic Wave In Situ
Weidong Li 1, Yongmin Zhang 2,*, Dalong Wang 3, Cunqiang Chen 3, Yongyuan Li 1, Youzhi Zhao 2, Shuo Zhang 2,
Jing Ren 2 and Yong Qin 4

1 Huaneng Coal Technology Research Co., Ltd., Beijing 100071, China
2 State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University,

Xi’an 710049, China
3 Mining Branch of Huaneng Yunnan Diandong Energy Co., Ltd., Qujing 655500, China
4 Key Laboratory of Coalbed Methane Resources and Reservoir-Forming Process,

China University of Mining and Technology, Ministry of Education, Xuzhou 221008, China
* Correspondence: hpeb2006@126.com

Abstract: Tectonic coal seams are characterized by soft, low permeability and high gas outburst. The
traditional gas control method is the intensive drilling and extraction in this seam, which is not only
large in engineering quantity, high in cost, difficult to form holes and low in extraction efficiency,
but also easy to induce coal and gas outburst, which is a difficult problem for global coal mine gas
control. To solve this difficult problem, the controllable shockwave equipment developed by the
author’s team and successfully applied in the practice of permeability enhancement of coal seam,
combined with the principles of shock vibration sound wave generation and shock wave attenuation
and evolution in the rock stratum, a new idea of loading a controllable shock wave in the roof and
floor of coal seam is proposed. The shock wave first attenuates and evolves into a high-strength
sound wave in the roof and floor rock stratum, and then enters and loads into the coal seam to achieve
the purpose of increasing permeability without damaging the physical properties of the tectonic coal
seam and facilitating the opening of the original fractures. According to the new technical ideas, the
implementation scheme and key parameters of the gas pre-extraction models in tectonic coal seam
are designed, including the penetration drilling, roof and floor horizontal holes, shield tunneling and
the high-strength acoustic wave of the working face, which provides a new technical approach to
solve the problem of high efficiency and low cost gas extraction in the tectonic coal seam.

Keywords: high-strength acoustic wave; controllable shockwave; structurally controlled coal bed;
coal seam permeability enhancement; coal seam fissure; interlayer drilling

1. Introduction

Tectonic coal seams are the result of strong geological compression and shearing
deformation during geological history, and are characterized by low cohesion, low strength,
low elastic modulus and low permeability [1]. Most coal basins in China have experienced
multiple periods of structural movement, and tectonic coal seams are widely developed [2,3].
Most coal and gas outburst accidents worldwide are related to tectonic coal seams [4].

Compared with primary structure coal seam, constructing extraction boreholes in a
tectonic coal seam is more difficult [5]. Meanwhile, tectonic coal seams generally have
a higher adsorption and desorption capacity and diffusion coefficients [2,6,7], coupled
with extremely low mechanical strength, which leads to a great tendency of coal and gas
outburst. Coal and gas outburst often cause problems, such as water blockage, gas lock and
coal powder blockage during gas extraction, which is difficult to recover once damaged,
especially for tectonic coal seams.

Processes 2023, 11, 2372. https://doi.org/10.3390/pr11082372 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082372
https://doi.org/10.3390/pr11082372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11082372
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082372?type=check_update&version=1


Processes 2023, 11, 2372 2 of 16

Previous researchers have conducted many explorations on the construction of coal
seam gas drilling and extraction technology, but drilling construction and permeability
enhancement operations are either limited to the coal seam itself [8–12], or require the
construction of horizontal wells on the roof from the ground [13]. China’s coal industry has
tried a variety of coal penetration methods and carried out field tests, such as the impact
method, vibration method and acoustic method, etc. [14,15], to improve the permeability
of structural coal seam and improve the extraction effect. Among them, the high-frequency
acoustic wave experiment explains the mechanism of the permeability enhancement of
the coal seam, gives the basic parameters and verifies the feasibility from the simulation
experiment level.

As for high-strength acoustic wave, as early as the 1950s, the former Soviet Union and
the United States have successively carried out relatively mature research on acoustic oil
recovery technology. Russian scientists pointed out that when the sound field intensity
is greater than 1 kw/m2, it can make the thermal and qualitative changes of the oil layer,
and then peel off the oil layer adsorbed in the rock. According to the measured acoustic
parameters in the oil layer of the Henan Oilfield in China, the shock wave generated
by the hydroelectric effect with 5 kJ energy in the oil layer is 260 m, and the acoustic
intensity below 200 Hz is still 150 db. The Xian Xuefu academician team of Chongqing
University, the China University of Mining and Technology and Xi’an Jiaotong University
have successively carried out tests and practices on the acoustic field in the aspects of
reservoir plugging removal and coal seam permeability enhancement. The results show
that when the acoustic pressure is greater than the anti-swelling and shear strength of
the coal seam, the existing pores and fractures in the coal seam will be torn in a shear
tensile mode.

However, due to the restriction of the principle of vibration acoustic wave, the sound
intensity and the sound frequency are related, and improving the output sound intensity
will inevitably increase the sound frequency, while the high frequency acoustic wave
will rapidly attenuate in the coal seam, resulting in the limited range of permeability
enhancement. Therefore, there was no research and development of the equipment for
enhancing the coal seam permeability with high intensity acoustic wave in the early stage.
Except for the results of the author’s team, there are no reports on the high-strength sound
waves with controllable shock waves as the source.

In this paper, the author’s team proposed controllable shock wave technology that
implemented shock in the coal seam and its surrounding roof and floor, using the stratum
to convert the shock into high-strength sound wave acting on the coal seam, and repeatedly
exciting the coal seam with multiple shocks. The controllable shock wave technology
has the advantage of causing “no damage to the coal seam”. According to the physical
characteristics of the target coal seam, the shock wave parameters, operation times, op-
eration points and other parameters are adjusted to achieve the effect of expanding and
communicating the coal seam fractures, without causing macro cracks, and to protect the
coal seam structure from damage to the greatest extent. In addition, the controllable shock
wave does not need to inject any other material into the coal seam, which is different from
coal seam reconstruction technology, such as hydraulic fracturing [16].

The author’s team has conducted extensive research and trials, based on the Griffith
crack theory of brittle medium and the mechanical properties of coal seams. The stress
of the original crack and the corresponding sound pressure and sound intensity of the
high-strength acoustic wave propagating coal seams were analyzed and calculated and
compared with the existing experimental results, the strength window of the high-strength
acoustic wave propagating coal seams was determined, i.e., the difference between the
tensile and shear strength of coal seams and the expansion stress strength of the coal seams.
This paper expounds the theoretical basis of high-strength acoustic wave antireflection
in structural coal seams, completes the design of parameters, layout of through hole
operation, layout of horizontal hole operation in the heading face, layout of the drilling
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operation in the roof of the trench and predicts the effective range of high-strength acoustic
wave antireflection.

On the basis of the successful application of shockwaves to enhance the permeability
of harder coal seams, our team has been devoted to the theoretical exploration and field
experiments of controllable shockwaves to enhance the permeability of tectonic coal seams.
We aim to explore new technical approaches to solve the problem of efficient, low-cost and
environmentally friendly gas extraction from tectonic coal seams.

2. Theoretical Basis of High-Strength Acoustic Penetration of Tectonic Coal Seam

Coal seam is both the object of acoustic wave action and the medium for propagating
acoustic wave, and acoustic permeability enhancement of coal seams is the cleanest physical
method of permeability enhancement. The fundamental concept of using sound waves to
enhance permeability in structural coal seams is to expand the pre-existing fractures and
create a network of fractures, which increases coal seam porosity. At the same time, the
high-frequency vibrational shear force generated at the adsorption interface is utilized to
promote gas desorption.

2.1. The Attenuation Law of Shock Wave to High-Strength Sound Wave

At the near-field of a shock wave, it manifests as a shock tension causing material to
fracture; then, the shock wave attenuates into a compression wave, utilizing compression,
tension and shear forces to tear apart the material; finally, the shock wave attenuates into
an elastic sound wave, where, if the material’s rupture strength is lower than the intensity
of the elastic wave, no new cracks are formed under the effect of elastic waves, but the
pre-existing cracks are extended using the stress concentration characteristics at the crack
front. According to this principle and according to the characteristics of structural coal and
increasing demand, the shock wave operation from the coal seam to coal seam roof or floor,
after the rock attenuation evolution of high-strength acoustic input coal seam, achieve the
purpose of porous coal seam, elastic wave high frequency vibration decoupling adsorption
at the same time to promote the role of gas desorption (Figure 1).
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Figure 1. Schematic diagram of shock wave attenuation and tectonic coal seam permeability enhance-
ment with high intensity acoustic wave in situ.

2.2. Principle of High-Strength Acoustic Wave Coal Seam Penetration

(1) Technical conditions of high-strength acoustic wave penetration of coal seams

The premise of using high-intensity acoustic waves to increase the penetration of a
tectonic coal seam is to produce an extension of the original fractures in the seam without
creating new cracks and thus without damaging the macrostructure of the seam. To achieve
this goal, three requirements need to be met. Firstly, the sound pressure should be less
than or equal to the coal seam’s tensile and shear strength. Secondly, the sound pressure
should exceed the stress threshold of the pre-existing cracks in the torn coal seam, thereby
expanding the cracks in the coal seam. Thirdly, the effective permeable area should be
maximized, and the effective permeable radius should be expanded as much as possible.
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This approach can increase the gas permeability of the coal seam without causing a coal
and gas outburst. The effective area of the high-intensity acoustic wave enhancement of
coal seam permeability is defined as a spherical area centered on the sound source. The
radius of the effective area is equal to the distance until the sound pressure attenuates to
the stress threshold required to tear the coal seam.

(2) Mechanical basis of the permeable structural coal seam

The compressive strength and elastic modulus of different structural coal under
different surrounding pressures were analyzed [17–23]. The uniaxial compressive strength
of structural coal is generally less than 3 MPa, and the elastic modulus of most structural
coal is less than 1 GPa, which is far lower than that of the native structural coal (Figure 2).
The structural coal seam with such low mechanical parameters brings great difficulties to
the technical selection of the coal seam by mechanical measures. When the loading is strong
enough, it will damage the coal seam structure and cause the opposite effect; when the
loading strength is not enough, the penetration effect is not achieved. The test results of coal
samples from Qinan Mine in Huaibei Coal field show that the effective elastic modulus and
tensile strength of both structural coal and primary structural coal decreased exponentially
with an increasing particle size, but the values of both parameters of primary structural
coal were significantly larger than those of the same particle size conditions. (Figure 3) [24].
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Figure 3. Relationship between mechanical properties of primary structure and tectonic coals with
particle size.

The acoustic strength of the coal seam should be lower than the tensile and shear
strength of coal seam. Therefore, we believe that the sound pressure value of the high-
strength sound wave loaded into the structural coal should be lower than 1 MPa.
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(3) Effective penetration increase range

One of the challenges in enhancing the permeability of coal seams in structural coal
seams is that various drilling and excavation measures have a limited effect on the perme-
ability zone of the coal seam, with an effective radius of approximately 2 m.

The method of protective layer unloading pressure and increasing coal seam is essen-
tially large area balanced unloading, so it is successful. The gas extraction effect of a coal
mine in northwest China is shown in Figure 4. According to the calculation of the distance
between the working face and the borehole during the active gas period, the effective
penetration area formed by the pressure discharge of the protective layer reaches 100 m.
Expanding the limited penetration area can double the penetration enhancement effect.
When the shock wave operation point is set in the roof and bottom slab layer of the coal
seam, the shock wave propagation distance is far greater than the propagation distance set
at the coal seam, which can expand the area of effective sound wave entering the coal seam
and increase the effective penetration range.
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(4) The relationship between acoustic wave intensity and coal seam crack extended stress

There are cracks in the actual material. When the applied stress is very low, the local
stress at the crack tip increases due to stress concentration. When the stress reaches the
theoretical breaking strength, σc, the crack propagates and a brittle fracture occurs. The
Griffith criterion is the condition of rock microcrack expansion rather than macroscopic
destruction, which is suitable for analyzing the loading conditions of interpenetrating the
coal seam without damaging the coal seam. A fissure of length a, the critical stress at the
tip of the tear fissure, is characterized by the following equation [25]:

σc =

(
2Eγ
πa

)1/2
(1)

In the formula, γ represents the surface free energy per unit area of material, namely
the energy required for material forming per unit of crack area; E represents the elastic
modulus of coal.

The literature [26] shows the change of surface energy with the temperature in coal
bodies with different structures (Figure 5). The surface energy of structural coal is be-
tween 10 and 30 mJ/m2, and the elastic modulus of most tectonic coal is less than 1 GPa.
With this data as a constraint, the density and sound velocity of the tectonic coal are
1300 kg/m3 and 2000 m/s [27]. According to Equation (2), the stress required to expand
the cracks of different lengths in different surface energy seams, and the sound pressure
level, sound strength and sound strength level corresponding to the stress can be calculated
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(Tables 1 and 2). This stress value is significantly less than the tensile strength of the coal
seam, so it will not damage the coal seam macroscopically.

I = P2/2ρC (2)

In the formula, P is sound pressure, kPa; ρ is density, kg/m3; C is sound speed, m/s.
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Surface
Energy
(J/m2)

Modulus of Elasticity (GPa)

0.2 0.5 0.8

Stress
Value
(kPa)

Pressure
Level
(dB)

Sound
Inten-
sity

(kW/m2)

Sound
Inten-
sity

Level
(dB)

Stress
Value
(kPa)

Pressure
Level
(dB)

Sound
Inten-
sity

(kW/m2)

Sound
Inten-
sity

Level
(dB)

Stress
Value
(kPa)

Pressure
Level
(dB)

Sound
Inten-
sity

(kW/m2)

Sound
Inten-
sity

Level
(dB)

0.01 36 185 0.249 144 56 189 0.6 148 70 191 0.942 150

0.02 50 188 0.48 147 80 192 1.23 151 100 194 1.92 153

0.03 62 190 0.739 149 98 194 1.85 153 124 196 2.96 155

2.3. Simulation Experiment of Coal Seam with High-Strength Acoustic Wave Excitation and
Permeability Enhancement

Based on the acoustic oil production research, the former Soviet Union found that the
sound field strength required to start the heat transfer process of the sandstone reservoir
was 1 kW/m2 (150 dB) [28]. In the late 1990s, academician Xian Xuefu proposed the idea of
using the acoustic shock method to improve the gas extraction rate, and established the gas
adsorption/desorption model and seepage theory under the action of ground stress field,
temperature field and electric field [29–34].

Researchers in China conducted physical simulation experiments on coal samples
with a diameter of 50 mm and a length of 100 mm under various conditions using
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a 40 kHz frequency and a 30 W power acoustic source [8,35–37]. The study found that
under the average effective stress condition of 4 MPa, the applied sound field can improve
the permeability of the coal sample, reflecting that the sound wave connects the pores and
fissures in the coal seam in tearing mode (Figure 6). With the extension of the acoustic
loading time, the coal sample permeability gradually increases (Figure 7). At the same time,
it was found that, under the action of sound waves, the gas desorption law is unchanged,
but the desorption amount increases (Figure 8). After the sound field operation, the adsorp-
tion isothermal curve of coal remains unchanged, but the adsorption capacity decreased
significantly (Figure 9).
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Shi Qingmin (2018) studied the crack evolution characteristics of three samples of
fat coal, lean coal and anthracite under high-frequency low-sound intensity (50 kHz,
6 kW/m2 (158 dB)), high-frequency high-sound intensity (50 kHz, 10 kW/m2 (160 dB)) and
low-frequency high-sound intensity (20 kHz, 10 kW/m2 (160 dB)) [38]. The results show
that under the action of a sound field, the surface fissure and internal fissure of coal rock
have the characteristics of simultaneous expansion and interconnection, which eventually
lead to the fragmentation of coal rock (Figure 10).
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Due to the lack of low-frequency strong sound sources, domestic and foreign studies
have been conducted using high-frequency acoustic sources. Although the sound frequen-
cies are different, the results are basically the same. Only the result of very low frequency
vibration below 30 Hz showed opposite findings [39]. According to the actual measurement
results of acoustic transmission in the oil industry, only acoustic waves below 200 Hz can
propagate more than 100 m in the sandstone layer [40]. For this reason, a 100~200 Hz sound
wave is selected for calculation, and referring to the above experimental results, the sound
intensity threshold of the more permeable coal seam is set at 5 kW/m2.

2.4. Field Test of High-Strength Sound Wave Increases the Coal Seam

Academician Aici Qiu’s team analyzed the results of the completed pilot test [41–44],
and believed that the controlled shock waves were coupled to the coal seam with the help
of a water medium; the coal seam is not only the object of shock wave operation, but
also the medium of propagating shock wave. The released energy successively forms the
shock wave band, compression wave band and elastic wave band in the coal seam. This is
through rupture, tearing, high-strength elastic wave disturbance and other modes [16] to
improve the permeability of the coal seam and promote the gas desorption [45,46].

The repetitive application of shock waves can further induce the fatigue effect on the
mechanical properties of the coal seam [47]. Loading it with relatively low energy can
make the coal seam crack growth, pore rupture and form the fissure network [48], thus
enhancing the coal seam permeability. Effective communication pores and cracks, are
conducive to the coal bed adsorption gas desorption, diffusion and seepage. In addition,
the single-point repeated operation with low energy can ensure the overall integrity of the
coal seam structure and prevent the hole wall breakage and collapse. It was found that the
shock waves loaded in the coalbed drilling holes and coalbed methane wells can attenuate
into strong sound waves in the coal seam, continue to crack the coal seam and promote gas
adsorption and seepage.

An enhanced permeability shock wave was applied during drilling operations in
the structural coal seam of the Yushe Coal Mine in Shuicheng, Guizhou Province. The
shock wave had a strength of 80 MPa when applied to the borehole wall. On one side of a
working face, a row of parallel boreholes was drilled at a distance of 40 m from each other
(Figure 11). Shock wave operations were carried out in different boreholes, which changed
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the gas extraction flow rate attenuation mode and greatly improved the efficiency of gas
extraction (Figure 12) [16]. Based on the analysis of monitoring drilling flow without shock
wave operation, it was found that the effective action radius of high-strength sound wave
is more than 40 m.
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Theoretical analysis, experimental simulation and field practice have demonstrated
that the upper limit threshold of a high-strength acoustic wave, calculated based on the
coal seam’s tensile and shear strength, and the lower threshold of acoustic wave intensity
required for coal seam fracture propagation, calculated based on the Griffith fracture theory,
ensure that high-intensity sound waves can expand cracks in the coal seam without causing
macroscopic damage to the coal seam. For structural coal seams, when high-intensity
sound waves of 5 kw/m2 (157 db)~10 kw/m2 (160 db) are applied to the coal seams, the
fractures of tectonic coal seams can be expanded and gas seepage can be promoted.

3. Implementation Method of High-Strength Sound Wave Increasing Coal Seam

At present, the most effective measure to increase the coal seam is to mine the protec-
tive layer and realize the penetration of the protective layer through the pressure discharge
of the protective layer. However, a variety of penetration measures implemented in this
coal seam have not effectively solved the problem of structural coal seam gas. Drawing on
the idea of protective layer mining and penetrating the protective layer, the implementation
area of the shock wave increasing the coal seam is transferred from the coal seam to the
top and bottom slab layer. On the one hand, the problem that the structural coal seam is
difficult to form a hole, and on the other hand, the top and bottom plate can become a large
area sound source to produce high-strength sound waves in situ.
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3.1. In-Situ Generating Method of High-Strength Sound Waves

The method of high-strength sound wave generation should first abandon the technical
route of using instruments and equipment to produce sound waves and then loading it to
the coal seam. In other words, according to the principle of acoustic wave generation, the
top floor of the coal seam is used as an energy converter to impact the top floor, and the
attenuation and evolution of the impact and vibration of the roof floor is used to produce
the high-strength sound wave required for the penetration in the coal seam in situ.

When the shock wave is loaded on the roof and floor rock layer, the impact directly
breaks the rock layer in the area where the impact strength is higher than the compressive
strength of the rock layer and attenuates due to energy consumption. In the area where the
impact strength is lower than the compressive strength of the rock layer, but higher than the
tensile and shear strength of the rock layer, the rock layer continues to crack in the mode of
tension and tear. In the area where the impact strength is lower than the tensile and shear
strength of rock stratum, the impact attenuation evolves into high-strength sound wave,
and then enters the coal seam to expand the original crack (Figure 13).
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3.2. Implementation Scheme Design

(1) Design parameters

The boreholes in the roof floor can be drilled from the coal seam roadway or on
the ground. The distance between the impact point and the coal seam in the borehole is
designed based on the mechanical strength of the overlying and underlying rock layers, the
attenuation law of shock waves in the rock layers and the drilling technology. This ensures
that the shock wave intensity at the interface between the rock layer and the coal seam
is just below the rock’s tensile and shear strength after the shock wave does work in the
rock layer due to attenuation, reducing the damage to the coal seam caused by the shock
wave. For the structural coal seam with high outburst risk, the shock wave strength should
be attenuated below the tensile strength of the coal seam, so that the high-strength sound
wave entering the coal seam does not have the effect of damaging the coal seam structure.

The roof and floor of the coal seam can be drilled from the coal seam roadway or
on the ground. According to the mechanical strength of the roof and floor rock layer, the
attenuation law of the shock wave in the rock layer and the drilling technology, the distance
between the impact point in the borehole and the coal seam is designed so that the strength
of the shock wave after attenuation in the rock layer is just less than the tensile and shear
strength of the rock layer at the interface between the rock layer and the coal seam, reducing
the damage of the shock wave to the coal seam. For the tectonic coal seam with a high
outburst risk, the shock wave strength should be attenuated below the tensile strength
of the coal seam so that the high-strength sound wave entering the coal seam does not
damage the coal seam structure.

The propagation law of blast shock wave in rock formation is described by the follow-
ing formula [49]:

Pr = P0

( r0

r

)n
(3)

In the formula, Pr represents the peak pressure value at any point from the source,
kPa; P0 represents the peak pressure value generated by the source, kPa; r0 represents the
radius of the source, cm; r represents the distance between the observation point and the
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source, cm; n represents constant, n = 2 ± µ/(1 − µ); µ represents the Poisson’s ratio of
rock. The fracture zone with shock wave amplitude greater than the compressive strength
of rock stratum is taken as “+”, and the fracture zone with a shock wave amplitude lower
than the compressive strength of rock stratum but higher than the tensile shear strength of
rock stratum is taken as “−”.

Taking the shock wave peak 200 MPa and the C7+8 coal seam thin siltstone and silt-
stone direct roof as an example, the average compressive strength of saturated water rock is
23 MPa, the average tensile strength of natural dry rock is 1.23 MPa, the density is
2460 kg/m3, the Poisson ratio is 0.2 and the sound velocity is 3000 m/s. Therefore, ac-
cording to the calculation of formula (3), the radius of the rupture area caused by a single
shock wave is 146 cm, that is, the source area radius of the elastic wave is 146 cm, the sound
pressure is 1.23 MPa and the corresponding sound strength is 1 × 105 W/m2 (170 dB). At
this time, it is equivalent to placing a spherical high-strength sound source with a radius of
146 cm in the roof and floor rock. Considering that the tensile strength of tectonic coal is
0.5 MPa (sound pressure level is 208 db and sound intensity is 4.17 × 104 w/m2 (sound
intensity level 166 db)), and the tearing radius of a single shock wave is calculated to be
245 cm, which is more favorable for the protection of coal seam macrostructures.

(2) Design of perforhole arrangement

The upstream/downstream drilling is arranged in the coal seam bottom rock roadway
(Figure 14), with large diameter (133 mm) air drilling to improve the percentage of drilling
in the structural coal seam. In order to avoid the impact damage to the coal seam, the
operation point is selected in the top and bottom slab layer in the drilling hole, and the
distance between the working point and the top and bottom plate and the interface of the
coal seam is the distance between the shock wave attenuation and the tensile shear strength
of the coal seam. For sandstone roof and bottom bed and a tensile shear strength of 1 MPa,
this distance is designed to be between 152 and 245 cm.
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Figure 14. Schematic diagram of controlled shock wave in stacked coal seam drilling hole.

(3) Design of horizontal hole operation layout in heading face

In response to the difficult problems of the poor pre-pumping effect of drilling at
the cover digging face of the prominent coal seam and the difficulty of regulating the
contradiction between digging and pumping, a stepped drill field is designed in the
roadway heading face, and the long-distance directional horizontal drilling is implemented
in the drill field under the seam roof/floor (Figure 15).
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Figure 15. Schematic diagram of directional drilling layout of controllable shock wave in covering
roadway tunneling.

To ensure that fissures are generated in the rock mass to connect the coal seam and the
drilling operation point, the distance between the horizontal borehole and the interface of
the coal seam/overlying and underlying rock layers is the distance at which the shock wave
attenuates to the tensile and shear strength of the rock mass in the rock layer. For a typical
sandstone roof, the distance is less than 146 cm. Through the establishment of a fracture
channel connected with the coal seam through the fractured rock layer, the high-strength
sound wave attenuated and evolved by the fractured rock layer directly enters the coal
seam, realizing the purpose of protecting the coal seam to be excavated and eliminating the
risk of local outburst.

(4) Design of the channel roof drilling operation layout scheme

In order to meet the engineering requirements for efficient pre-pumping at the working
face of this coal seam, the roof or bottom plate drilling is arranged in the groove on both
sides of the working face, and the pre-pumping of the coal seam gas is implemented
(Figure 16). Taking the above typical sandstone as an example, the distance between the
interface of the roof downstream borehole and the coal seam is 146 cm.
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3.3. Prediction of the Effective Action Range of the High-Strength Sound Wave

Estimate the effective transmission distance of high-intensity sound waves generated
by shock wave evolution. The propagation rules of sound intensity and the sound pressure
of cylindrical elastic sound wave in rock strata are as follows [49]:

J(r) = J0

√
r0

r
e−α(r−r0) (4)
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P(r) = P0

√
r0

r
e−α(r−r0) (5)

In the formula, J(r) represents the distance from the shaft in the rock formation or
coal seam where the sound intensity is at r, kw/m2; P(r) represents the distance from the
shaft in the rock formation or coal seam where the sound pressure is at r, MPa; J0 and P0
are the sound intensity and acoustic pressure at the interface where the shock wave decay
affects the elastic acoustic wave, rather than the power and peak pressure of the shock
wave source, kw/m2, MPa; r represents the distance between any point in the rock bed
or coal seam and the shaft, m; r0 represents the radius of the source which is the distance
from the interface of the shock wave attenuation to the elastic sound wave; m;α represents
the attenuation coefficient of the shock wave in the rock seam or the coal seam, m−1.The
measured attenuation coefficient of acoustic waves in sandstone is shown in Table 3 [40].

Table 3. Attenuation coefficient of different frequency sound waves in sandstone reservoirs.

Frequency of sound wave f (Hz) 10 50 100 200 500 1000 20,000

Attenuation coefficient α (m−1) 0.00268 0.013 0.025 0.046 0.134 0.28 6.85

Frequency of sound wave: The number of vibrations per second of the sound source, expressed as f (frequency);
Attenuation coefficient: Attenuation coefficient is also called attenuation constant. It is the real part of the
propagation coefficient. It consists of two parts: classical absorption and molecular absorption.

According to the design, the impact strength attenuates to the top and shear strength
at the interface between the top and bottom plates. Taking the tensile shear strength of
the top and bottom plate as the sound pressure value of the high-strength sound wave,
the transmission distance of the high-strength sound wave in the coal seam is calculated
according to Equations (4) and (5). According to the test results of Shi Qingmin [38], the
area with a sound intensity value higher than 5 kW/m2 is regarded as the effective action
area of a high-intensity sound wave. Taking the mechanical parameters of the roof layer
of the coal seam of Bailongshan Mine as an example, the sound intensity of 5.9 kW/m2

(152 dB) is loaded from the roof sandstone to the coal seam in a 30 m radius. The high-
strength acoustic source area reaches 30 m, and the area directly applied to the coal seam is
a circular area with a radius of 30 m (Table 4).

Table 4. Intensity of sound waves at different frequencies with propagation distance (kW/m2).

Distance
Frequency

100 Hz 200 Hz

10 m 30.9 (165 dB) 12.8 (164 dB)

20 m 25.8 (164 dB) 11.5 (161 dB)

30 m 10.8 (160 dB) 5.9 (158 dB)

40 m 7.3 (159 dB) 3.2 (155 dB)

50 m 5.1 (157 dB) 1.8 (153 dB)

4. Conclusions

1. Based on theoretical analysis, experimental results and a field test, the theoretical and
technical parameters of a high-intensity acoustic wave used to increase the penetration
of coal seams are proposed. The method of impact and conversion into a high-strength
sound wave in the roof and bottom plate solves the problem of hole forming in the
structural coal seam, and it avoids the problem of the outburst of coal and gas caused
by the impact of the structural coal seam.

2. The implementation method is proposed to implement the impact at the top and
bottom of the penetration hole and use the attenuation effect of the top and bottom
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to generate high intensity acoustic waves to increase coal seam penetration. That
is, in the top or bottom construction drilling, the strong shock wave cracks and
tears the roof and bottom plate to communicate the coal seam. The top and bottom
plate is used to convert the shock wave into a high-strength sound wave into the
structural coal seam, and the top and bottom impact drilling is also used as a gas extra-
ction drilling.

3. According to the output parameters of the existing shock wave equipment to pro-
duce peak 200 MPa, the effective range of a strong impact to crack and tear typical
sandstone, and the parameters and effective range of strong shock wave evolution
into a high-strength sound wave are estimated to provide a basis for the design of the
drilling position.

4. Based on theoretical analysis and test results, the implementation method is not
limited to controllable shock wave technology, but can also use the existing deep hole
pre-crack loose blasting, carbon dioxide cracking as sound source. However, relevant
operational parameters need to be re-estimated and the safety management of the
roof should be ensured.
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