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Abstract: The amount of microplastics (MPs) present in marine ecosystems are a growing concern,
with potential impacts on human health because they are associated with an increase in the ecotoxicity
of certain foods, such as fish. As a result, there has been a growing interest in developing effective
methods for the analysis of MPs in marine waters. Traditional methods for MP analysis involve visual
inspection and manual sorting, which can be time-consuming and subject to human error. However,
novel methods have been developed that offer more efficient and accurate analyses. One such method
is based on spectroscopy, such as Fourier transform infrared spectroscopy (FTIR). Another method
involves the use of fluorescent dyes, which can selectively bind to microplastics and allow for their
detection under UV light. Additionally, machine learning approaches have been developed to analyze
large volumes of water samples for MP detection and classification. These methods involve the use
of specialized algorithms that can identify and classify MPs based on their size, shape, and texture.
Overall, these novel methods offer more efficient and accurate analyses of MPs in marine waters,
which is essential for understanding the extent and impacts of MP pollution and for developing
effective mitigation strategies. However, there is still a need for continued research and development
to optimize these methods and improve their sensitivity and accuracy.

Keywords: microplastics; marine pollution; health impact; microplastics analysis; ecotoxicological
testing; novel methods; machine learning

1. Introduction

Microplastics (MPs), defined as plastic waste with dimensions less than 5 mm [1,2],
are recognized as an emerging environmental pollutant and have garnered considerable
attention due to their possible negative effects on living organisms. MPs are categorized
as main or secondary according to their sources. Marine litter, particularly MPs and
nano-plastics (NPs), is widely disseminated and is recognized as a growing threat to the
environment and human health. It is well recognized that maritime habitats are among
the most damaged, and coastal zones are among the most polluted. Carpenter and Smith
published the first paper warning about the presence of plastic pellets on the surface of the
North Atlantic Ocean in 1972 [3]. Yet, it has only been in the last ten years that there has
been a widespread increase in concern, both in the scholarly community and in society,
about the impact of plastic-based pollution on the marine environment [4].

The proper approach for the identification of MPs should be selected based on the
quantity of samples and the microplastic size range of interest; adopting a good iden-
tification method for microplastics is critical for analyzing microplastic contamination.
Plastics are primarily classified based on physical qualities such as size, shape, and color [5].
The study of Coyle, Hardiman, and O’Driscoll presented polymers which (i) float as:
Low-density polyethylene (LDPE), Polyethylene (PE), High-density polyethylene (HDPE),
Polypropylene (PP), and Polystyrene (Expanded) (PS), and (ii) sink as: Polystyrene (PS),
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Polystyrene Acrylonitrile (PSA), Acrylonitrile butadiene styrene (ABS), Polyamide (Nylon)
(PA), Polymethyl methacrylate (Acrylic) (PMMA), Polyvinyl Chloride (PVC), Polylactic acid
(PLA), Polycarbonate (PC), Polyethylene terephthalate (PET), Polyoxymethylene (POM),
Polyester (Poly), and Cellulose acetate. The specific gravity of seawater is 1.025 while for
the floating plastic polymers it is under 1.05, and for those that sink, the specific gravity
ranges from 1.04 (PS) to 1.44 (POM) [6]. Size is normally determined by a particle’s longest
dimension; size categories can be used if appropriate. Researchers prefer to utilize five
basic categories when describing microplastic forms, while the nomenclature used differs
between study organizations as presented in Table 1 [7].

Table 1. Codifications used to classify microplastics based on morphology [7].

Shape Classification Other Terms Used

Fragments Irregular-shaped particles, crystals, fluff, powder, granules, shavings
Fibers Filaments, microfibers, strands, threads
Beads Grains, spherical microbeads, microspheres
Foams Polystyrene, EPS
Pellets Resin pellets, nurdles, pre-production pellets, nibs

The annual production of plastics worldwide with an estimation for the next three
decades [8] is presented in Figure 1. Therefore, it is expected that research into the traces
that plastic leaves in the environment, both water and the environment of the human
population, will be of special interest.

Processes 2023, 11, x FOR PEER REVIEW 2 of 22 
 

 

The study of Coyle, Hardiman, and O’Driscoll presented polymers which (i) float as: Low-
density polyethylene (LDPE), Polyethylene (PE), High-density polyethylene (HDPE), Pol-
ypropylene (PP), and Polystyrene (Expanded) (PS), and (ii) sink as: Polystyrene (PS), Pol-
ystyrene Acrylonitrile (PSA), Acrylonitrile butadiene styrene (ABS), Polyamide (Nylon) 
(PA), Polymethyl methacrylate (Acrylic) (PMMA), Polyvinyl Chloride (PVC), Polylactic 
acid (PLA), Polycarbonate (PC), Polyethylene terephthalate (PET), Polyoxymethylene 
(POM), Polyester (Poly), and Cellulose acetate. The specific gravity of seawater is 1.025 
while for the floating plastic polymers it is under 1.05, and for those that sink, the specific 
gravity ranges from 1.04 (PS) to 1.44 (POM) [6]. Size is normally determined by a particle’s 
longest dimension; size categories can be used if appropriate. Researchers prefer to utilize 
five basic categories when describing microplastic forms, while the nomenclature used 
differs between study organizations as presented in Table 1 [7]. 

Table 1. Codifications used to classify microplastics based on morphology [7]. 

Shape Classification Other Terms Used 
Fragments Irregular-shaped particles, crystals, fluff, powder, granules, shavings 

Fibers Filaments, microfibers, strands, threads 
Beads Grains, spherical microbeads, microspheres 
Foams Polystyrene, EPS 
Pellets Resin pellets, nurdles, pre-production pellets, nibs 

The annual production of plastics worldwide with an estimation for the next three 
decades [8] is presented in Figure 1. Therefore, it is expected that research into the traces 
that plastic leaves in the environment, both water and the environment of the human pop-
ulation, will be of special interest. 

 
Figure 1. Production forecast of plastics worldwide from 1950 to 2050 in millions of metric tons [6] 
where the dark blue bars present the estimation based on the interpolation method. 

Humans are exposed to MPs due to their increasing presence in the environment and 
are exposed to them through the consumption of branches, inhalation, and skin contact 
[9]. Previous research indicates that exposed persons may experience (i) immune system 
disorder, (ii) oxidative stress, (iii) neurotoxicity, (iv) cytotoxicity, and (v) the transfer of 
MPs to other tissues as a result of exposure to MPs [10,11]. Of great concern is that MPs 
have also been detected in human breast milk and the projection of daily consumption is 
up to 5 g/week from water, food, and consumer products [12]. Therefore, the detection of 

Figure 1. Production forecast of plastics worldwide from 1950 to 2050 in millions of metric tons [6]
where the dark blue bars present the estimation based on the interpolation method.

Humans are exposed to MPs due to their increasing presence in the environment
and are exposed to them through the consumption of branches, inhalation, and skin
contact [9]. Previous research indicates that exposed persons may experience (i) immune
system disorder, (ii) oxidative stress, (iii) neurotoxicity, (iv) cytotoxicity, and (v) the transfer
of MPs to other tissues as a result of exposure to MPs [10,11]. Of great concern is that MPs
have also been detected in human breast milk and the projection of daily consumption is
up to 5 g/week from water, food, and consumer products [12]. Therefore, the detection of
MPs is an important factor in order to detect the sources of human and animal exposure,
and to qualitatively and quantitatively assess which methods to use in their detection,
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as well as to develop guidelines for their minimization [6]. That is why we studied
which scientific fields deal with microplastics. A comprehensive systematic review of the
available papers in the last decade (since January 2013 until December 2022), investigating
the topic “microplastics” found that the number of studies grows exponentially starting
with only 35 papers in 2013, while ten years later (in 2022) almost 120 times more papers
were published on the topic, 4108 of them [13]. However, the study of microplastics
has spread into various scientific fields, from sciences that primarily deal with the study
of the environment, through to chemical and engineering disciplines to public health
and green sustainable science, as presented in Figure 2. The interest of the scientific
community in the methods used in the detection of microplastics that end up in the human
food chain is presented with an overview of studies investigating the potential of three
vibrational spectroscopic methods, also categorized as the green one (minimized sample
preparation, fast, and not time-consuming). Fourier-transform infrared spectroscopy (FTIR),
Near-infrared spectroscopy (NIR), and Raman spectroscopy are non-destructive analyses
that provide detailed information at the molecular level (chemical structure, molecular
interactions, etc.), and they are based on the interaction of light with chemical bonds within
the sample. Their applicability is evident in the number of published papers on the topics
“microplastics” + “FTIR”, “Raman”, or “NIR”. As can be seen (Figure 3), since the year
2000 the number of publications increases, but the increase has been extremely exponential
in the last 10 years [13].
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Microplastic transmission along the sea level and exposure to humans begins with the
fragmentation of plastic waste. The next step is marine organisms swallowing them which,
if consumed (seafood consumes all of the microplastics or dismisses fish as a vehicle of
plastic additives and harmful pollution), they end up in the human food chain, so people are
exposed [14]. However, it has not yet been clarified whether microplastics affect humans,
and if they do, how extremely problematic it is that plastic often contains additives or other
additional substances, and they can be the cause of potentially harmful effects when being
exposed to them. Therefore, it is necessary to carefully study the entire theme related to the
microplastics in food and water [15]. The European Food Security Administration (EFSA)
emphasizes that there is not enough information on the impact of microplastics in food
and from the environment to the human body. It estimates the necessity of evening the
research numbers and further developing and standardizing the methods they use for the
analysis of microplastics and assessments of the potential risks they may represent. This is
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a necessity to facilitate comparisons with the results of different research institutions and to
obtain clearer insight into the situation [16]. Therefore, the aim of this work is to contribute
to the understanding of the sources of microplastics in food and to provide an overview
of their detection methods (with an emphasis on the FTIR and NIR methods) as well as
Europe’s vision regarding microplastics.
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Figure 3. Overview of published papers (since 2013 till June 2023) investigating three spectroscopic
methods in the detection of microplastics, FTIR, NIR, and Raman, based on the Web of Science
core collection.

2. Analytical Methods for Analysis of Microplastics

It is crucial to have a reliable analytical approach to detect, measure, and identify MPs
of varied materials, sizes, and shapes from environmental, agricultural, and food matrices
to improve the risk assessments of MPs to people [17,18]. For microplastic investigation,
spectroscopic methods, particularly vibrational spectroscopy (Raman and infrared), are
often utilized, as for food analyses as well [19,20], coupled with chemometric tools [21–23].

2.1. FTIR Microscopic Analysis of Microplastics

Microplastic particles have been found in various bottled water brands. The con-
sequences of microplastics on human health are unknown; however, the presence of
microplastics in food and drinks, potentially carrying priority organic pollutants (POPs), is
a serious issue. Bottled water analysis can reveal the existence, identity, size, and quantity
of microplastics. Infrared (IR) spectroscopy is the principal analytical technique for polymer
identification. Fourier-Transform Infrared spectrophotometers (FTIR) measure the light
absorption in the wavelength range of 2.5–25 µm (wavenumber range: 4000 to 400 cm−1),
what is called the mid-infrared range. The application of IR microscopy allows for the
detection and identification of microplastics as small as a few millimeters. IR microscopy,
either using point mode or IR imaging, has been shown to be an excellent analytical tech-
nique for the detection and identification of microplastics present in bottled water, and can
be applied to a much larger range of samples containing microplastics using appropriate
sample collection and clean-up. All brands of bottled water contained microplastics in
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the size range of 20–200 microns with some fibers more than 2 mm in length. The bot-
tled waters contained considerably less fibers and particles than were present in the tap
water sample. The types of microplastics present varied quite considerably and the vast
majority were not plastic materials used in the manufacture of plastic drinks bottles. The
origin of the microplastics needs to be determined within the individual manufacturer’s
sites to eliminate the problem, or extra filtration steps could be introduced to remove the
microplastics. In addition, it needs to be determined whether the microplastics present
form a health risk to consumers [24–30]. An overview of the functional groups of untreated
microplastics, which float, is presented in Table 2.

Table 2. The functional group from untreated microplastics (PE, LDPE, HDPE, PP, and PS) identified
with FTIR.

Functional Group
Wavenumber (cm−1) for Floating Polymers

PE LDPE HDPE PP PS

–CH2 rocking 710/717 719 840
–CH3 groups deformation 1377

–CH2 scissoring 1462/1460 720
C–C stretch 1080 973

–C=C– stretch 1462 & 1472 1492.7 &1452.2
CH2 bending 1470

C=O stretching -/1745
Symmetric–CH2 stretching 2847/2840 2847 2850

Asymmetric–CH2 stretching 2915/2910 2915 2920
–CH3 stretching 2965 2950 2921.9–2848.6
O–H stretching -/3600 ≈3600 3446.5

References [31,32] [31] [32–35] [36] [37]

On the contrary, the study by Gerdes and coworkers [38] finds that for low to medium
particle counts, FTIR microscopy is a reliable approach (150–1000 particles per sample).
Increased particle counts promote clogging and uneven distributions, which impede accu-
rate quantification because choked particles escape detection. As a result, at high particle
concentrations, MP numbers are likely to be underestimated. This technology of MP detec-
tion through FTIR microscopy offers some advantages over other spectrometric methods,
but it also has certain limitations: Raman microscopy detects particles up to 1 µm in size
but requires time-consuming sample preparation. This sample preparation is necessary
to avoid blanks and matrix fluorescence. Furthermore, every microscopic approach en-
counters problems with heterogenic particle dispersion on the filter material and blockages
caused by excessive particle numbers. The problem with high particle counts worsens as
the measurable particle size decreases. This may be explained by the fact that particles
smaller than 20 µm are one to two orders of magnitude more frequent than particles larger
than 20 µm, resulting in a greater number of particles that must be studied [39].

There are spectrometric methods such as pyrolysis GC-MS or thermal extraction des-
orption (TED). GC-MS can be entirely automated, resulting in a greater sample throughput.
The detection and quantification limits are quite high (LOD and LOQ). Moreover, the
matrix’s pyrolysis products can interfere with the measurement, and MP particle size
distributions cannot be obtained. This FTIR technology provides a simple and reliable
method that may be used in any laboratory without limitation. Sample preparation and
measurements take a reasonable amount of time for research purposes (one day for sam-
ple preparation, four-to-eight hours for measurements) and have no severe constraints.
Depending on the analytical question, this approach can be used with a wide range of
environmental materials and particle sizes as small as 20 µm [26,40].
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2.2. Near-Infrared (NIR) Spectroscopy

NIR spectroscopy is widely used in food and beverage analyses [41,42] but the near-
infrared light region is also used in plastic differentiation [43,44]. NIR spectroscopy does not
only analyze the surface but it penetrates deeper into the sample (e.g., material containing
microplastics) and is fast without the need for sample preparation, is cost-effective, and
environmentally friendly (no requirements for chemicals or gases) [22]. As with any
sample, so with plastics, when NIR light hits the sample (in the range of 800–2500 nm),
the molecules absorb the electromagnetic radiation and produce molecular overtones and
combined vibrations. In plastic materials, differences can be recognized in the characteristic
bands of carbon bonded with oxygen or hydrogen (C–O and C–H) and nitrogen bonded
with hydrogen (N–H), which are observed in plastic materials [45].

Studies dealing with the identification of microplastics by NIR spectroscopy have
shown successful predictions of microplastics in soil samples [46] where untreated soil
samples were directly measured with a spectroradiometer (in the 350–1000 nm range).
Paul et al. [47] showed in their research the high efficiency of NIR spectroscopy in combina-
tion with chemometrics (using the software Unscrambler X) in examining the presence of
microplastics in soil samples and for determining the size, quantity, and age of the plastic.
Their research showed that PE, PP, PS, PVC, and Polyethylene terephthalate (PET) were
effectively detected by NIR in real and artificial soil samples at 1 wt.%. They used the
Model Support Vector Machine (SVM) [43]. The application of NIR spectroscopy in the
identification of types of marine microplastics was examined in the study by Pakhomova
et al. [48] where a MicroNIR spectrophotometer was used. The advantages of using a
MicroNIR device is that it can be used on-site for imaging. In order to verify the success of
the measurement method, a spectrum library of the most frequently found microplastics
from marine waste was created and with the help of software (MicroNIR) the recorded
spectra of samples were compared, whereby the accuracy of the identification of microplas-
tics in environmental samples was 96%. However, it should be pointed out here that the
MicroNIR spectrophotometer identified microplastics > 1 mm in size, and for the purpose
of verification, the samples were identified with an ATR-FTIR device, in order to confirm
accuracy. In investigating microplastics in the coastal environments of the Arabian Gulf [49],
the FTIR/FT-NIR spectrometer was used with 89% effective identification of the type of
polymers (LDPPE, PP, PET, and PP) from sediments and seawater. The quantification of
ternary microplastic mixtures containing PP, PE, and PS through an ultra-compact near-
infrared spectrometer coupled with chemometric tools were investigated [50], as well as
with a Miniaturized Near-Infrared (MicroNIR) spectrometer. Prediction of the previously
mentioned polymers is high with R2 > 0.9, and the chemical nature of the examined sam-
ples was checked by Raman spectroscopy (before and after fragmentation). The potential
of portable NIR devices has certainly shown its application potential in the detection of
microplastics [48,50], although their usual range is 900–1700 nm.

2.3. Pyrolysis Gas Chromatography–Mass Spectrometry (Py-GC-MS)

The pyrolysis gas chromatography–mass spectrometry (Py-GC-MS) technique has a lot
of potential in environmental analysis. This method is primarily utilized for the chemical
identification of macromolecules that, because of their large size, cannot be described
by liquid or gas chromatography. These macromolecules are broken down into smaller
molecules by pyrolysis (controlled heat breakdown), which may then be separated by
gas chromatography and identified by mass spectrometry. This approach has typically
been employed in environmental samples to characterize organic matter and human food
compounds, pollutants, lignins, and so on. It is capable to identifying the many types of
chemical units that comprise macromolecules. Furthermore, this approach has lately seen a
significant increase in the chemical characterization of microplastics found in environmental
samples. This has prompted its application in this form of matrix [51–58].
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2.4. Comparison of Microscopic and Spectroscopic Identification Methods

Because the detected and recognized MPs have shrunk in size, quantitative analysis
with the naked eye or a microscope is limited. Little microplastics should be identified
using the spectroscopic approach [58]. If only a few samples are being evaluated, FTIR or
Raman detection of plastic-like particles is indicated. This approach is reasonably accurate
for determining the quantity and type of polymer of microplastics. When evaluating many
samples, it is best to utilize a mix of microscopy and spectroscopic approaches. To define
sample-based criteria for the identification of main and typical microplastics in sample
groups based on matrix, season, and location, a screening study employing FTIR or Raman
should be performed first. The stereomicroscope should then be used to count microplastics
based on these criteria [59]. NIR spectroscopy in combination with chemometric tools and
microplastic databases can be extremely useful, especially if MicroNIR devices have been
used for on-site measurements [48,50].

Because the detected and recognized microplastics have shrunk in size, quantita-
tive analysis with the naked eye or a microscope is limited. More precise standardized
methodologies and analytical techniques in the field of microplastics study must yet be
investigated.

3. Recent Techniques for Detecting Microplastics

Despite the fact that the number of publications and interest in MP research has
expanded quickly, it is still difficult to compare the collected results due to the use of
diverse techniques in MP assay. There is an urgent need for a uniform approach to MP
quantification processes in order to create comparable assessments [60]. This short review is
an attempt which sums up the most notable recent technologies of analyzing MPs through
various examples, magnifying both the pros and cons of each technique and giving a
concise conclusion at the end of the article.

3.1. Photocatalysis

Photocatalysis is a well-established ecologically beneficial process that makes use of
free and infinite sun energy. This method has seen significant usage in water filtration
recently because of its excellent ability to degrade antibiotics, insecticides, and dyes. The
mechanism of photocatalytic degradation is believed to be the interaction between ROSs
(e.g., hydroxyl (OH), superoxide (O2)) generated on the surface of semi-conductors and
the organic substrate, which breaks the chemical bonds of organic pollutants and causes
their complete mineralization toward CO2 and H2O. However, organic materials can be
immediately oxidized into CO2 and H2O by photo-excited holes (h + VB) created by an
electron transfer from the valence band to the conduction band [61].

To maximize the benefits of photocatalysis, future research should concentrate on:
(1) developing practical photocatalytic materials; (2) describing the mechanisms of MPs
degradation; (3) quantitatively assessing the ecological risks posed by the degradation
intermediates; and (4) further refining recycling techniques [62]. Scientists should pay more
attention to both photocatalytic and microbial technologies because they have the potential
to provide long-term water security and ecological stability [63].

3.2. Catalytic Advanced Oxidation Process (AOP)

AOPs are well-known for their ability to remove organic pollutants by producing
ROSs with high standard reduction potentials, such as sulfate radical (SO4, E0 = 3.1 V
against NHE) and hydroxyl radical (•OH, E0 = 2.7 V vs. NHE). This approach has ef-
ficiently decomposed or mineralized a wide range of contaminants, including colors,
antibiotics, and POPs (persistent organic pollutants), because of their great oxidation
capabilities [61,61–66].

Aging caused by AOPs is becoming more common [67]. AOPs are effective methods
for degrading organic pollutants by generating many reactive oxygen species (ROS) to
attack their internal structure [61], which are important in determining the characteristics
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of aged MPs and explaining the formation pathway of secondary MPs. At the moment,
(heat-activated) persulfate, Fenton/photo-Fenton, O3/H2O2, UV/H2O2, UV/Cl2, and
other agents are mostly employed to age MPs. The reactive species generated during
photo-oxidation inducing the breakage of C–C bonds in the main chain has been proven to
be the indirect photoaging process of polyolefin MPs such as PE, PS, and PP [68].

3.3. Biodegradation (Enzymatic Catalysis)

Biodegradation is a crucial technique for removing chemical pollutants produced by
bacteria in addition to abiotic breakdown. Microorganisms create the corrosive chemicals
in the chemical process of biodegradation. The polymer backbone may be broken by
microbes or extracellular enzymes during the biodegradation process, changing the surface
properties or mechanical strength as well as the average molecular weight of the polymer.
On the other hand, commercial plastics have a strong biodegradability resistance. Due to
their long molecular chains and absence of functional groups, polyolefins are more resistant
to biodegradation [68].

3.4. Membrane-Based Filtration

Due to their significant benefits of high separation efficiency and small plant size,
filtration techniques such as microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO),
dynamic membranes (DM), and MBRs have been demonstrated to be practical for produc-
ing high-quality water from a primary or secondary effluent [69–71]. Numerous studies
have been conducted on dynamic membrane technology as a possible rival for cutting-
edge water treatment methods. Recently, membrane technologies have been enhanced by
integrating them with other techniques, leading to an overall increase in the efficiency of
MPs removal. MBR, a heterogeneous reaction system made up of a biological reactor and a
membrane system, has been created for better wastewater treatment [72].

3.5. Adsorption

Adsorption has also been used to absorb the pollutants in water, such as heavy metals
and organic toxins [59]. Adsorption performance is determined by ion exchange, π–π
contacts, hydrophobic interactions, and hydrogen–bond interactions between adsorbents
and contaminants. This approach has recently been used to reduce MPs in the water
treatment process. Yuan et al. used 3D reduced graphene oxide to test the adsorption
efficiency of PS MPs (3DRGO) [73]. MPs eliminated throughout the multi-stage wastewater
treatment operations generally persist in the sludge. This MP-rich sludge is frequently
handled further, either as landfill or as agriculture fertilizer. Despite the fact that a range
of procedures are used to eliminate dangerous things before they are used in agriculture,
the presence of MPs is neglected [74]. Due to a lack of rational treatment to recycle or
entirely eliminate the separated and collected MPs debris and particles, the aforementioned
strategies based on simple physical separation cannot permanently address the pollution
of environmental MPs, regardless of how many advancements have been made.

3.6. Coagulation

Coagulation is often utilized in modern water facilities during advanced treatment to
generate high-quality drinking water. The coagulants employed in this technique, such as
ferric sulfate or aluminum sulfate, cause the aggregation of suspended particulate materials
into flocs [75], which then sediment and may be easily removed from water. The hydrogen
bonding and/or electrostatic interactions between the coagulants and suspended particles
are critical for achieving high separation efficiency during this procedure [33]. In addition
to the use of additives, the surface qualities of MPs have a major impact on the coagulation
efficiency of MPs removal [76] Changes in the surface chemistry and roughness of MPs,
for example, during weathering processes in the natural environment, might influence the
MPs affinity for coagulants and flocculants. Lapointe et al. investigated the efficacy of
coagulation in removing pristine and weathered MPs [77]. In conclusion, increasing the



Processes 2023, 11, 2360 9 of 21

effectiveness of MPs removal during the coagulation process requires the development of
novel, environmentally friendly flocs stabilizing chemicals as well as additional oxidation
processes (such as UV and ozone) to improve the interaction between flocs and MPs [61].

Figure 4 shows a schematic review of all the mentioned methods with their pros and
cons. The comparison clearly states that improvements in futuristic methods are needed
and that there is still room for improvements of the existing ones [61].
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3.7. Novel Method for Assessing Microplastics through Mixing

The MP ratio test is designed to test whether particulate material (the test particle) is
harmful when co-occurring in a mixture with naturally occurring particles (the reference
particle) over a range of suspended solids concentrations. Namely, if the harmfulness of
the particle being tested is greater than the reference particle, then reducing its share in
the mixture with the reference particles should reduce the total toxicity. However, the
additive effect assumption is necessary (additive effect of microplastics, above the critical
mortality threshold, is positively responding to %MP). The above enables that for each
test concentration of suspended solids in which there are different ratios of reference
particles and particles being tested, a dose–response relationship can be established for
each mixture in the concentration range [11,45]. Suspended solids (e.g., clay and cellulose)
in the same size range as microplastics are prevalent in the environment. As a result, it
must be determined if the addition of MPs to these background amounts of particulate
material poses a risk [38]. This approach offers a unique method for disentangling the
influence of MPs from that of other particulates by the repeated dilution of microplastic
and reference particles in mixtures. It illustrates the method’s applicability by immobilizing
Daphnia magna in polyethylene terephthalate (test microplastic; median particle diameter
~5 µm) and kaolin clay (reference material; ~3 µm). This methodology offers the potential to
standardize the ecotoxicological testing of particulates, including MPs [20] and to estimate
the critical levels for the suspended microplastic that can be considered as hazardous.

3.8. Separation of False Positive Microplastics

In this further innovative example [78], a novel method for quantitative and quali-
tative microplastics analysis was devised employing a two-phase (ethyl acetate–water)
system in conjunction with confocal Raman spectroscopy. Microplastics can be effectively
extracted based on the hydrophobic–lipophilic interaction by the addition of hydrophobic
organic solvents. A certain amount of water and organic solvent is added to the sample
being analyzed, the ratio of which is 0.2~0.3. MPs may be separated from false positive
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MPs in beach sand and marine sediment thanks to the hydrophobic–lipophilic interaction
(HLI) of the two-phase system. The results show that the polypropylene (PP), polyethylene
terephthalate (PET), polyvinyl chloride (PVC), polyamide 66 (PA 66), polycarbonate (PC),
and polyethylene (PE) microplastics have recovery rates of greater than 92.98%. Addition-
ally, the suggested method may identify antibiotics that are lipophilic and hydrophobic
and are adsorbent on microplastics, such as sulfamethoxazole (SMX), erythromycin (EM),
madimycin (MD), and josamycin (JOS). These antibiotics are eliminated via the dissolv-
ing precipitating process [77]. This novel study technique opens up new possibilities for
detecting microplastics and hazardous chemicals in the marine environment.

3.9. Scanner-Based Combination for Analyzing Microplastic Particles

Another software-targeted novel approach described in a study [79] aims at combining
a low-cost approach for assessing the form and size spectrum of all MP particles in the
sample with the standard National Oceanic and Atmospheric Administration (NOAA)
methodology [80] for MP extraction from seawater (four stations in Sevastopol bay, the
Black Sea). For image acquisition, a standard flatbed scanner with a slide adaptor was used,
and MP dispersive parameters (particle abundance, shape, and size spectrum) were mea-
sured using the ImageJ software. Their pilot study was aimed at combining the previously
mentioned MP extraction protocol from seawater (NOAA) with a method for analyzing
the spectrum of shapes and sizes (cheap and simple method) for all MP particles that
compose the observed sample. Their conclusions emphasized that for the particle analy-
sis, the Feret’s diameter and circularity (or roundness) appeared to be the most effective
shape descriptors. The entire silhouette area of MP particles was proven to generate a
reliable estimate of the overall mass of MP particles. In terms of abundance and mass,
the first valid estimations of MP concentrations in Black Sea coastal waters (Sevastopol
Bay) items amounted to 0.6 to 7 µg m3 and 6 to 750 µg m3, respectively. MP inflow to
bay waters and movement along the bay appear to be governed by a complicated mix of
variables including rainfall, wind regimes, currents, and Black River discharge. The au-
thors showed the potential of the conducted pilot study and the transfer of image analysis
in the MPs analysis; however, many questions related to the methods used to quantify
MP pollution were also opened. For example, (i) the protocol does not include proce-
dures for the wet peroxidation of organic substances and density separation of plastics or
(ii) complexity of the procedure (complicated and time-consuming) and non-standardized
differentiation of MPs.

So, this method has its advantages and disadvantages, and further refinements of
the method are necessary. However, despite this, these data are among the few that are
an indicator of pollution in that area. Using a simple image analysis, a study by Lorenzo-
Navarro et al. [81] was conducted, which applied the acquisition of an image with a flatbed
scanner that, with the use of the so-called computer vision for the analysis of obtained
images and machine learning, aimed to develop the classifiers of different types of MP
particles. Here, the samples of pure MPs were to a good extent equivalent to the extraction
of MPs from a natural seawater sample. However, the idea is still far from potentially
“standard” because the mathematical tools for analysis, recognition, and classification of
MP are extremely complex and demanding.

3.10. Scanner-Based Combination for Analyzing Microplastic Particles

The first application of quantitative 1H NMR spectroscopy (qNMR) that presents a
novel method for the qualitative and quantitative analysis of MPs in solution is presented
by Peez et al. [82]. This method, such as previously mentioned, was suggested due to the
evident great need for research in the field of quantitative analysis of MP particles that
are independent of size. In their model samples, polyethylene (PE) granules (<300 µm),
polyethylene terephthalate (PET) fibers (≈500 µm), and polystyrene (PS) beads (0.5 to
1 mm) each underwent qualitative and quantitative analysis as prototypical MP particles
using the calibration curve method. The remaining proton signal of the deuterated solvent
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was employed as an internal standard. The method’s linearity is characterized with the
R-squared value over 0.994 for all polymer types, and its accuracy is between 99.4 and
99.9%. The limit of detection (LOD) is 19–21 g/mL and the limit of quantification (LOQ)
is 74–85 mg/mL, indicating that the LOD and LOQ are seen in an ecologically relevant
size. In this paper, it was shown that (i) the content of the tested MP particles in model
samples can be determined with high precision by means of the calibration curve method,
(ii) particle sizes (upper and/or lower) do not exist because the MP particles are dissolved
and can be determined qualitatively and quantitatively, which certainly supports the claim
that size-independent qualitative and quantitative identification of microplastic particles
in model samples is attainable using qNMR [82]. Despite all the above, there are still
limitations for real samples (from the environment) and additional research is necessary
that will study (i) the digestion of biological matrices and the recovery rates of MP contents
in the sample and (ii) the separation of MPs from other ingredients in the sample. One of
the possible solutions is the combination of non-destructive spectroscopic methods (FTIR,
NIR, or Raman) in the analysis of MP particle size distribution with qNMR to determine
the number of MPs in the observed sample.

3.11. A Cheap, Green, and Fast Analytical Procedure for MP Extraction

Another attempt to produce a both efficient and cheap validation technique for MP
assessment was made by the use of a new extraction method [83]. Since sediments are
known to be a primary sink for numerous organic and inorganic pollutants, the goal
of this research was to design and test a quick and low-cost approach for assessing
MP contamination in intertidal sediments from the Gulf of Biscay (Pays de la Loire re-
gion, France). MPs extracted by the protocol they suggested: (i) from dried sediments,
(ii) centrifuged using milliQ water, (iii) filtered through nitrate cellulose (12 µm), and
(iv) directly identified on the membrane filters after a supernatant filtration stage, using
FTIR spectroscopy in reflection mode. This method examined sediments collected at three
sites during two seasons, and for the first time, the number of repeats required to achieve a
satisfactory representativeness was investigated. The optimal number of repetitions was
determined to be 10 replicates, each of 25 g. The average MP concentration in sediments
was 67 (±76) MPs/kg dw (N = 60), with no significant differences at either 28 locations
or seasons.

The findings underlined the limit of significant MP accumulation (>1 mm) in intertidal
mudflats. MP concentrations in seawater, sediments, and bivalves from the same area on
the French Atlantic coast were discussed, indicating a potential preferential filtering of
tiny MPs (20–50 µm) by the bivalves, which needs be validated by laboratory tests. This
study emphasizes the pervasiveness of MPs in the marine environment once more and the
potential of new methods which need more confirmations [84].

3.12. Machine Learning Approach in Microplastic Analysis

A key drawback of traditional meta-analysis techniques is their lack of spatial reso-
lution. Among the broader scientific community, however, machine learning-aided meta-
analysis has the potential to address this issue. In comparison to conventional statistical
meta-analysis approaches, machine learning techniques provide greater flexibility and
are largely free from a priori assumptions by drawing conclusions from the raw data and
turning them into useable models. The term learning itself implies (i) acquiring new knowl-
edge or (ii) improving or (iii) updating skills, while machine learning (ML) unifies problem
solving in a way that helps machines ‘discover’ their ‘own’ algorithms [85]. Approaches to
machine learning can be applied to structured and unstructured data such as large language
models, computer vision, speech recognition, fields with extremely large datasets, such as
medicine or spectral data of chemical compounds, where it is too expensive to develop
algorithms for performing individual tasks that would lead to some conclusions. The terms
“Machine learning” and “data mining” often overlap and use the same methods; however,
the focus on discovering (previously) unknown properties in data is characteristic of data
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mining, while the focus on predictions based on known properties learned from data is
characteristic of machine learning [86]. The attempts to create international microplastic
databases are still in their infancy, and predictive machine learning algorithms need vast
datasets or big data to gain improved accuracy [84]. One outstanding step toward mak-
ing global marine microplastic data accessible for machine learning is the creation of the
first-of-its-kind marine microplastic database by Nyadjro et al., 2020 [87]. Thus, there is a
lack of comprehensive databases on marine microplastics that would allow (i) focusing on
one specific type of marine litter, microplastics, to establish NCEI as the primary location
for data management, (ii) collating and providing a comprehensive repository for the
information needed to study marine debris, and (iii) free data through: the Global Ocean
Currents Database; The World Ocean Database, and the Surface Sea Database. For the
implementation of activities related to marine debris in NOAA NCEI, the following is
required: (i) the development of a database (identification, procurement, and uploading),
(ii) program for marine debris and NCEI (the so-called Marine Debris Exchange House),
(iii) user engagement and information services, (iv) develop microplastic sensor measure-
ment, and (v) provide ArcGIS visualization (facilitate retrieval of ongoing microplastics
sensor data) [87]. In accordance with the above, an overview of the research that supports
the aforementioned needs and goals follows.

3.12.1. Computer-Assisted Analysis of Microplastics

As already mentioned, in recent years, the prevalent strategy has been to employ
spectral library searches to automatically identify sample spectra [88]. Subsequent research,
however, has revealed that this technique is fairly limiting in some settings, which has led to
advancements for making library searches more resilient while also paving the way for the
introduction of more complex machine learning algorithms. A novel study [84] proposes a
model-based machine learning strategy based on random decision forests that was used to
analyze large FPA-FTIR data sets of environmental samples. The model is applicable to
complicated matrices and can discriminate between more than 20 distinct polymer kinds.
The model’s performance under these difficult conditions is demonstrated using eight
distinct data sets. In addition, Monte Carlo cross validation was used to calculate error
rates such as sensitivity, specificity, and precision [88].

The data are processed in four phases once the FTIR picture is imported and calibrated
using the ENVI import function:

• Detection of the filter substrate;
• Classification of the remaining pixels;
• Postprocessing of the classification and;
• Particle detection and characterization.

They have come to the conclusions that the Bayreuth Microplastics Finder (BMF)
technique incorporates a dual control or four-eye principle, which we advocate owing to
sample preparation and data collecting issues [88]:

• Even though their concentrations are often relatively low, MPs may agglomerate which
increases the possibility of particles partially overlapping. Additionally, because the
present machine learning model does not enable the detection of mixed spectra, the
RDF model cannot accurately classify overlapping areas. Yet, by utilizing the particle
editor, it is rather simple to leverage the underlying visual picture to accurately create
particle shapes. The researcher can thereby correct any potential bias.

• As a result of their rigidity, fibers may not lay flat on top of the filter surface, and
any protruding portions may not fall within the detector’s focus plane. A single fiber
may therefore be seen as a collection of unconnected segments (see Figure 1 for an
example). Once more, this problem may be fixed by connecting the parts using the
visual picture and inserting class pixels in the middle. Primpke et al. [89] claim that
placing a BaF2 window over the sample guarantees that the fibers are positioned
within the microscope’s focus plane. If there are a lot of microfibers to study, this can
be a different strategy.
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• If MPs are thicker over a specific threshold, total absorption (TA) might become
another significant issue in transmission measurements. If enough information on
peak locations is retained, the TA effect could still make it possible to identify polymers
for spectra that are less badly damaged. The random decision forest (RDF) model that
is currently being used has been particularly trained to enable the categorization of
such spectra. However, there are certain particles that can only be partially identified,
necessitating human user interaction once more. In these cases, the visual picture in
conjunction with the particle editor is used.

3.12.2. Quantum Cascade Laser Imaging Approach in Analyzing MPs

The deterioration significantly affects the microplastics’ infrared spectra and can make
identification difficult. The detection of weathered microplastics is a challenging topic,
and this work offers a fresh solution. In order to capture the infrared spectra of diverse
polymeric particles, a quantum cascade laser (LDIR) was employed (81,291 individual
particles). Two supervised machine learning (ML) models, Subspace k-Nearest Neigh-
bor (Sub-kNN) and Boosted Decision Tree (BDT), were trained to recognize the spectrum
characteristics of labeled particles and then used to identify unlabeled samples. Using
10-fold cross validation, the models’ identification accuracy was 89.7% and 77.1%, respec-
tively. The Sub-kNN or BDT models were able to identify almost 90% of the samples.
After that, samples that the supervised ML model was unable to classify were clustered
using a non-supervised ML model called Density-based Spatial Clustering of Applications
with Noise (DBSCAN). This made it possible to find more microplastic subgroups. The
identification process may then be sped up by manually labeling a subset of each group’s
spectra (for example, the centroids of each cluster), which also enables the addition of fresh
labeled samples to the original supervised ML [90].

3.12.3. Training and Evaluating Machine Learning Algorithms MPs Classification

Another investigation of machine learning classification techniques which were used
on the FTIR spectra of marine MPs gathered for this study is furthered. The performance
of the predictions for 13 classes of polymers was assessed using a comparison of effective
classification models. To prevent bias during the training and selection phases, a pipeline
approach was used in conjunction with a strict methodology. The use of an oversampling
approach to correct for dataset imbalance also contributed. The minimization function aims
and performance metric employed were the log-loss. For a quick and practical automated
characterization of microplastics, our examination of a Support Vector Machine Classifier
shows a favorable link between simplicity and performance [91].

3.12.4. Deep Learning Approach for Automatic MPs Analysis

In order to automatically count and categorize microplastic particles in the range of
1–5 mm from photographs acquired with a digital camera or a mobile phone with a
resolution of 16 million pixels or higher, a deep learning network architecture is proposed
in this research [92]. The suggested architecture includes a first stage for segmenting
the image’s particles that is carried out using the U-Net neural network. Following the
separation of the various particles, a second stage using the VGG16 neural network divides
them into three categories: fragments, pellets, and lines. These three categories were chosen
because they are the most prevalent within the size range that is being considered. Images
from two digital cameras and one smartphone were used in the experimental evaluation.
The samples utilized in the studies were taken in August 2018 at the Beach del Poris beach
on Tenerife Island, Spain. In the trials on segmenting particles, a Jaccard Index value of
0.8 is attained, and the microplastic particles are classified with an accuracy of 98.11%.
The suggested architecture outperforms a comparable, previously published system using
conventional computer vision methods in terms of speed. As investigated by Han and
coworkers [93], a deep learning model based on the mask region conventional neural
network (Mask R–CNN) was developed and used for the classification, localization, and
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segmentation of MPs (1–5 mm). In doing so, a MP deep learning dataset was constructed
and used for training and validation of the Mask R–CNN model (using only optical cameras
and available image processing software). However, in both studies the classification,
localization, segmentation, and computer performance of the developed models were
evaluated. When precisely developing any model, it is important on which data set the
learning and validation of the model for the classification, localization, and segmentation
of real MPs with different morphologies and at different scales is carried out. The study
using Mask R-CNN included a microplastic dataset including 3000 images, and was
tested on 250 images with the precision over 93% [93]. The study by Lorenzo-Navaro
et al. [81] used for training and testing 49 images of mixed microplastic samples and 20%
of training samples vas used as validation with an average accuracy over 98%. However,
such approach also pointed out limitations as (i) in monitoring microplastics, this is their
visual identification/screening process which was a labor-intensive task that needs to be
conducted by trained individuals and (ii) before classifying and counting MP particles,
sample cleaning must be carried out to remove non-plastic material [45,93].

All of the above point to the need for establishing Europe’s attitude and vision towards
plastic in our environment and pollution.

4. Europe’s Program on Solving the Pollution Problem

An important factor in the world’s vision against pollution in marine (and other)
environments can be traced with Europe’s most leading project holder, Horizon Europe,
which is the EU’s key funding program for research and innovation. Scientific communities
in the form of various institutes, universities, and faculties work together with companies
on an advanced problem. Table 3 shows Horizon 2020 projects that have contributed to the
execution of the ZPAP flagships [94].

Table 3. Horizon 2020 initiatives that have aided in the implementation of the ZPAP flagships [94].

Flagship Project

Type of
Pollution

Targeted (Water,
Air, Soil, All)

Project Start and
End Dates

Type of Project
Results

Potential Use of
the Results

1. Reducing health
inequalities

through zero
pollution

HBM4EU

All

1 January 2017–30
June 2022

Scientific data and
recommendations

Authorities and
regulators

PROTECTED 1 January 2017–30
June 2021 New technologies Scientists and

regulators

EuroMix 15 May 2015–14 May
2019 New methodology Authorities and

regulators

2. Supporting
urban zero

pollution action

iSCAPE

Air

1 September 2016–30
November 2019 New technology Policymakers and

authorities

NOVELOG 1 June 2015–31 May
2018

Business models
and guidelines

Policymakers and
authorities
including cities

MossTree 1 April 2019–30
September 2020 New product Authorities

including cities

3. Promoting zero
pollution across

regions

NextGen Water 1 July 2018–30
November 2022 New technology

Policymakers,
regulators, and
industry

MMAtwo

All

1 October 2018 –30
September 2022

New technology
and guidelines Industry and cities

iCAREPLAST 15 October 2018–14
October 2022 New technology Industry and cities
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Table 3. Cont.

Flagship Project

Type of
Pollution

Targeted (Water,
Air, Soil, All)

Project Start and
End Dates

Type of Project
Results

Potential Use of
the Results

4. Facilitating zero
pollution choices

CREAToR

All

1 June 2019–31 May
2023

New technology
and
recommendations

Regulators and
industry

NanoFASE 1 September 2015–30
September 2019 New methodology Regulators and

industry

PAPERCHAIN 1 June 2017–31
August 2021 New technology Industry

5. Enforcing zero
pollution together

INTCATCH Water 1 June 2016–31
January 2020

New methodology
and technology

Authorities
including cities

ECORISK2050 Water and soil 10 October 2018–9
April 2023 New methodology

Industry and
authorities
including cities

SOILCARE Soil 1 March 2016–31
August 2021 New methodology

Policymakers and
the agricultural
sector

SOPHIE Water 1 December 2017–31
May 2020

Strategic research
and innovation
agenda

Policymakers

6. Showcasing zero
pollution solutions

for buildings

Built-in Wood Air 1 September 2019–31
August 2023

New policies and
strategies

Policymakers and
industry

BAMB All 1 September 2015–28
February 2019 New methodology Policymakers and

industry

ISOBIO Air 1 February 2015–31
January 2019 New technology Industry

7. Living labs for
green digital
solutions and

smart zero
pollution

PEAKapp Air 1 March 2016–30
June 2019 New product Civil society

(households)

Project Ô Water 1 June 2018–30
November 2022 New technology

Regulators, civil
society, and
industry

ICARUS Air 1 May 2016–31
October 2020

New technology
and strategy

Civil society,
policymakers, and
authorities

8. Minimizing the
EU’s external

pollution footprint

IC4WATER Water 1 January 2017–30
June 2022 New strategy Policymakers and

authorities

IMPRESSIVE Water 1 December 2018–30
November 2021 New product Authorities

CLAIM Water 1 November 2017–30
April 2022 New technology Policymakers and

authorities

9. Consolidating
the EU’s

knowledge centers
for zero pollution

HERA All 1 January 2019–31
March 2022

Strategic research
and innovation
agenda

Policymakers and
authorities

INHERIT All 1 January 2016–31
December 2019 Policy monitoring Policymakers and

authorities

As seen in Table 2, 70.4% of overall projects are either fully or partially marine-pollution
oriented. This approach of companies being involved in scientific research provides a fertile
ground for all present and upcoming challenges on MPs water pollution. Moreover, Table 4
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presents a systematic overview of Europe’s vision for a new plastics economy, on which all
future scientific research should be based. The vision [61] contains all the key elements for
plastic recycling combined with innovative solutions, which are a direct consequence of all
current and future methods for MPs analyses. The consumers (end users of food which
potentially contains microplastics) were not left out in the consideration of Europe, and
their attitude related to microplastics (Table 5) was also systematized, through the eyes of
the EU.

Table 4. The vision for Europe’s new plastics economy [95].

Vision How It Will Be Achieved:

Sustainable, innovative,
and smart plastic

production

Design and production of plastics should take full account to the need to reuse, repair, and recycle,
create growth and jobs in Europe, and help reduce EU’s greenhouse gas emissions and its

dependence on imported fossil fuels.
Enable higher recycling rates for plastics in all major application areas.

By 2030, more than half of the plastic waste generated in Europe will be recycled.
Separate collection of plastic waste is reaching very high levels.

Recycling of plastic packaging waste reaches a level comparable to that of other packaging materials
Innovative materials and alternative row materials for plastic production are developed and used if

they are proven to be more sustainable than the non-renewable alternatives (this supports
decarbonization efforts and creates additional growth opportunities).

Plastics and products
containing plastics of

defined properties

Plastics will be designed to allow greater durability, reuse as well be highly recyclable.
By 2030, all plastics packaging placed on the EU market will be either (i) reusable or (i) such that they

can be recycled in a cost-effective manner.

Significantly extended and
modernized EU plastics

recycling capacities

Recycling and sorting capacities will increase in Europe by 2030, leading to the creation of
200,000 new jobs.

The export of poorly sorted waste (plastic) will be phased out due to improved separate collection,
achieved through investment in innovation, skills, and capacity building.

Recycled plastic will become a more valuable raw material for industries (in the country and abroad).

Successfully established
market for recycled and

innovative plastics

The integrated value of plastics is a consequence of the close cooperation of the chemical industry
with recycling companies.

The growth perspective of this market is clear as more and more of these products are included in the
recycling content of the content.

The growing demand for recycled plastic in the EU will ensure a stable income stream for the
recycling sector, which will also ensure job security for its processing.

Europe’s dependence on imported fossil fuels will be reduced and CO2 emissions will be reduced (in
accordance with the obligations from the Paris Agreement).

Europe will confirm its leading role in the production of equipment and technologies for sorting
and recycling.

Global demand for more sustainable ways of processing waste plastic will proportionally result in a
decline in exports.

Table 5. Europe’s current attitude to plastics economy [94].

Attitude Explanation

Supporting more sustainable and
safer consumption and production

patterns for plastics

Such an attitude is fruitful ground for the development of social innovation and
entrepreneurship, creating a wealth of opportunities for all Europeans.

Citizens are aware of the need to
avoid waste, and make choices

accordingly

Consumers have a key role in recycling plastic waste, who must be made aware of the key
advantages thus enabling them to actively contribute to waste reduction.

More sustainable patterns of plastic consumption offer better design, new business models,
and innovative products.

The need for more resolute action
on plastics waste prevention as a

business opportunity

The development of digitization also benefits the increase in the number of new companies
that provide circular solutions, such as reverse logistics for packaging or alternatives to

single-use plastics.



Processes 2023, 11, 2360 17 of 21

Table 5. Cont.

Attitude Explanation

Effective waste collection systems
will prevent leaking of plastics into

the environment

The increased awareness of consumers affects the need to handle waste in an appropriate
manner, and this is precisely why marine waste from sources in the sea, such as ships,

fisheries. and aquaculture, is significantly reduced. It also encourages the preservation of
sensitive ecosystems and encourages additional development of activities such as tourism

and fishing (cleaner beaches and seas).

Development of innovative
solutions should be developed to

prevent microplastics from reaching
the seas

Industry and public bodies work together to contribute to a better understanding of the
origins of microplastics, their travel routes as well as their potential effects on human health
and to prevent them from ending up in our oceans and air, drinking water, or on our plates

EU engaging as a leading role is
crucial against plastic waste

accumulation

The leading role of the EU presented through the financing of (i) best practices, (ii) scientific
knowledge for improvements, the mobilization of citizens is initiated, and the scientific

community and/or innovators develop solutions that can be applied worldwide, all with
the aim of reducing and stopping the flow of plastic in oceans and implementing corrective

measures against the plastic waste that has already accumulated.

If the leading institutions of each country adhere to the stated principles and plans [61],
there will certainly be less microplastic pollution, and rivers, lakes, and seas will be cleaner,
and thus the food that comes to us from them.

5. Conclusions

From what is presented, it is evident that the traditional methods of detecting mi-
croplastics are becoming obsolete, slowly giving way to spectroscopic methods, where the
potential of NIRs and FTIRs is recognized when coupled with additional data. Standard
methods of detecting microplastics are often time-consuming, labor-intensive, and have
limited accuracy in identifying and quantifying microplastics in water samples.

Recent studies have shown that machine learning algorithms have been successfully
employed in identifying microplastics in water samples with high accuracy rates. With the
advancement of technology and the continued development of sophisticated algorithms,
it is expected that machine learning will become even more effective in detecting and
quantifying microplastics in the environment. Although machine learning has shown
potential in the analysis of microplastics, it is important to note that its effectiveness depends
on the quality and diversity of the training data and algorithms used. The potential of
machine learning algorithms in the recognition of microplastics and their quantification is
manifested by high accuracy rates, such as 93% accuracy, whereas a machine learning tool
used is the mask region conventional neural network (Mask R-CNN). In addition, machine
learning, along with other analytical techniques, can contribute to enhancing MP detection
and analysis. A combination of traditional methods, spectroscopic techniques, and machine
learning algorithms can offer a comprehensive and robust approach to understanding MP
pollution.

The potential impact of microplastics on marine ecosystems and human health cannot
be overstated. It is crucial to continue research efforts in this area and to explore inno-
vative approaches to detect and mitigate the effects of microplastics in the environment.
Machine learning is a powerful tool that has the potential to transform our understanding
of microplastic pollution and to contribute to more effective strategies for its prevention
and mitigation. Therefore, it is safe to say that machine learning is indeed the future of
detecting microplastics in the environment.

Author Contributions: Conceptualization, V.M., Ž.C., M.I., P.A. and J.G.K.; methodology, V.M. and
J.G.K.; software, V.M.; validation, V.M., Ž.C., M.I., P.A. and J.G.K.; formal analysis, V.M., M.I. and
J.G.K.; investigation, V.M., Ž.C., M.I., P.A. and J.G.K.; data curation, V.M., Ž.C., M.I., P.A. and J.G.K.;
writing—original draft preparation, V.M., Ž.C., M.I., P.A. and J.G.K.; writing—review and editing,



Processes 2023, 11, 2360 18 of 21

V.M., Ž.C., M.I., P.A. and J.G.K.; visualization, V.M., Ž.C., M.I., P.A. and J.G.K.; supervision, J.G.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. Microplastic in Aquatic Ecosystems Angew. Chem. Int. Ed. 2017, 56, 1720. [CrossRef]

[PubMed]
2. Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on

Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [CrossRef] [PubMed]
3. Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene Spherules in Coastal Waters. Science 1972, 178,

749–750. [CrossRef]
4. Llorca, M.; Álvarez-Muñoz, D.; Ábalos, M.; Rodríguez-Mozaz, S.; Santos, L.H.; León, V.M.; Campillo, J.A.; Martínez-Gómez, C.;

Abad, E.; Farré, M. Microplastics in Mediterranean coastal area: Toxicity and impact for the environment and human health.
Trends Environ. Anal. Chem. 2020, 27, e00090. [CrossRef]
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