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Abstract: Lithium-ion batteries are widely utilized in various fields, including aerospace, new energy
vehicles, energy storage systems, medical equipment, and security equipment, due to their high
energy density, extended lifespan, and lightweight design. Precisely predicting the remaining useful
life (RUL) of lithium batteries is crucial for ensuring the safe use of a device. In order to solve the
problems of unstable prediction accuracy and difficultly modeling lithium-ion battery RUL with
previous methods, this paper combines a channel attention (CA) mechanism and long short-term
memory networks (LSTM) to propose a new hybrid CA-LSTM lithium-ion battery RUL prediction
model. By incorporating a CA mechanism, the utilization of local features in situations where data
are limited can be improved. Additionally, the CA mechanism can effectively mitigate the impact of
battery capacity rebound on the model during lithium-ion battery charging and discharging cycles.
In order to ensure the full validity of the experiments, this paper utilized the National Aeronautics
and Space Administration (NASA) and the University of Maryland Center for Advanced Life Cycle
Engineering (CALCE) lithium-ion battery datasets and different prediction starting points for model
validation. The experimental results demonstrated that the hybrid CA-LSTM lithium-ion battery
RUL prediction model proposed in this paper exhibited a strong predictive performance and was
minimally influenced by the prediction starting point.

Keywords: lithium-ion batteries; remaining useful life; channel attention mechanism; long short-term
memory

1. Introduction

Starting Point Research Institute (SPIR) data show that global shipments of lithium-ion
batteries for energy storage reached 153.5 GWh in 2022, representing a significant increase
of 117% year-on-year. Lithium-ion batteries for power storage accounted for 103.9 GWh,
a remarkable increase of 185.4% year-on-year. It is projected that global shipments of
lithium-ion batteries for power storage will continue to increase and reach 322.4 GWh by
2025 [1]. The growth of wind power and photovoltaic installations is driving the demand for
energy storage batteries, resulting in a significant increase in the shipment of power storage.
Additionally, the cost of energy storage is decreasing, and the economy of energy storage
has been further enhanced. Therefore, the energy storage industry has huge potential for
development in the future.

Lithium-ion batteries are regarded as one of the most promising clean energy sources,
owing to their extended cycle life and excellent durability. They have many advantages
regarding their energy density, weight, and power density. They are being used more and
more widely in aerospace, new energy vehicles, the military, 5G smart era communication
devices, and other related fields [2–5].

However, with the increase in the frequency of charging and discharging cycles of
lithium-ion batteries, a series of irreversible chemical reactions take place. These reactions
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include lithium deposition, electrolyte decomposition, loss of active materials, and the
formation of solid electrolyte intermediates. As a result, battery performance degrades
and corrosion occurs in the anode, cathode, electrolyte, and diaphragm. Additionally,
the charging and discharging process results in increased internal resistance, reduced
charging and discharging efficiency, increased heating, and other phenomena. These
factors significantly impact the reliability of the battery. These phenomena typically result
in a decrease in the maximum capacity of a fully charged lithium-ion battery compared to
its rated capacity. This decrease indicates a shortened battery life [6,7].

When a battery is fully charged, the maximum capacity of the battery will drop to
70–80% of the rated capacity, which is considered the end of the battery’s life [8]. There
are many electrochemical and chemical reactions inside batteries. As these reactions occur,
a large amount of heat and small molecule gas is generated, resulting in overheating and
overpressurizing of the battery. Lithium-ion batteries as a power source are critical for
ensuring the regular operation of a device and the realization of its system functions. When
the RUL of the battery approaches its threshold, the safety performance of the battery will
be significantly reduced and should be replaced in time. If the battery is not replaced in
time, the consequences of its failure may bring catastrophic accidents or the failure of large
tasks [9–11].

For example, Samsung Electronics Company smartphones have cost the company
billions of dollars due to battery failures [12]. In January 2013, two consecutive accidents
involving lithium-ion batteries in a Boeing B787-800 prompted Boeing to ground B787
aircraft and make improvements to address the battery defects. The B787 could return
to flight after passing FAA airworthiness certification. However, in July 2013, the Boeing
B787 was again involved in a lithium battery fire in London [13]. In 2019, there was an
explosion and injury to five firefighters at a grid-side energy storage project in Arizona, U.S.
The accident investigation report indicated that a battery failure caused the incident. On
16 April 2021, three people were killed and one injured in a fire and explosion at the Beijing
Dahongmen Energy Storage Power Station. The accident investigation report indicated
that the direct cause of the fire was an internal short-circuit fault in a lithium battery, which
triggered a thermal runaway of the battery fire [14].

Prediction of lithium-ion batteries’ remaining useful life at regular intervals can detect
the number of uses left in the batteries and better determine the health status of batteries.
Thus, certain adjustments can be made to equipment using batteries, to make the equipment
operate safely and steadily and avoid the recurrence of accidents. Therefore, it is of great
significance to estimate the RUL of lithium-ion batteries quickly and accurately [15–18].

Currently, lithium-ion battery RUL prediction can be broadly classified into two main
categories: model-based RUL methods and data-driven RUL methods [19].

The model-based approach involves analyzing the internal mechanisms of lithium-
ion batteries and the degradation and failure mechanisms during their charging and
discharging cycles. This analysis is based on the physical and chemical reactions within the
batteries and is used to establish an RUL prediction model for lithium-ion batteries [20,21].

T.R. Ashwin et al. [22] presented a pseudo-two-dimensional (P2D) electrochemical
lithium-ion battery model that can effectively forecast the capacity decay of batteries under-
going cyclic charging and discharging. This model considers the electrochemical reactions
within the battery, provides a more precise estimation of battery performance over time,
and conducts tests at voltages ranging from 4.0 V to 3.3 V. The research demonstrated that
the chemical–electrical model successfully captured the critical electrochemical effects that
occur within the battery during cyclic charging and discharging. Prasad et al. [23] presented
a simplified electro-chemical model, which helped to establish the correlation between
degradation mechanisms and cell parameters, to obtain the RUL of batteries. Virkar [24]
proposed a degradation theory for active electrochemical devices based on linear nonequi-
librium thermodynamics. This theory was used to develop a degradation model for lithium
batteries and to accurately predict their RUL. Zhang et al. [25] proposed an unscented parti-
cle filter (UPF) that utilizes linear optimized combined resampling to enhance the accuracy
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of RUL prediction. This approach improved the accuracy of RUL prediction using a combi-
nation of UPF and linear optimization techniques. Guha et al. [26] presented a method for
estimating lithium-ion batteries’ electrochemical impedance spectrum (EIS) using a frac-
tional order equivalent circuit model (FOECM). This method involves calculating various
parameters based on the battery’s input current and output terminal voltage, obtaining
a regression model from the estimated EIS spectrum and using this regression model in
a particle filtering framework to predict the RUL from the EIS data. Pham Luu Trung
Duong et al. [27] presented a heuristic Kalman algorithm combined with particle filtering
for battery RUL prediction. They compared this with a particle swarm optimization (PSO)
particle filtering technique, to achieve high prediction accuracy. Walker et al. [28] proposed
an untraced Kalman filter (UKF) with particle filter and nonlinear least squares techniques
for RUL prediction and achieved high prediction accuracy. Li et al. [29] presented an RUL
prediction method by introducing a robust UKF algorithm based on a double-Gaussian
mixed (DGM) cost function. They combined this algorithm with a kernel adaptive filter
(KAF)-based prediction model to achieve a more precise estimation of RUL. Fan et al. [30]
presented a fusion of fault physics and particle filtering for predicting a lithium batteries’
RUL. The method involved creating a model framework that links the physical parameters
of the battery to its degradation capacity. Experiments showed the method enabled precise
forecasting of a lithium-ion batteries’ RUL.

A data-driven approach can directly tap into the degradation information of lithium-
ion batteries, without analyzing the internal functional characteristics of the batteries.
Degradation models for predicting the RUL of lithium-ion batteries are developed by
analyzing the intrinsic laws of lithium-ion battery monitoring data and the evolution of
health states [31–33].

Liu et al. [34] presented an approach for determining running batteries’ RUL using
multi-Gaussian process regression (GPR) models with indirect health indicators (HI). This
approach effectively addresses the issue of the unmeasurable capacity in running batteries.
Chen et al. [35] presented a method that combines support vector regression (SVR) and error
compensation (EC) to improve RUL prediction accuracy. This method involves using SVR
for RUL prediction and optimizing the critical parameters of SVR using a genetic algorithm
(GA). Jia et al. [36] presented a method for predicting the short-term state of health (SOH)
of batteries using GPR. By establishing a mapping relationship between SOH and RUL,
this method enables accurate prediction of RUL. Deng et al. [37] presented an empirical
model of lithium batteries’ RUL. Their proposed model can simulate the aging process
and local degradation of lithium batteries, unifying the exponential function for modeling
the global and regional degradation processes, cleverly designing corresponding loops,
and using a particle filter framework to estimate the model parameters, using measured
data to predict the future capacity. Jiang et al. [38] proposed a multicore correlation
vector machine (RVM) model to solve the problem of adaptive and early prediction of
the RUL of lithium-ion batteries and combined it with a PSO algorithm to determine the
kernel function and weight parameters. At the same time, a similarity criterion was used
to screen offline data. The method was experimentally validated and achieved a high
prediction accuracy. Wang et al. [39] proposed a gated recursive unit network based on
adaptive sliding windows, to achieve prediction of lithium-ion batteries’ RUL through
soft measurement methods and using the inherent storage unit and gate mechanism
of a gated recursive unit (GRU). Liu et al. [40] presented an approach for predicting
the RUL of batteries by combining a gradient boosting decision tree (GBDT) algorithm
with a grid search (GS) approach. This approach optimized the parameters of the GBDT
algorithm to improve the accuracy of RUL prediction. Ren et al. [41] presented an auto-
encoder integrated with a deep neural network (DNN) to predict lithium-ion batteries’
RUL. Chen et al. [42] proposed a mixed model based on convolutional neural networks
(CNN)-LSTM to select a health factor through gray correlation analysis and to achieve the
prediction of RUL for lithium batteries. Liao et al. [43] presented a stochastic configuration
network (SCN)-based method for predicting lithium-ion batteries’ RUL. This method
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utilizes the battery capacity as a direct health factor and battery discharge voltage as
an indirect health factor to assign random parameters through inequality constraints.
Additionally, the range of random parameters is adaptively selected to achieve accurate
RUL prediction. Khumprom et al. [44] presented a DNN approach for SOH and RUL
prediction of lithium batteries and validated it on battery datasets from NASA, achieving a
good prediction accuracy.

Based on the analysis above, there are still challenges present regarding the current
methods used for predicting the RUL of lithium batteries. First, a model-based approach
necessitates a comprehensive understanding of the battery’s internal working principles.
However, due to the complex nature of battery internals, significant prior knowledge is
required, thus posing modeling challenges for model-based methods. Second, most data-
driven methods only use a single model, whose prediction accuracy is often limited by the
amount of data. When the data are limited, the model prediction capability is significantly
challenged, thus affecting the accuracy and stability of RUL prediction.

To address the above challenges, and in order to improve the accuracy of RUL pre-
diction and reduce the difficulty of modeling, this paper proposes a hybrid deep learning
model for lithium battery RUL prediction. The main contributions of this paper are
as follows:

(1) This paper proposes a hybrid model of LSTM based on CA mechanism for lithium
battery RUL prediction and based on a data-driven approach;

(2) Introducing a channel attention mechanism can effectively alleviate the impact of
the capacity rebound during the battery charge/discharge cycle on battery RUL prediction.
Meanwhile, in the case of limited data, the channel attention mechanism can enhance the
utilization of local features of the data, thus improving the model’s prediction accuracy;

(3) This paper focuses on exploring the effects of different data and different prediction
starting points on model prediction. The experimental results show that the model in this
paper had a higher prediction accuracy and robustness compared with traditional recurrent
neural networks.

2. Model Building
2.1. LSTM

LSTM networks were initially introduced by Hochreiter and Schmidhuber in 1997,
as a novel approach to addressing the challenges of recurrent neural networks [45]. This
network builds on recurrent neural networks (RNN) with a long-time delay mechanism
that can effectively capture the association between long sequences, thus serving to mitigate
the gradient disappearance or gradient explosion phenomenon [46,47]. The LSTM uses
stored information to learn long-term dependencies, which are saved, written, and read
using three gates: input gate, forget gate, and output gate. The structure of the LSTM
abstraction network is shown in Figure 1:

Figure 1. LSTM abstract network structure.

The input gate manages the information entering the network, the forget gate regulates
the memory unit’s retention, and the output gate regulates the network’s output. Among
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them, the forgetting gate is the most important, deciding which memories in the network
will be retained and which will be removed, giving the LSTM the function of long-term
memory. There is always a capacity rebound process in the iterative process of lithium-ion
batteries charge/discharge cycle. However, the forgetting gate can selectively forget these
memories, thus making the capacity rebound process have less impact on the training of
the model and improving the accuracy of prediction. The internal structure of a LSTM
network is shown in Figure 2:

Figure 2. Diagram of the structure of LSTM.

The specific formula for the forget gate is

ft = σ
(

w f · [ht−1, xt] + b f

)
(1)

In Equation (1), we first splice the current time step input xt with the previous time
step output ht−1 to obtain [ht−1, xt] and then transform it through the fully connected (FC)
layer. Finally, we obtain the memory decay coefficient ft by activating the sigmoid function.
The sigmoid activation function compresses the output to between 0 and 1, and is used to
help regulate the values flowing through the network.

The specific formula for the input gate is

it = σ(wi · [ht−1, xt] + bi) (2)

C̃ = tan h(wc · [ht−1, xt] + bc) (3)

In Equation (2), in the same way as in Equation (1), after a series of transformations
in the FC layer, we obtain the currently learned memory decay coefficient it, obtained
by activating the sigmoid function. In Equation (3), we obtain the input for the current
time step xt spliced with the previous time step output ht−1 to obtain [ht−1, xt]. Then the
[ht−1, xt] is transformed using the FC layer. The current state learned memory C̃ is finally
obtained using the tan h activation function.The tan h activation function compresses the
output between −1 and 1, limiting the values flowing through the network.

The specific formula for the cell state update is

Ct = ft · Ct−1 + it · C̃ (4)

In Equation (4), we obtain the memory state Ct at the current moment, obtained by
multiplying the decay coefficient ft by the memory Ct−1 of the previous time step, plus the
current memory decline coefficient it by the currently learned memory C̃.

The specific equation for the output gate is

ot = σ(wo[ht−1, xt] + bo) (5)

ht = ot · tan h(Ct) (6)
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In Equation (5), after a series of transformations in the FC layer, we obtain the output
gate coefficient ot obtained by the sigmoid function in the activation. In Equation (6), we
obtain the output ht of a single cell of the LSTM network at the current moment, obtained
from the cell state and the output gate coefficient at the current moment.

2.2. Attentional Mechanism

The attention mechanism (AM) has emerged as one of the most significant advance-
ments in deep learning in recent years. Attention-based methods have gained popularity
in academia and industry for their interpretability and effectiveness in recent years. At-
tentional mechanisms were initially inspired by the study of human vision. In the field of
cognitive science, it is well-established that humans have a limited capacity for information
processing, therefore selectively attending to some available information while disregard-
ing the rest [48]. Incorporating an attention mechanism into a model makes it rapidly
identify high-value information from a vast amount of data, enhances the significance of
critical information, and reduces the impact of less important data [49,50].

This paper uses a channel attention(CA) mechanism squeeze-and-excitation block [51].
The CA mechanism can dynamically adjust the weights of the features by adaptively
learning the importance of the feature channels and weighting the aggregation of features
from different channels. Therefore, the CA mechanism can enable the model to pay more
attention to important features and reduce the impact of redundant or unimportant features.
In lithium battery RUL prediction, the CA mechanism can effectively mitigate the impact
of capacity rebound on the model prediction during lithium-ion battery charging and
discharging cycles and, at the same time, improve the utilization of features when data are
limited. As shown in Figure 3:

Figure 3. Squeeze-and-Excitation Block.

The CA mechanism can be divided into three steps.
The first step is the squeeze operation, which extracts global spatial features from

each channel, compresses the spatial information into channel descriptors, and generates
statistics for each channel using global average pooling. The specific formula can be
expressed as follows:

Zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (7)

The second step is the excitation operation, which is to completely capture the depen-
dencies for each channel. The specific formula can be expressed as follows:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (8)

The third step is the scale operation, which multiplies the weight coefficients learned
from each channel with the original features to obtain the weighted features, giving the
model a more vital recognition ability for each feature. The specific formula can be ex-
pressed as follows:

x̃c = Fscale(uc, sc) = scuc (9)
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2.3. RUL Prediction Model with LSTM Based on a Channel Attention Mechanism

The structure of the RUL prediction hybrid model based on a channel attention
mechanism LSTM in this paper is shown in Figure 4:

Figure 4. Model Structure Diagram.

The model mainly contains the channel attention mechanism, LSTM, and FC layer.
Prediction of lithium-ion batteries’ RUL is separated into the following four main steps:

Step1: We first normalize the input lithium-ion battery data. Normalization is the
process of scaling the data to a specific range, to maintain consistency across the dataset
and help improve the model’s performance.

Step2: Channel attention first assigns corresponding weights to different channels and
calculates the weights for each channel, enabling the model to focus on the channels that
are more important for the prediction task. In this way, the model can automatically learn
which channels are more critical for predicting the RUL of Li-ion batteries, thus improving
the performance of the model.

Step3: We use the LSTM to process the data further. The data adjusted using channel
attention have a more robust recognition capability, allowing the LSTM gating unit to
process the data more efficiently and faster.

Step4: We use the FC layer to convert the output of the LSTM to the predicted value of
the lithium-ion batteries’ RUL. The role of the FC layer is to map the hidden states of the
LSTM to an actual value that represents the predicted remaining useful life.

3. Data Sources and Experimental Settings
3.1. Data Introduction

The experimental data utilized in this paper includes datasets of lithium-ion batteries
from both the National Aeronautics and Space Administration (NASA) [52] and the Uni-
versity of Maryland Center for Advanced Life Cycle Engineering (CALCE) [53]. There is
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a significant difference in the average battery life between the two datasets. The NASA
dataset contains four groups of 18650 LiCoO2 batteries: B0005, B0006, B0007, and B0018.
These batteries undergo a charging and discharging process that begins with a constant
current (CC) of 1.5 A until the battery voltage reaches 4.2 V, followed by a constant voltage
(CV) mode until the battery current drops to 0.02 A. The discharge process involves a
continuous current of 2 A, until the voltages of the four batteries reach 2.7 V, 2.5 V, 2.2
V, and 2.5 V, respectively. The CALCE dataset contains four batteries: CS2_35, CS2_36,
CS2_37, and CS2_38. These batteries are also charged at a constant current of 0.55 A, until
the battery voltage reaches 4.2 V, followed by a CV mode, until the battery current drops
below 0.05 A. The discharge process involves a CC of 0.55 A, until the voltage of the four
batteries groups drops to 2.7 V. The specific parameters of the two groups of battery aging
experiments are shown in Table 1.

Table 1. Battery aging experiment parameters.

Battery Constant Current
Charge (A)

Cut off Current of
Constant Voltage

Charge (A)

Constant Current
Discharge (A)

Cut off Voltaget
of Discharge (V)

Average Life
(Cycle)

B0005 1.50 0.02 2.00 2.70

113B0006 1.50 0.02 2.00 2.50
B0007 1.50 0.02 2.00 2.20
B0018 1.50 0.02 2.00 2.50

CS2_35 0.55 0.05 0.55 2.70

678CS2_36 0.55 0.05 0.55 2.70
CS2_37 0.55 0.05 0.55 2.70
CS2_38 0.55 0.05 0.55 2.70

The charging and discharging cycle of a lithium-ion battery makes the maximum
capacity of the battery a decreasing trend, and this decreasing trend has a good time
continuity. In this paper, the capacity of lithium batteries is used as the health factor to
build a model to predict lithium-ion batteries’ RUL.

SOH is an indicator of the health of the batteries, where the equation defines SOH:

SOH =
Ri
Re
× 100%(i = 1, 2, 3.....N) (10)

where Ri is the battery’s maximum capacity after the i th charge/discharge cycle, and Re is
the battery’s rated capacity. When the battery’s maximum capacity drops to 70–80% of the
rated capacity, it is considered end-of-life.The decreasing trend of the maximum capacity
of the charge/discharge cycle for the two battery datasets is shown in Figures 5 and 6:

Figure 5. NASA battery datasets.
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Figure 6. CALCE battery datasets.

3.2. Experiment Settings

In this paper, a hybrid LSTM model based on a channel attention mechanism (CA-
LSTM) was trained and evaluated for validation, and the optimal parameters of the model
were selected using a grid search. The NASA datasets used three sets of battery data,
B0006, B0007, and B0018, as the training set and B0005 battery as the test set, which was
recognized as the end of life, when the maximum capacity reduced to 1.39 Ah. The CALCE
dataset used three sets of battery data, CS2_36, CS2_37, and CS2_38, as the training set and
the CS2_35 battery as the test set, and the end-of-life was recognized when the maximum
capacity reduced to 0.78 Ah.

The NASA data were validated with 35, 55, and 70 as the forecast starting points,
and the CALCE data were validated with 200, 300, and 400 as the forecast starting points,
respectively, to verify the robustness of the model.

To verify the validity and reliability of the prediction model proposed in this paper for
lithium battery RUL, we used the M1, M2, M3, and M4 (as shown in Table 2) models to
compare the results.

Among them, M1 uses a LSTM without channel attention, M2 uses GRU, M3 uses
RNN, and M4 uses LSTM with channel attention; M1, M2, and M3 are classical recurrent
neural networks, which are widely used for RUL prediction.

Experiments were conducted to evaluate the model using training data fitting to
achieve the prediction of battery capacity decay and validated using both NASA and
CALCE datasets.

Table 2. Four models for battery RUL prediction.

Model Description

M1 LSTM
M2 GRU
M3 RNN
M4 CA-LSTM

The input and output of the model can be represented as D:

D =


Window size(T)︷ ︸︸ ︷

x1 x2 x3 x4 x5... xT︸ ︷︷ ︸
Input

xT+1︸︷︷︸
output

xT+2.........

 (11)

The experiment used a sliding window to partition the data. The window slides in
steps of 1 toward the data sequence and is input to the network in a batch manner, and the
size of each batch of data input to the network is controlled by the window size (T), where
the data length is L. The inputs and outputs are shown in Figure 7:
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Figure 7. Window sliding to divide the data.

3.3. Evaluation Criteria

In order to fully validate the experiment, the following three evaluation criteria were
used as indicators of RUL prediction performance in this experiment:

(1) Mean absolute error (MAE), the lower the value, the better the prediction perfor-
mance. Its expression is as follows:

MAE =
1
t

t

∑
i=1
|xi − xi| (12)

(2) Root mean square error (RMSE), the lower the value, the better the prediction
performance. Its expression is as follows:

RMSE =

√√√√1
t

t

∑
i=1

(xi − xi)
2 (13)

(3) Prediction error (PError), which is used to evaluate the RUL prediction error. Its
expression is as follows:

PError =

∣∣RUL− RUL
∣∣

RUL
(14)

where t is the data size, xi is the actual value, xi is the predicted value, RUL is the true
remaining life value, and RUL is the predicted remaining life value. The experiments were
performed in five iterations, and the average value of each index was obtained.

4. Experiment Results and Analysis
4.1. Battery Life Prediction

As shown in Figures 8 and 9, the four models obtained different results on the NASA
and CALCE datasets, with the NASA data starting at cycle 55 and the CALCE data starting
at cycle 300 for prediction. The results for the NASA datasets showed that the M1, M2, and
M3 models were unable to determine the rate of lithium battery capacity decline at the
beginning of the prediction and showed a significant decline, indicating a poor fit with the
original data, but with the fit reversing as the capacity continued to decline. The M4 model
(the model proposed in this paper) could capture the battery capacity ramp-up and reduce
the impact of capacity ramp-up on the prediction, thus achieving better results.

Meanwhile, with the CALCE datasets, the M3 model significantly differed from the
initial prediction, due to the battery capacity rebound. At the same time, the M2 and M1
models also showed different degrees of variation, and the M1 model showed a year-on-
year increase in deviation as the cycle time increased. The M4 model was significantly
better optimized than the first three models and could better fit the battery capacity drop
curve and achieved better results in predicting the end of battery life.

It can be seen that the M1, M2, and M3 models showed more significant deviations for
batteries with a higher number of cycles, thus biasing the end-of-life judgments. On the
other hand, the M4 model showed better prediction accuracy for both batteries with a low
number of cycles and those with a high number of cycles.
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Figure 8. Prediction starting at cycle 55 for NASA data.

Figure 9. Prediction starting at cycle 300 for CALCE data.

Table 3 shows the evaluation criteria for the prediction results of the four models. It can
be seen that the M1, M2, and M3 models performed differently on different datasets, but the
M4 model performed well on the different datasets and achieved better prediction results.

4.2. Different Starting Points for Prediction

To comprehensively validate the effectiveness of the model (M4) proposed in this
paper, prediction experiments were conducted using two different prediction starting
points (35, 70) on the NASA datasets and with two different prediction starting points (200,
400) on the CALCE datasets. The experimental results were compared with the M1, M2,
and M3 models.
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Table 3. Comparison of the four models on the two datasets.

DataSet Prediction
Starting Point Model RMSE MAE PError

NASA 55

M1 0.0275 0.0218 0.0471

M2 0.0333 0.0253 0.0580

M3 0.0416 0.0328 0.0471

M4 0.0213 0.0145 0.0109

CALCE 300

M1 0.0576 0.0491 0.0769

M2 0.0439 0.0363 0.0333

M3 0.1140 0.0896 0.1620

M4 0.0355 0.0288 0.0118

Figure 10 shows the prediction comparison plots for the NASA datasets, with the
35th cycle and 70th cycle as the prediction starting point, respectively. Figure 11 shows
the prediction comparison plots for the CALCE datasets, with the 200th cycle and 400th
cycle as the prediction starting point, respectively. These figures clearly demonstrate
that the prediction results of the model varied significantly depending on the prediction
starting point.

Table 4 shows the evaluation criteria table for the prediction results of the four models
on the NASA datasets starting at the 35th cycle and 70th cycle, and the CALCE datasets
starting at the 200th cycle and 400th cycle. On both the NASA datasets and CALCE datasets,
the M1, M2, and M3 models had different degrees of prediction errors. A larger prediction
error occurred on the CALCE datasets with a longer data series.

(a) Prediction starting at cycle 35 (b) Prediction starting at cycle 70

Figure 10. Comparison of the four models with different prediction starting points for NASA data.

However, the proposed model (M4) showed a better prediction accuracy with different
datasets and different prediction starting points, which means that the prediction accuracy
of the proposed model was not significantly affected by the change of the prediction
starting point.
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(a) Prediction starting at cycle 200 (b) Prediction starting at cycle 400

Figure 11. Comparison of the four models with different prediction starting points for CALCE data.

Table 4. Comparison of four models with different prediction starting points on two datasets.

DataSet Prediction
Starting Point Model RMSE MAE PError

NASA

35

M1 0.0324 0.0261 0.0927

M2 0.0372 0.0281 0.0421

M3 0.0308 0.0239 0.0506

M4 0.0251 0.0179 0.0084

70

M1 0.0245 0.0200 0.0602

M2 0.0379 0.0307 0.0694

M3 0.0286 0.0237 0.0972

M4 0.0178 0.0132 0.0139

CALCE

200

M1 0.0579 0.0442 0.0565

M2 0.0727 0.0635 0.1182

M3 0.0593 0.0514 0.0879

M4 0.0379 0.0313 0.0245

400

M1 0.0502 0.0429 0.0893

M2 0.0478 0.0356 0.0315

M3 0.0506 0.0382 0.0452

M4 0.0401 0.0309 0.0231

Figures 12 and 13 show the RUL prediction results of the four models on the NASA
and CALCE datasets, respectively. It can be concluded that the model (M4) proposed in
this paper exhibited better prediction accuracy with stronger robustness, both for batteries
with more cycle counts and with fewer cycle counts, at different prediction starting points.
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(a) RMSE(%) (b) MAE(%) (c) PError(%)

Figure 12. Comparison of the prediction results of the four model RUL forecasts for NASA data.

(a) RMSE(%) (b) MAE(%) (c) PError(%)

Figure 13. Comparison of the prediction results of the four model RUL forecasts for CALCE data.

5. Conclusions

To improve the accuracy of RUL prediction for lithium-ion batteries and reduce the
difficulty of model building, this paper proposed a hybrid model with LSTM based on
a channel attention mechanism, to achieve prediction of the RUL of lithium batteries.
First, we extracted the lithium-ion batteries’ data for normalization, then created channels
using channel attention and calculated the weights of each channel. Channel attention
automatically learns which channel data are more critical for predicting the lithium-ion
batteries’ RUL and assigns higher weights accordingly. Finally, the data were further
processed using LSTM, and prediction of RUL was achieved using a fully connected layer.
Introducing a channel attention mechanism can improve the utilization of the local features
of data when data are limited, and can effectively mitigate the impact of the battery capacity
re-rise phenomenon on the model when the lithium-ion battery charge/discharge cycle
occurs. The experimental results showed that, compared with other classical recurrent
neural networks, the model proposed in this paper had a higher prediction accuracy and
offered better performance in terms of RMSE, MASE, and PError evaluation metrics when
validated on NASA datasets and CALCE datasets. To verify the effectiveness of the model
proposed in this paper more comprehensively, we set different prediction starting points.
After verification, the prediction performance of the model presented in this paper was
stable and less influenced by different prediction starting points.

In future studies, we will consider introducing additional parameters for capacity
fluctuations of lithium-ion batteries and incorporate additional health factors. Furthermore,
we aim to examine a broader spectrum of battery types and external factors, such as the
influence of different temperatures on RUL.
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