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Abstract: In this research work, an approach using You Only Look Once version three (YOLOv3)-
TensorFlow for abalone detection and Deep Simple Online Real-time Tracking (DeepSORT) for
abalone tracking in conveyor belt systems is proposed. The conveyor belt system works in coordi-
nation with the cameras used to detect abalones. Considering the computational effectiveness and
improved detection algorithms, this proposal is promising compared to the previously proposed
methods. Some of these methods have low effectiveness and accuracy, and they provide an incorrect
counting rate because some of the abalones tend to entangle, resulting in counting two or more
abalones as one. Conducting detection and tracking research is crucial to achieve modern solutions
for small- and large-scale fishing industries that enable them to accomplish higher automation, non-
invasiveness, and low cost. This study is based on the development and improvement of counting
analysis tools for automation in the fishing industry. This enhances agility and generates more income
without the cost created by inaccuracy.
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1. Introduction

The abalone is a single-shelled gastropod mollusk marine snail, which is notable not
only for resembling the human ear, but also for being one of the most valuable shellfish
in the world. Its high value arises from its good taste and beautiful shell [1]. Generally,
abalones live in rocky environments under the sea, where they can feed on algae. The
tough and strong shells of abalones create an immensely strong attachment to rocks in the
sea, which requires time and skill to remove them during fishing. The abalone is sold in
the Korean fish market, and is highly valued as a delicacy and also owing to the difficulty
in capturing it in its natural habitat [2]. Therefore, the abalone is one of promising species
for sea farming.

The culturing of abalones comprises two steps: a first nursery and a second nursery.
Initially, small abalones are fed into indoor tanks in the first nursery stage, and then the
secondary nursery is carried out in the sea as a form of sea farming. The raised abalone,
which reaches approximately 1.5 cm or more after the first nursery, is handed over to the
second nursery and is grown in the sea. Generally, abalones after the first nursery stage
are sold to fishermen for the second nursery. However, the counting of abalones for sale
by humans is a difficult task because of their small size, and in some cases they tend to
be entangled with each other. Therefore, abalones are sold by weight, which is estimated
to be equal to the number of abalones. However, counting by weight does not exactly
match the actual number of abalones owing to their weight variation. This inaccuracy in
counting abalones causes a loss of selling profit, considering their high price. To solve this
problem, machines that count abalones automatically have been developed and used (see
Figure 1). To operate the counting machine in Figure 1, an algorithm using image sensor
and LabVIEW [3] was implemented. In this machine, the installed cameras capture images

Processes 2023, 11, 2351. https://doi.org/10.3390/pr11082351 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11082351
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082351?type=check_update&version=1


Processes 2023, 11, 2351 2 of 17

of moving abalones on a conveyor belt. The captured images are converted to black and
white images so that the black area represents the abalones, and the white color represents
the empty area. Then, the black area is divided into the average pixel size of an abalone to
estimate the number of abalones within the image.
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Figure 1. Abalone counting machine using conveyor belt.

During the growth of abalone in tanks, many abalones tend be entangled, which poses
a challenge to counting them on the conveyor belt system with the accuracy required by
fishing industries. Therefore, these industries are conducting further research to address
the problem of abalone occlusion which results in two or more abalones being counted
seen in (Figure 2). In this context, this study proposes an application of the deep learning
algorithm for detecting, tracking, and counting moving abalones on a conveyor belt, which
is composed of You Only Look Once version three (YOLOv3) as the detector and Deep
Simple Online Real-time Tracking (DeepSORT) as the tracker [4].
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2. State of the Art
2.1. Object Detection

Object detection has been an essential research topic in many industrial areas such
as defect detection, autonomous driving, robot arms, and so on. As the pillar of image
understanding through computer vision, object detection is regarded as the basic concept
in high-level and is composed of complex tasks such as image captioning, object tracking,
segmentation, pattern detection, and motion recognition. Notable conventional methods in
research of object detection have been developed from the early studies with several models
built as an ensemble of feature extractors, such as the Viola–Jones detector [5] and the
histogram of oriented gradients (HOG) [6]. These models are slow, inaccurate, and perform
poorly on unknown datasets. Garay et al. [7] proposed an overview of AMR system based in
the computational and wireless sensor network. Using a video micro-camera and an Optical
Character Recognition (OCR) module included into the sensor node, the AMR system reads
the meter’s numerals. The data are transmitted to the management center through ZigBee
wireless networks, where communication takes place in a mesh topology. The application
of deep learning and convolutional neural networks (CNNs) for image classification has
altered the visual recognition outlook. The CNNs used in the ImageNet Large Scale Visual
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Recognition Challenge (ILSVRC) 2012 challenge by AlexNet provided the groundwork for
neural network utilization in computer vision [8]. Currently, the implementation of object
recognition ranges from autonomous cars to identification in security systems, medical
applications, and more. In recent years, there has been exponential growth in this field
with the rapid development of new tools and technologies. Côté-Allard et al. [9] proposed
the use of transfer learning for surface electromyography sEMG hand gestures detection
using CNN. CNN is augmented using transfer learning method to reduce data generation
burden on gesture data. The CNN model resulted in an accuracy of 97.81% on seven hand
gestures by 17 participants.

Object detection based on CNNs can be divided into two types depending on whether
it uses a region proposal network (RPN): one-stage and two-stage methods [10]. Many two-
stage object detection methods are based on determining the region of interest (ROI) [11].
Ren et al. [12] proposed the Faster R-CNN, which achieved substantial improvement and
provided the foundation for subsequent studies. Object detection can be framed as a
regression problem for spatially separated bounding boxes which represents a specific area
in the image for object existence and the associated class probabilities of the bounding box.
A single neural network predicts bounding boxes and class probabilities directly from full
images in one evaluation. A single-shot detector (SSD) makes it possible to discretize the
output space of the bounding boxes into a set of default boxes with different aspect ratios
and scales per feature map location [13].

YOLO was introduced by Joseph Redmon et al. [14] who proposed a one-time CNN
to predict the frame position, and classify and determine the detected objects among
multiple categories (such as humans, cars, bicycles, dogs, or cats). YOLO uses regression
to solve object detection, which takes an input image, and learns the class probabilities
and bounding box coordinates. Using YOLO, single images are divided into S × S pixel
size grids, and each grid predicts the bounding boxes and confidence level. Confidence
represents the precision of the bounding box as well as whether the bounding box truly
includes an object, regardless of class. YOLO predicts the classification score for each box
in each training class. A single end-to-end system completes the process of assigning the
output obtained from the original image to a category or position [15].

Zhong et al. [16] stated that deep networks, such as YOLOR-P6 and YOLO-W6, could
perform at the highest level as usable on large datasets; however, they attained lower
accuracy on limited datasets owing to overfitting. Additionally, they demonstrated that
simpler networks such as YOLOv3 and YOLOv5 can achieve better precision. Balakr-
ishnan et al. [17] undertook a comparative study of various YOLO model architectures
used in object recognition. The authors compared the Darknet architecture with YOLOv5,
YOLOv3, Tiny YOLO, and ResNet under ImageAI library. From their results, the re-
search concluded that YOLO with the Darknet model having weight for trained objects
gives better performance. Xu et al. [18] trained a YOLO architecture with three different
datasets to identify various fish species and achieved a mean average precision score
of 0.5392. Pedersen et al. [19] utilized the YOLO method and expanded their work to
include marine mammals and fish. These methodologies train their networks as end-to-
end. Shankar et al. [20] compared YOLOv3, YOLOv5, and YOLOv7 architectures for the
detection of underwater marine creatures. In this study, these YOLO are chosen due to
their excellent detection accuracy and quickness in real-time application for the detection
of aquatic species. The study concluded that enhanced YOLOv7 achieved the better per-
formance than other frameworks with the mean average precision (mAP) of 0.82, in the
detection of underwater marine creatures.

SSD [13], deconvolution single-shot detector (DSSD) [21], RetinaNet [22], M2Det [23],
and RefineDet++ [24] are more recent algorithms based on single-stage object detection.
Two-stage detectors typically perform better because they are more powerful and complex
than single-stage detectors. In terms of accuracy and inference time, YOLO challenges not
only two-stage detectors, but also the earlier single-stage detectors. This is because of its
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straightforward architectural design, low complexity, and simple implementation, and it is
regarded as one of the most prevalent choices in production [25].

2.2. Marine Object Counting with Machines

Object counting machines in small factories or large industrial sites predominantly use
conveyor belts for sorting and movement. To automate object counting on the conveyor
belt, some of them are equipped with cameras on top of the conveyor belt that acquire
video data or images. The acquired videos or images are processed to count the objects in
real time.

Some researchers have described how computer vision can be used in the abalone
counting process. For instance, Park et al. [3] proposed abalone detection and counting
based on LabVIEW machine vision in a conveyor system. They deployed a camera rather
than a proximity sensor to count abalones because the existing proximity sensor has an error
rate of approximately 3%, depending on the conveying process. This approach presented a
promising result for the counting process; however, in some scenarios where abalones are
entangled, it leads to inaccurate counting. To address this problem, abalones can be counted
manually by separating the entangled ones, but this is impossible in large or automated
fisheries because it is time consuming and labor-intensive. Therefore, it is important to
address the problem of abalone entanglement.

Tseng et al. [26] classified fish using onboard CCTV videos with a masked region-based
CNN (Mask R-CNN) algorithm. Using videos captured on the deck of a long liner, Tseng
and Kuo identified a variety of fish with an accuracy of 83% (F1-score) and a counting
inaccuracy of 21%. French et al. [27] successfully detected a variety of fish on a conveyor
belt within a fishing boat. In a research vessel experiment with known numbers of fish, a
mean class accuracy of 63% was obtained, whereas in a commercial vessel, a mean class
accuracy of 57–59% was achieved. Humans who participated were reported to have a mean
class accuracy between 74% and 86% for a sample dataset.

To create optical systems for fish counting that achieve the required detection and counting
rates and address the low signal-to-noise caused by water fluctuations, Klapp et al. [28]
combined hybrid non-imaging optics with image processing techniques. They created an
embedded system based on the Raspberry Pi and a fixed focus lens to count two types of
ornamental fish in an aquarium, ranging in size from 0.5 to 2.3 g, and achieved an accuracy of
94% to 98%.

2.3. Object Counting with Deep Learning

Deep learning algorithms such as CNNs [29] have shown significant advances over
traditionally used methods for computer vision tasks, including object detection, pattern
recognition, and image classification. In the abalone counting process, a CNN can solve
the problem of abalone entanglement through object detection. Abdelwahab [30] proposed
an approach related to this research by employing regions with CNN features (R-CNN)
for detection and the Kanade–Lucas–Tomasi algorithm (KLT) for counting and tracking
vehicles. The R-CNN model with KLT showed promising results for tracking vehicles. The
application of these methods in real-world platforms is even more challenging since they
require expensive hardware such as robots, high-performance cameras, or computers.

Recently, numerous studies have been conducted on video-based counting frame-
works, primarily for automobiles, traffic, and pedestrians. These studies are important
because they analyze the state of road traffic and estimate its density. Using four datasets,
Hardjono et al. [31] conducted research on vehicle counting using various techniques. With
the help of Viola–Jones methods, background subtraction, and already-existing CCTV data,
F1 scores ranging from 0.32 to 0.75 were successfully derived from a single low-resolution
dataset. The study found that, compared to the background subtraction approach, the
Viola–Jones method can increase the F1 score by approximately 39–56%. Using three
datasets with higher resolution, the YOLO algorithm also produced better results, with
improved F1 scores ranging from 0.94 to 1 and precision ranging from 97.37% to 100%.



Processes 2023, 11, 2351 5 of 17

To extract edge boxes, Li et al. [32] employed the AlexNet technique with multiple
layers and edge boxes. With a false rate of 10% and a missing range of 23%, the box
algorithm produced satisfactory results. According to Redmon [14], YOLO is effective on
identifying objects in images. Current techniques employ classifiers to detect objects. The
PASCAL VOC 2007 and VOC 2012 test sets attained the mAP of 57.9%.

Asha et al. [33] developed a system for counting vehicles in highway traffic using
cameras. YOLO object recognition, correlation filter tracking, and counting are three steps
used to complete video processing. While their suggested method can properly detect,
track, and count vehicles, it does not provide enough processing time estimation, and
according to research, it is too slow for real-time processing on edge devices such as the
Jetson Nano or Raspberry Pi.

According to Forero et al. [34], research on classification algorithm that tracks and
counts cars and pedestrians using video sequences. The authors used the YOLO framework
for detection. Using training data with over 5000 labels, the recognition and counting of
bicycles in a circumstance of non-occlusion achieved a detection threshold of 97.6% and
was only affected when objects were too close together, and it was impossible to distinguish
between the groups.

In this sense, our work aims to apply the YOLOv3 and DeepSORT models for counting
abalones. Our main contributions are as follows: (1) abalones are counted from the view-
point of applicability, (2) the current problem of counting entangled abalones is resolved,
and (3) a practical solution is provided for counting in the food industry using a conveyor
belt. See Table 1 below shows the general comparison of previous works related to marine
counting with machine and object counting with deep learning.

Table 1. Comparison of previous works related to marine counting with machine and object counting
with deep learning.

Author Used Model
Feature

Others
D1 D2 D3 D4 D5 D6

Park et al. [3] LabVIEW Machine vision in
conveyor system

√ √ √

Garay et al. [7] AMR system based
√

Côté-Allard et al. [9] CNN Model
√ √ √

Hand gestures detection

Balakrishnan et al. [17] YOLOv5, YOLOv3, Tiny YOLO
and ResNet

√ √
Object recognition

Shankar et al. [20] YOLOv3. YOLOv5 and YOLOv7
√ √

Fish identification

Klapp et al. [28] Hybrid non-imaging optics and
an image processing scheme

√ √ √ √ Low signal-to-noise caused by
water fluctuation and Fish size.

Garay et al. [7] AMR system based
√

Klapp et al. [28] Hybrid non-imaging optics and
an image processing scheme

√ √ √ √ Low signal-to-noise caused by
water fluctuation and fish size

Hardjono et al. [31] Viola Jones with background
subtraction method

√ √ √ √ Background subtraction in
images.

Hung et al. [32] AlexNet model with multiple
layers and edge boxes

√ √ √
∆

Asha et al. [33] YOLO and correlation filter
√ √ √ Real-time processing on edge

devises such as Jetson Nano
and Raspberry Pi

Forero and
Calderon et al. [34]

YOLO with Tracking of Region Of
Interest (ROI)

√ √ √ √

Our model YOLOv3-TensorFlow
√ √ √ √ √ √

D1 Occlusion; D2 Detection; D3 Low resolution in images; D4 Tracking; D5 Count Errors; D6 Need for real-time
application;

√
Considered factors; ∆ Need for large datasets.

3. Model Description

To develop an abalone counting methodology from a video sequence, the components
presented in Figure 3 work together. Each component uses a different model, as described
in this section.
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The first step is data preparation. In this step, datasets with annotated images contain-
ing abalone instances are gathered from video data. For building training model, YOLOv3
is set to use TensorFlow. Training is carried out using annotated abalone data. The training
process involves feeding the annotated images and their corresponding bounding box
annotations into the model, and optimizing the model parameters to accurately detect
abalone objects. After training, the performance of YOLOv3 model is evaluated by the
separate test set. This step helps in assessing the accuracy and generalization capabilities
of developed trained model. In the next step, DeepSORT is integrated. DeepSORT is
a tracking algorithm used in conjunction with YOLOv3 to track abalone objects across
multiple frames. DeepSORT is integrated with YOLOv3 model to associate bounding box
detections across frames and track abalone instances over time. The tracking is performed
by applying the combined YOLOv3-DeepSORT model on a video or sequence of image
frames containing abalone. The model will detect and track abalone instances, assigning
unique IDs to each abalone instance to count, and monitor their movements. The number
of unique abalone instances is counted based on their tracked IDs. Each ID represents a
distinct abalone object. Summing up the unique IDs will give the count of abalone in the
video or sequence of frames.

3.1. Data Architecture for Model Development

Object tracking is the process of tracking single or grouped moving or motionless
objects. In recent years, detection has improved owing to the development of artificial
neural networks (ANNs) that use complex structures to distinguish patterns in image.
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The image classification algorithm depicts bounding boxes that represent the locations
of objects. The R-CNN presented by Girshick [35] can show different number of regions,
as much as 2000, in one image. This study implemented a decoding method to extract
all frames as images contained in the targeted video data using the FFmpeg tool [36].
The video sequences used in this study had durations of 16, 18, 20, and 30 s, with 110 to
400 frames. However, owing to the blurriness of the abalone in some frames, approximately
25% of the finally gathered valid frames was discarded. In addition, considering that the
number of frames for training in the deep learning model (Darknet-53) is limited to avoid
incurring overfitting, a data augmentation technique is applied to increase the number of
frames. The data are augmented by rotating each frame from 0◦ to 90◦ and changing the
saturation, brightness, image flipping, and shearing. The prepared data are divided into
70% for training and 30% for testing.

To generate labeling for image annotation, the LabelImg tool [37] is used, which is
written in Python and uses QT for its graphical interface. Each frame is annotated manually.
The annotations containing details about the objects in the image, such as image name and
label name, image path, class name of the object(s), and coordinates of the bounding boxes
surrounding the objects present in the image, are saved as extensible markup language
(XML) files in the PASCAL VOC format, which is used by ImageNet. Furthermore, it
supports YOLO and creates machine learning (ML) formats [38]. The annotated images are
saved with the text files in YOLO format (jpg image files), which contained values such
as (object class), (x_center), (y_center), (width), and (height). The class object shows the
position of the abalone using integers.

The YOLO format calculates the annotation values using <center-x = x/W>, <center-y
= y/H>, <width = w/W>, and <height = h/H>, where the x- and y-coordinates are the
centers of the bounding boxes. H and W denote the height and width of the entire image,
respectively.

In the second row of Table 2, ‘15’ represents the number of object class for abalone,
0.504950 as the height, 0.729167 as the width, 0.128713 as the x-coordinate (center value),
and (0.030556) as the y-coordinate (center value). The orange box on the left side of Figure 4
(a) shows the bounding box for each abalone and (b) show and example of frame in the
video data. In the image, each abalone has its own bounding box, and the size and center
information are recorded in YOLO format.
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Table 2. YOLO format of annotated abalone in sample frame.

Abalone (Class) Height Width x y

15 0.504950 0.729167 0.128713 0.030556
15 0.512376 0.683333 0.123762 0.058333
15 0.538366 0.639583 0.111386 0.029167
15 0.623762 0.043750 0.133663 0.084722

3.2. Detection Method

In general, the core of many object detection results is retrieved using Faster R-CNN,
which has been acknowledged as one of the best versions [39]. However, real-time image
detection and re-association techniques fall short of the real-time tracking requirements
owing to the detection speed limitations of Faster R-CNN. YOLO [14] uses the same
network both for detection and classification, and this is treated as a single regression
problem in contrast to the Faster R-CNN working concept. A direct calculation from the
image pixel information to the bounding box coordinates and categories is possible. The
supplied image is divided into S × S grids. The grid is in charge of target detection if the
target center is located inside the grid. By forecasting the category probability, border, and
confidence, it can determine the likelihood of each category being within the border as well
as the degree of fit.

However, many restrictions remain in YOLOv1 [14]. Therefore, the application of
YOLOv1 is somewhat constrained. The distance between objects in an image determines the
limitations of YOLOv1. It is difficult to identify smaller objects in an image due to clustering.
This architecture has issues with object localization and recognition when the dimensions of
the object are different from those used for the training data [40,41]. Owing to localization
errors, the main aim of YOLOv1 is to identify objects in a given image, whereas in Faster
R-CNN, YOLOv2 [42] introduced the concept of an anchor box to increase the positioning
performance. YOLOv2 employs a clustering approach that determines the size of the anchor
box for the associated dataset, which enhances positioning accuracy. Batch normalization
is implemented across all convolutional layers in YOLOv2, which improves the model
convergence and boosts the input resolution, allowing the network to recognize higher-
quality images more effectively. The YOLO [14], YOLOv2 [42], and YOLOv3 [25] networks
introduce three separate scale detections based on the principles of the feature pyramid
network (FPN), which correlates with targets of various sizes. To enable each detection
block to predict several categories, multiple distinct logical classifiers are utilized instead of
the Soft-max classifier. The network’s detection accuracy has significantly increased since
YOLOv3 incorporates a Darknet-53 [25] backbone, which is a network architecture with
53 convolution layers (see Figure 5). Therefore, the YOLOv3 network is employed as the
detection module in this study to ensure detection speed and accuracy. It adapts better to
new scenes and has a greater effect on high-resolution input images.
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3.3. Multiple Object Tracking

As stated by Dadhich [43], multiple object tracking (MOT) can be used for detection
and association. DeepSORT is a widely used model that introduces another association
of apparent feature information in which the appearance of new detections is compared
with that of previously tracked objects in each track to aid in the data association problem
where there are occluded objects or crowded environments within a frame. Since the
performance of the deep network used to extract apparent features has a direct impact on
the distribution of slow or rapid movements of objects (tracking technique), this study offers
a wide-residual-inception network with improved performance, fewer parameters, and
quicker computation. This network extends the previous network by adding an inception
structure, making it deeper and wider. It can extract features of varied sizes and make
the network more discriminative using convolution kernels of varying sizes. Only the
feature extraction element of the network is preserved after removing the original detection
module, and the network eventually produces a 128-dimension feature vector [44] that is
compatible with a wide-residual network.

Fusion matching of the motion and apparent features is used to associate the target
detection results with the tracker. The degree of motion matching matches the tracker
location information with the detection results. When the motion matching feature is
smaller than the training threshold, the detection frame is regarded as successfully matching
the prediction frame of the preceding frame detection result. When only the motion
matching feature is employed, the prediction frame cannot be effectively matched with
the detection frame when the target has an occlusion, and when the target’s occlusion
is removed, the tracker immediately allocates a new ID to the target. Consequently, the
characteristic of apparent matching is employed to match the tracker’s identity information
with the detection results. The detection frame is regarded as belonging to the existing
track when the feature of the apparent matching between the detection frame and trajectory
in the current trajectory space is less than the training threshold. In this method, after
successfully associating the motion state feature with the target of normal motion, the
apparent feature is utilized to determine whether the target belongs to a trajectory. The
previous trajectory ID (the direction of the object in the frame) for the occluded target can
be re-associated using the apparent feature after the target occlusion vanishes.

It is crucial to give each new target a unique ID while performing multitarget tracking
as well as to prevent the target’s track update from quickly disappearing from the screen.
A new tracker pertaining to the target is created in the experiment when the trajectory
prediction frame of the target in the next three frames of the images can be associated with
the detection frame. If there is no association success at the following time, it is termed a
false alarm and the detection box is removed. For each current track, if an image cannot
be accurately associated with a tracking track for 60 consecutive frames for each existing
tracking track, it is decided that the target has vanished, and the track space corresponding
to that feature space is wiped.

3.4. Counting Model Architecture

Although Park et al. [3] and Abdelwahab [30] showed promising results, our proposed
approach can show improvements in these results by using YOLOv3 (Figure 6) for abalone
detection and a robust DeepSORT model for tracking the detected abalones. The method
proposed by Park et al. [3] has already been shown to be useful in the problem of counting
abalones using the LabVIEW approach, and the study conducted by Abdelwahab obtained
promising results from counting people. These approaches are similar to that used in
this study.
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In this study, the model is validated for detecting entangled and counted abalones. In
the tested case, the base results show that the YOLOv3 confidence score influences the level
of detection of single and entangled abalones, thereby influencing the counting accuracy.
The YOLOv3 backbone, Darknet-53, combines a deep neural network and a convolutional
layer. The FPN fuses the features that the convolution layer extracts from an image. The
neck is performed by the FPN. Given that it includes numerous bottom-up and top-down
pathways, the neck is important for extracting feature maps from various stages, whereas
the head contains YOLO maps. Based on the width, height, class label, and probability of
each class in the bounding box coordinates, the head determines the final prediction as part
of a one-stage detector.

4. Experiments and Results
4.1. Detection Model Training

The experiment on the proposed model is performed using Google Collaboratory,
which is an open-source free access to computational resources, such as a GPU, which
requires no configuration. Ro-boflow.ai, a free tool that enables developers to create limitless
computer vision applications built on YOLOv3, is used. During the training of the model,
the number of epochs to be learned and the stack size used to train the top layers of the
model in detecting abalone classes are changed. Training the model for 300 epochs requires
approximately 120 min.

The mean average precision (mAP), F1 score, and recall with precision curve are used
to assess the model accuracy. It is crucial to examine the results of the model classification
(confusion matrix) and localization using the IoU of the bounding boxes in the image
metrics. The intersection of union (IoU) is essential for object detection. The IoU calculates
the intersection over the union of the two bounding boxes, that is, the predicted bounding
box and the ground truth bounding box. When the IoU is 1, the ground truth and predicted
bounding boxes completely overlap.

A bounding box is drawn around the object only when the IoU exceeds a predefined
threshold value. In this application, the IoU threshold is set to 0.4. As a result, detection
is classified as true positive (TP) when the IoU is greater than 0.4, and false positive (FP)
when the IoU is less than 0.4. False negatives (FN) occur when a model fails to recognize
an object in an image while accessing the ground truth. Any area where no object can be
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expected is considered a true negative (TN) of the image. However, this method does not
aid object detection. Therefore, TN is disregarded in Equation (1).

IoU =
Area o f Overlap
Area o f Union

(1)

The precision is defined as the ratio of correctly classified positive samples to all
positive samples, whether correctly or incorrectly classified. Equation (2) quantifies the
precision with which a model classifies a sample as positive.

Precision =
TP× 100
(TP + FP)

(2)

The recall is calculated by dividing the number of positive samples correctly classified
as positive by the total number of positive samples. This is expressed by Equation (3),
which represents how well the model detects positive samples.

Recall =
TP× 100
(TP + FN)

(3)

The accuracy and recall of each observation are used to determine F1 scores. A score
of one indicates the highest accuracy, as shown in Equation (4).

The precision–recall curve is given when the recall increases and the precision de-
creases, meaning that when the positive values increase as the maximum recall increases,
the accuracy of identifying the values decreases, indicating minimum precision.

The mean average precision (mAP) score is computed by comparing the detected
bounding box with the ground truth of the bounding box. The higher the score, the better
is the model detection. This is shown in Equation (4),

mAP =
1
k

k=n

∑
k=1

API (4)

where n is the number of classes and APK is the average precision of class k. The mAP
scores for the YOLOv3 model were 0.978 (@0.5 mAP) and 0.583 (@0.95 mAP), and the
F1-confidence score is 0.95.

By adjusting the training parameters, some improvements in the model are observed
(see Figure 7). The multiple performance metrics for the training datasets are shown in
Figure 7.
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The performance evaluation graphs for precision, classification, objectness loss, F1
score, recall, and mean average precision (mAP) of the training and validation sets are
shown in Figure 7. Figure 7 shows three basic types of loss: categorization, objectness, and
GIoU loss (Generalized Intersection of Union). The ideal bounding box regression loss is
represented by the GIoU loss. The reduced bounding regression loss indicates that accuracy
improves consistently [45]. Objectness loss is a measure of the likelihood that an object
exists in a suggested region of interest. If objectivity is high, an object is probably present
in the image. Classification loss indicates the effectiveness of an algorithm in predicting the
proper class of a given object. Therefore, the lower the GIoU, objectness, and classification,
the higher the mAP and F1 scores from the model.

The model improved swiftly in terms of precision, recall, mean average precision, and
F1 score before reaching approximately 150 epochs. The box, objectness, and classification
losses of the training data rapidly declined until approximately 300 epochs. Therefore,
early stopping was applied during training to select the best weights.

After training the proposed model, predictions are performed for the test datasets.
The images are resized to 416 pixels × 416 pixels. The batch size is set to 16. The learning
rate is set as 0.0001, and stochastic gradient descent (SGD) is the adopted optimizer. The
dataset is trained using the pre-trained weights YOLOv3.pt. The examples in Figure 8 show
that the proposed model could detect most abalones in the frames with a higher degree of
certainty. This shows improved results in recognizing the single and occluded abalones.
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4.2. Tracking

Tracking is a method of predicting the locations of objects in a video using both spatial
and temporal data. Tracking, in more technical terms, involves receiving the initial set
of detections, assigning unique IDs to them, and tracking them over the frames of the
video stream while keeping the allocated IDs. In this study, tracking is essential due to the
occlusion of the abalone in some frames of the video data. When using an object detector
such as YOLOv3, it simply displays where the objects in the frames are; while looking at
the array of outputs, the coordinates corresponding to the objects in the bounding boxes
will not be seen. A tracker assigns an ID to each object, and it tracks and maintains the ID
for the duration of that object’s lifespan in that frame.

DeepSORT is a computer vision tracking technique that tracks objects while assigning
an ID to each one in a frame. DeepSORT incorporates deep learning into a SORT algorithm
by including an appearance descriptor to decrease the number of identity swaps of objects
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in frames, making tracking more efficient. In the object-estimation step, the detections from
one frame to the next use a constant-velocity model to estimate the target’s position in the
following frame. When a detection is associated with a target, the detected bounding box
is used to update the target state, and the velocity components are addressed using the
Kalman filter algorithm [46].

To characterize the motion state, DeepSORT employs the parameters (u, v, γ, h, x’, y’,
γ‘, h’), where (u, v) are the bounding box’s center coordinates, (γ) is the aspect ratio, and (h) is
the height. In the picture coordinate system, the remaining four variables denote the velocity
data. To anticipate the desired motion state, this method employs a conventional Kalman
filter based on a constant-velocity model and a linear observation model (u, v, γ, h).

An appearance descriptor is used to extract features from the detected images and track
objects. A CNN trained on large-scale re-identification datasets serves as the appearance
descriptor. It extracts features such that features from the same identity are close together
in the feature space, whereas features from other identities are far apart.

Researchers of DeepSORT have suggested the association of spatial and appearance
information to obtain new detections with a higher confidence. Equation (5) represents the
spatial information.

d(1)(i, j) = (dj − yi)
TSi
−1(dj − yi) (5)

The projection of the ith track in the space of measurements is denoted by (yi, Si), and
the jth new detection is denoted by (dj). The distance measured in the Mahalanobis function
calculates the uncertainty length between the jth new detection and the ith track’s projected
location by the standard deviation. Equation (6) represents the appearance information.

d(2)(i, j) = min (1 − rT
j r(i)k |r

(i)
k ∈ Ri) (6)

where r is the appearance descriptor, and (Ri) is the appearance of the last 100 objects in a
frame connected to the ith track. Each distance is accompanied by gate matrices b(1)i,j and b(2)i,j ,
which are equal to 1 if the distance is less than a predetermined threshold, and 0 otherwise.

Finally, to obtain new detections from existing tracks, DeepSORT uses the cost and
gate matrix represented in Equation (7).

ci,j = λd(1)(i, j) + (1 − λ)d(2)(i, j) (7)

The gate matrices b(1)i,j and b(2)i,j , which are equal to 1 if the distance is less than a predeter-
mined threshold, and 0 otherwise, show that new detections are linked to existing tracks.

For the abalone count, two lines are drawn in the middle of the frame to show that if
the abalone passes between the two lines (region), each abalone will be counted as one. The
total count of abalones and frames per second (fps) are displayed on the video frame [30].

5. Results and Analysis

Using the test videos, multiple types of scenarios in which various abalones in the test
videos were occluded were tested to ensure that the target tracking and counting method
could operate stably. The detection of the occluded abalones is shown in Figure 9c.

To verify whether the proposed model in this study is effective, the abalone counting
results of the proposed are compared with those of OpenCV detection with tracking and
counting [43] and Blob detection tracking [47]. The length of test videos varied from 16 to
36 s. The actual number of abalones is counted manually from each video to compare the
results presented by the models. The experimental results comparison are listed in Table 3.
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Figure 9. Tracking of abalone in video: (a) Consistent tracking of abalone. (b) Tracking during
occlusion and overlapping. (c) Sample frames from the video data showing frames per second,
current count, total count, and two green lines (region where if the abalone passes it will be counted).

Table 3. Comparison of experimental results of YOLOv3-TensorFlow and DeepSORT, OpenCV
detection tracking and counting and Blob detection tracking and counting.

Model Actual Number of
Abalone

Counted Number
by Model Accuracy (%)

YOLOv3-TensorFlow and
DeepSORT (proposed model)

29 25 86.2
36 34 94.4
25 16 64.0
32 29 90.6

OpenCV detection tracking and
counting

29 20 68.9
36 25 69.4
25 18 72.0
32 20 62.5

Blob detection tracking and
counting

29 25 86.2
36 27 75.0
25 20 80.0
32 24 75.0

The test results show that it takes an average of 30 fps to count the abalones per image.
It can be observed from Table 3 that the YOLOv3 combined with DeepSORT counting
model proposed in this article has great potential compared to OpenCV detection with
tracking and counting and Blob detection tracking. The best accuracy with test video
data is the accuracies of 94.4%. Due to the slow-motion effect in the video data, the third
video give low performance as 64% of accuracy. Compared to the OpenCV detection with
tracking and counting and Blob detection tracking, the results of YOLOv3 regarding object
counting, the video monitoring accuracy rate of object tracking is improved. This study
also considers that video data collection should be consistent since, with regard to the
tested data, some of the video data have a slow-motion effect during collection. This makes
it difficult to detect abalones owing to the inconsistency in video speed, which affects the
maximum accuracy rate and abalone counting rate.
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6. Conclusions and Future Work

This study presents a practical methodology for abalone counting using YOLOv3 and
DeepSORT. The core components of the abalone counting methodology are the detection
of abalones, tracking of abalones on the conveyor belt, and counting of moving abalones.
Combined with the DeepSORT framework, YOLOv3 shows promising results in detecting
and counting abalones.

The counting accuracy obtained by the proposed method is as high as 94%. However,
it also exhibits a limitation in the slow-motion effect in the video sequence. In agreement
with Park et al. [3], who used the LabVIEW machine vision approach in a conveyor belt for
counting abalones, the proposed methodology provides a significant improvement in the
collection of data, for instance, by positioning a camera on a fixed position where video
data can be collected consistently.

Using the proposed methodology, the costs and time for counting abalones in the
marine industry can be reduced, which will increase benefits and competitiveness. The
proposed methodology can also be applied to similar industries.

Despite the promising performance of the proposed methodology, more work remains,
such as improvement in the detection of entangled abalones, flexible adaptation to video
quality in detection, and improvement in calculation speed.
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