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Abstract: In response to the large-scale instability failure problem of designing coal pillars and
support systems for gob-side entry driving (GSED) in high-stress soft coal seams in deep mines, the
main difficulties in the surrounding rock control of GSED were analyzed. The relationship between
the position of the main roof breaking line, together with the width of the limit equilibrium zone and
a reasonable size for the coal pillar, were quantified through theoretical calculations. The theoretical
calculations showed that the maximum and minimum widths of the coal pillar are 8.40 m and
5.47 m, respectively. A numerical simulation was used to study the distribution characteristics and
evolution laws of deviatoric stress and plastic failure fields in the GSED surrounding rock under
different coal pillar sizes. Theoretical analysis, numerical simulation, and engineering practice were
comprehensively applied to determine a reasonable size for narrow coal pillars for GSED in deep soft
coal seams, which was 6.5 m. Based on the 6.5 m coal pillar size, the distribution of deviatoric stress
and plastic zones in the surrounding rock of the roadway, at different positions of the advanced panel
during mining, was simulated, and the range of roadway strengthening supports for the advanced
panel was determined as 25 m. The plasticization degree of the roof, entity coal and coal pillar, and
the boundary line position of the peak deviatoric stress zone after the stability of the excavation were
obtained. Drilling crack detection was conducted on the surrounding rock of the GSED roof and
rib, and the development range and degree of the crack were obtained. The key areas for GSED
surrounding rock control were clarified. Joint control technology for surrounding rock is proposed,
which includes a combination of a roof channel steel anchor beam mesh, a rib asymmetric channel
steel truss anchor cable beam mesh, a grouting modification in local fractured areas and an advanced
strengthening support with a single hydraulic support. The engineering practice showed that the
selected 6.5 m size for narrow coal pillars and high-strength combined reinforcement technology can
effectively control large deformations of the GSED surrounding rock.

Keywords: deep mine; soft coal seam; small coal pillar; gob-side entry driving; joint control

1. Introduction

With the increasing depletion of shallow coal resources, more and more coal mass
in deep mining is exhibiting complex geological conditions, such as looseness and frag-
mentation, posing a serious challenge to the control of surrounding rock in deep coal
roadways [1–4]. On the other hand, in order to save coal resources and improve min-
ing efficiency, more and more mines in China are using GSED technology for coal seam
mining [5,6]. However, as the mining depth increases, the retaining of coal pillars and
surrounding rock support systems of GSED is prone to large-scale instability and damage,
seriously affecting the safe and efficient production of the mine [7,8]. Therefore, how to
reduce the loss of coal pillars while ensuring the safety of the roadway’s surrounding rock
and the high productivity and efficiency of the panel is an important task for green mining
in deep mines in China [9].
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In the past, researchers have mainly conducted research on the following aspects
of GSED technology [10,11]: (1) In terms of designing the size of narrow coal pillars
for GSED, numerical simulation methods have mainly been used to analyze the various
stresses, plastic failure fields and displacement distributions of surrounding rock in GSED.
Combined with internal and external stress fields, limit equilibrium zone theory and basic
roof fracture structures, on-site stress monitoring and engineering analogy methods are
taken into account to comprehensively determine a reasonable coal pillar size [12–17].
(2) In terms of the large deformation and failure mechanism of the GSED surrounding
rock, researchers have studied the overlying strata movement and crack evolution laws of
GSED in a thick coal seam [18]; have established mechanical models of inclined GSED and
calculated the floor failure depth [19]; have established a structural mechanics model of
the overburden and studied the influencing rules of the key block B on GSED stability [20];
have studied the fracture structure characteristics of the overlying multi thick hard rock
strata and their influence on the coal pillar [21]; have established a mechanical model for
small structural stress arches based on the arch axis equation [22]; and have established
a mathematical and mechanical model of coal pillars and studied the energy equilibrium
relationship of the mechanical system [23]. (3) In terms of the stability control technology
for GSED surrounding rock, researchers have studied the following: control technology
based on a strengthening support with inclined anchor cables in critical parts and a high-
strength prestressed anchoring support [24]; control technologies of “strengthening support
+ surrounding rock pressure relief + adjusting excavation layout” [25]; the reinforcement
technology of a double-layer thickened anchoring structure, including the flexible bolt
and anchor cable used as the main parts [26]; combination support technology, including
a roof angle anchor cable, an asymmetric anchor cable truss beam and an anchor cable
composite structure [27]; combined support technology, including roadway expansion,
long bolt (cable) exerting and blasting roof cutting [28]; “U-shaped steel + concrete spraying
layer + long anchor cable + grouting” reinforcement technology [29]; and collaborative
control methods of “strengthening anchoring + decompress + slow yield” [30].

The above research results have enriched the theory and technical system of GSED
surrounding rock control for narrow coal pillars and have laid an excellent foundation for
promoting the application of GSED in major mining areas. Based on the above research,
this article conducts numerical simulation research using deviatoric stress and plastic
failure fields as indicators, supplemented by a theoretical analysis and calculations to
comprehensively determine the size of the coal pillar and reveal the characteristics and
mechanisms of large deformations and failures of GSED surrounding rock. The novelty
of this article is as follows: (1) It introduces deviatoric stress analysis indicators to study
narrow coal pillars’ width and surrounding rock control technology for gob-side entry
driving in deep soft coal seams, which can overcome the shortcomings of a single stress
component. (2) Based on the boundary line of the deviatoric stress peak area in the GSED
surrounding rock, the development contour line of the plastic zone and crack development
in the roof and rib, a small coal pillar GSED surrounding rock control idea, that makes
the anchor cable pass through the boundary line of the deviatoric stress peak zone of the
surrounding rock and allows the contour line of the plastic zone on an entity coal rib to
anchor in the relatively intact rock mass, is proposed. Based on this, joint control technology
for surrounding rock is proposed, which includes a combination of a roof channel steel
anchor beam mesh, a rib asymmetric channel steel truss anchor cable beam mesh, a grouting
modification in local fractured areas and an advanced strengthening support with a single
hydraulic support, effectively controlling the surrounding rock destruction.

2. Engineering Overview
2.1. Geological Conditions of the Panel and Roadway

The test mine is located in Hebei Province, with its panel n. 218 from the southeast to
the panel n. 220 (which has been mined out), and from the southwest to the return air main
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roadway in the mining area. The arrow indicates the advancing direction of the panel n.
218. The layout of the panel is shown in Figure 1.
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Figure 1. Layout of the panel.

The leather belt roadway of panel n. 218 is a GSED, with a burial depth of ap-
proximately 686 m. The roadway is excavated along the roof of the coal seam and is a
long × width = 5 m × 3.5 m rectangular roadway. The sedimentation of the n. 2# coal seam
in panel n. 218 is relatively stable, with a complex structure and an average thickness of
4.25 m. The average dip angle of the coal seam is 4◦. The geological histogram of the coal
seam roof and floor is shown in Figure 2.
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2.2. Characteristics of Coal Deformation and Failure

The joints and fissures in the coal mass near the panel n. 218 are significantly devel-
oped, with low cohesion, strength, and bearing capacity. The surrounding rock of the coal
roadway is soft and fractured, which poses great difficulties in controlling the stability of
the surrounding rock. In addition, the size of the coal pillar and the design of the surround-
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ing rock support plan for the coal roadway in the panel n. 220 are mainly based on on-site
practical experience, lacking theoretical support, causing severe instability and damage to
the coal pillar and support system of the coal roadway. The primary manifestation is that
the coal mass on the roadway rib bulges outward significantly and causes severe damage
to the support system, as shown in Figure 3.
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The on-site engineering practice has confirmed that the panel n. 220 mining roadway
adjacent to panel n. 218 cannot meet the production needs of the mine under the original
support method and coal pillar size. Therefore, if the coal pillar size and surrounding rock
support design of the panel n. 218 is still copied, the parameters of the panel n. 220 will
inevitably cause large-scale deformation and damage to the surrounding rock and support
system of the roadway, seriously affecting the normal production of the mine. There is an
urgent need to seek reasonable coal pillar size and new support methods and processes to
solve the production problems in mines.

3. Determination of GSED Coal Pillar Size in Deep Soft Coal Seams
3.1. Theoretical Calculation

(1) The relationship between the main roof breaking line position and the coal pillar size.

The mining of the previous panel causes the main roof to break and interlock with
each other to form a stable articulated structure. The breaking line divides the coal mass
into two plates [31,32], namely the internal stress field S1 and the external stress field S2, as
shown in Figure 4.
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To ensure the safe bearing of a coal pillar, the relationship between the internal stress
field width and the coal pillar size and roadway size meets the following equation:

S1≥ L1 + L2 (1)
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where L1 is the size of the coal pillar and L2 is the roadway width.
The following equation determines the range of the internal stress field [33]:

S1 =
6γaML

G0y0
(2)

In the above Formula (2), L is the initial pressure step distance of the main roof, 48 m;
M is the main roof thickness, 6.3 m; a is the length of the panel, 260 m; γ is the average
unit weight of the main roof, 25,000 N/m3; y0 is the compression value of the coal wall,
0.8 m; and G0 is the stiffness of the coal body around the roof fracture line, 1.1 × 109 Pa.
The calculation shows that S1 is 13.4 m, and because L2 is 5.0 m, the maximum size of the
coal pillar is 8.4 m.

(2) Relationship between limit equilibrium zone and coal pillar size.

In addition, if the size of the reserved coal pillar is too small, it will cause severe
destruction of the coal pillar in the process of overburdening activities, leading to the
instability of anchor cable anchorage points, and the stability of the coal pillar is challenging
to maintain until the complete loss of bearing capacity. Therefore, the size of the coal pillar
must also meet the following equation:

L1 ≥ x1 + x2 + x3 (3)

In the above Formula (3), x3 is the stability coefficient of the coal pillar, which calcu-
lation method is 0.2 (x1 + x2), m; x2 is the effective anchoring length of the bolt support
component in the coal mass, 1.8 m; and x1 is the range of coal pillar crushing area, m. The
analytical expression for x1 is as follows [34]:

x1 =
mA

2 tanϕ
ln
( kγH + C/ tanϕ

C
tan ϕ + p

A

)
(4)

In the above Formula (4), A is the pressure coefficient, A = µ/(1 − µ), µ is Poisson
ratio, 0.2; m is the mining thickness of the coal seam, 4.28 m; K is the stress concentration
coefficient, 1.3; H is the buried depth of the roadway, 686 m; γ is the average unit weight of
the rock layer, 25 kN/m3; ϕ is the internal friction angle of the coal seam interface, 19◦; p
is the support resistance to the roadway wall, 0.32 MPa; and C is the cohesive force at the
coal seam interface, 1.02 MPa. Based on the data from the panel n. 218, x1 = 2.76 m, and
substituting into Equation (3), the minimum size of the coal pillar is 5.47 m. Therefore, the
reasonable size range of narrow coal pillars should be 5.47–8.40 m.

3.2. Numerical Calculation Analysis
3.2.1. Numerical Model

Based on the actual engineering conditions of the mine, establishing the numerical
calculation model (x × y × z = 200 m × 140 m × 90 m) is shown in Figure 5. The panel
is mining in the negative y-axis direction. The top boundary of the model is the stress
boundary. The remaining boundaries are the fixed speed boundary. This numerical model
simulates the response characteristics of the deviatoric stress and plastic failure field in the
GSED surrounding rock when the coal pillar size is 3, 4.5, 6.5, 9, 11, and 13 m, respectively.
The constitutive equation of the model adopts Mohr Coulomb’s essential criterion.

As the indoor mechanical test results cannot be directly used for numerical simulation,
the determination of mechanical parameters of rock mass in numerical simulations is ob-
tained by calculating and processing the mechanical parameters measured in the laboratory
based on Hoek Brown’s essential criteria. The processed data results are shown in Table 1.
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Table 1. Actual physical and mechanical properties of each stratum.

Rock Stratum D /kg·m−3 K /GPa G /GPa ϕm/◦ Cm/MPa σtm/Mpa

Upper rock layer 2700 6.98 5.11 33 3.51 2.51
Lower rock layer 2762 7.52 6.11 32 3.43 2.35
Sandy mudstone 2450 6.61 4.91 28 2.71 2.25
Fine sandstone 2600 6.41 5.23 34 3.65 2.49

Siltstone 2552 7.26 6.05 35 3.14 2.20
Coal seam 1400 3.01 1.86 19 1.02 0.91

Carbonaceous
mudstone 2200 7.25 5.81 30 2.81 2.42

K is the bulk modulus, G is the shear modulus, Cm is the cohesion, σtm is the tensile strength, ϕm is the friction
angle, and D is the density.

3.2.2. Superiority of Deviatoric Stress Analysis Indicator

Based on elastic-plastic mechanics, the stress states at a certain point in a rock mass
are mainly deviatoric stress and spherical stress. The deviatoric stress controls the shape
change of the rock mass (plastic deformation and failure of the rock mass). The spherical
stress controls the volume change of the rock mass (recoverable elastic deformation of the
rock mass) [35]. If we assume three principal stresses perpendicular to each other is σi
(i = 1, 2, 3), σ1 ≥ σ2 ≥ σ3. The stress at a certain point in the rock mass is described
as follows: σ1 0 0

0 σ2 0
0 0 σ3

 =

σm 0 0
0 σm 0
0 0 σm

+

s1 0 0
0 s2 0
0 0 s3

 (5)

In the above Formula (5), σm is the tensor component of spherical stress, which is used
as a parameter to measure spherical stress in this paper. Its relationship with principal
stress is determined as follows:

σm =
1
3
(σ1 + σ2 + σ3) (6)

si is the tensor component of the main deviatoric stress (si = σi − σm), where si plays
the most important role in the deformation and failure of surrounding rock, and s1 is the
maximum deviatoric principal stress. It simultaneously considers the interaction between
the maximum, intermediate, and minimum principal stress. The relationship between the
maximum deviatoric principal stress and the principal stress is determined as follows:

s1 = σ1 −
1
3
(σ1 + σ2 + σ3) (7)
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After excavation, the shear stress of the shallow surrounding rock of the roadway
is concentrated, and the surrounding rock releases energy and unloads. The unloading
process will inevitably generate deviatoric stress. The deviatoric stress is a combination
of horizontal, vertical, and tangential stresses, which can be used to characterize the
distribution of shear stress of materials under load, revealing that the essential force source
of rock mass deformation and failure is mainly caused by shear stress. Given this, this
paper takes the maximum deviatoric principal stress as an analysis index and uses it as a
parameter to measure the stability of surrounding rock, studying and determining the size
of coal pillars.

3.2.3. Failure Characteristics of GSED under Different Coal Pillar Sizes

(1) Distribution characteristics and evolution law of deviatoric stress.

From Figure 6, the deviatoric stress state of the surrounding rock at the roof and floor
of the roadway does not change with the size of the coal pillar. The deviatoric stress state of
the roof and floor under different coal pillar sizes are in an extensive range of low deviatoric
stress states. However, under different coal pillar sizes, there are peak deviatoric stress
bands on both the coal pillar rib and the entity coal rib. The concentration degree of the
peak deviatoric stress band on the coal pillar increases with the increase in the coal pillar
size. The concentration degree of the peak deviatoric stress band on the entity coal rib
decreases with the increase in the coal pillar size.
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Figure 6. Deviatoric stress state of the surrounding rock under different coal pillar sizes. (a) 3 m coal
pillar width, (b) 4.5 m coal pillar width, (c) 6.5 m coal pillar width, (d) 9 m coal pillar width, (e) 11 m
coal pillar width, and (f) 13 m coal pillar width.

When the size range of the coal pillar is between 3 and 4.5 m, the peak band of
deviatoric stress is mainly concentrated on the entity coal rib; nevertheless, the stress on
the coal pillar is relatively weak. The peak deviatoric stress on the entity coal rib exceeds
31 MPa, but the peak deviatoric stress on the coal pillar rib is less than 13 MPa. The bearing
capacity of the coal pillar is insufficient, leading to the severe deformation of the roadway
coal rib.

When the size range of the coal pillar is between 6.5 and 9 m, the peak band of
deviatoric stress exists simultaneously on the coal pillar and the entity coal rib. The
peak range of deviatoric stress on the coal pillar rib is between 22.4 MPa and 23.9 MPa,
which enhances the stress on the coal pillar and significantly increases its bearing capacity
compared to the size range of the coal pillar of 3~4.5 m. The coal pillar plays an essential
role in supporting the roof, ensuring the GSED surrounding rock and coal pillar stability.

When the size range of the coal pillar is between 11 and 13 m, the concentration of the
peak deviatoric stress band is significantly weakened on the entity coal rib, and the peak
deviatoric stress gradually decreases. The range of peak deviatoric stress bands on the coal
pillar rib increases, and the phenomenon of deviatoric stress concentration is more evident
on the coal pillar rib. The peak deviatoric stress on the coal pillar rib shows a double peak
distribution. In this case, the high deviatoric stress concentration inside the coal pillar
poses a significant threat to the coal pillar stability, which is not conducive to controlling
the deformation of the GSED.

(2) Distribution characteristics and evolution law of plastic zone.

From Figure 7, when the size of the coal pillar ranges from 3 to 4.5 m, the roof, the
entity coal rib, and the coal pillar rib of the roadway undergo extensive shear plastic
damage due to the influence of the previous panel mining and roadway excavation. The
coal pillar rib undergoes severe internal extrusion deformation. When the size of the coal
pillar is 3 m, the depth of the plastic zone on the roadway roof exceeds 15 m, the depth
of the plastic zone on the entity coal rib is 5 m, and the plasticization degree of the coal
pillar is 100%. When the size of the coal pillar is 4.5 m, the depth of the plastic zone on the
roadway roof exceeds 15 m, the depth of the plastic zone on the entity coal rib is 4.5 m, and
the plasticization degree of the coal pillar is 88.6%.
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When the size of the coal pillar ranges from 6.5 to 9 m, the plastic zone of the entity
coal rib above the coal pillar and the roadway roof significantly decreases, and an elastic
core zone appears in the roof. When the size of the coal pillar is 6.5 m, the depth of the
plastic zone of the entity coal rib is 4 m, the plasticization degree of the coal pillar is 67.5%,
the depth of the plastic zone of the roof is 3.5 m, and an elastic zone with a size of 5 m
appears above the roof. At a coal pillar size of 9 m, the depth of the plastic zone of the
entity coal wall is 3.5 m, the plasticization degree of the coal pillar is 60.4%, the depth of
the plastic zone of the roof is 3 m, and an elastic zone with a size of 11 m appears above
the roof. In this case, if 8.5 m and 4.5 m long anchor cables are, respectively, applied to the
roof and the entity coal rib of the roadway, the anchor cables will be anchored in the elastic
zone of the coal rock mass, which can significantly exert the anchoring effect.
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When the size of the coal pillar ranges from 11 to 13 m, the plastic failure coal mass
inside the coal pillar gradually transitions to elastic coal mass, and the degree of coal pillar
damage is significantly reduced. The plastic zone of the entity coal rib and roof of the
roadway also correspondingly decreases. At a coal pillar size of 11 m, the plastic zone
depth of the entity coal rib is 3.5 m, the plasticization degree of the coal pillar is 56.1%, and
the plastic zone depth of the roof is 3 m. At a coal pillar size of 13 m, the plastic zone depth
of the entity coal rib is 3 m, the plasticization degree of the coal pillar is 42.3%, and the
plastic zone depth of the roof is 2.5 m. When the size of the coal pillar increases to more
than 13 m, a more extensive range of elastic core areas appears inside the coal pillar, and
the plastic zone around the roadway no longer intersects with the plastic zone of the coal
pillar. However, under these coal pillar sizes, the peak concentration of deviatoric stress
inside the coal pillar is relatively high, which is not conducive to maintaining the stability
of the roadway. Moreover, vast coal pillars can cause resource waste and economic loss.

From a numerical simulation perspective, the coal pillar’s reasonable size should be
within the range of 6.5 to 9 m. Within this range, the coal pillar has good stress environment
and roof support conditions, which can fully utilize the support effect of anchor cables and
reduce the size of the coal pillar and the proportion of resource waste.

3.3. Optimal Design of Narrow Coal Pillar Size in GSED

According to the internal and external stress fields and the limit balance theory, under
the condition of ensuring that the coal pillar and roadway are in the stress low-value zone
and the coal pillar has a self-stabilizing ability, the maximum size of the narrow coal pillar
under this geological condition is 8.40 m, and the minimum size is 5.47 m. In addition,
numerical model simulations were conducted on the deviatoric stress and plastic failure
characteristics of the surrounding rock of the roadway when the narrow coal pillar size
was 3, 4.5, 6.5, 9, and 11 m, respectively. The numerical analysis showed that when the
coal pillar size was between 6.5 and 9 m, the stress state of the coal pillar was improved,
and the bearing conditions were excellent. There were elastic core areas above the coal
pillar and the roadway roof, and the plastic zone depth of the entity coal rib was controlled
within 4 m. It can significantly exert the anchoring effect of anchor cables to ensure the
roadway roof and rib stability. Based on the intersection of theoretical calculation and
numerical analysis results, while considering engineering analogy and economic benefits,
it is comprehensively determined that the size of the GSED narrow coal pillar is 6.5 m. The
changes in indicators under different coal pillar sizes are shown in Figure 8.
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Figure 8. Changes in indicators under different coal pillar sizes.

4. Failure Characteristics of GSED Surrounding Rock of the Advanced Panel

Based on the study of the distribution and evolution law of plastic zone and deviatoric
stress under different coal pillar sizes, it can be concluded that the optimal coal pillar size
is 6.5 m. This section will explore the distribution status of deviatoric stress and the plastic
zone in the surrounding rock of the roadway in front of the panel during mining, providing
a basis for the rational determination of support parameters. We sliced and analyzed the
deviatoric stress and plastic zone for different distances from the advanced panel. The
slicing position is shown in Figure 9.
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The distribution of deviatoric stress and plastic zone at different positions of the
advanced panel is shown in Figure 10.
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Figure 10. Distribution of deviatoric stress and plastic zone at different positions of the advanced
panel. (a) Advanced 8 m, (b) Advanced 25 m, (c) Advanced 35 m, and (d) Advanced 50 m.

(1) The closer the panel is, the greater the concentration of the peak deviatoric stress
band, and the peak deviatoric stress band is mainly concentrated on the entity coal
rib. Therefore, the entity coal rib primarily bears the overlying load pressure.

(2) The range of peak deviatoric stress zone on the entity coal rib of the roadway within
the 25 m range of the advanced panel is large, and the peak deviatoric stress on the
entity coal rib is large, reaching over 35 MPa, whereas the deviatoric stress on the
coal pillar rib is weak, less than 14 MPa. The plastic zone depth of the roadway entity
coal rib and roof within the 25 m range of the advanced panel exceeds 15 m, and the
plasticization degree of the coal pillar is 100%. The roadway within this section is
severely damaged and requires advanced support. This project uses single hydraulic
supports for advanced support to maintain normal coal production.

(3) The deviatoric stress on the entity coal rib and coal pillar rib of the roadway outside
the range of 35 m ahead of the panel gradually stabilizes, with a peak deviatoric stress
on the entity coal rib of about 34 MPa. The deviatoric stress state on the coal pillar rib
is excellent, about 24 MPa. When the advanced panel distance is 35 m, the plastic zone
depth on the entity coal rib of the roadway is 4.2 m, the plasticization degree of the
coal pillar is 66.8%, the plastic zone depth on the roof is 5 m, and an elastic zone with
a size of 3.5 m appears above the roof. When the advanced panel distance is 50 m,
the plastic zone depth on the entity coal rib of the roadway is 4 m, the plasticization
degree of coal pillar is 65.1%, the plastic zone depth on the roof is 3.5 m, and an elastic
zone with a size of 4.5 m appears above the roof.

It can be seen that, under the violent mining influence of the panel, the surrounding
rock of the roadway within a range of 25 m ahead of the panel is severely damaged, and it
is necessary to strengthen support to control the unstable surrounding rock of the roof and
rib. The support plan for the surrounding rock of the roadway outside the 35 m range of
the advanced panel needs to be designed explicitly based on the plastic zone and deviatoric
stress distribution characteristics of the surrounding rock of the GSED, ensuring the safety
and standard production of the coal mining face.

5. Control Technology of GSED Surrounding Rock

Clarifying the plastic zone and deviatoric stress range, development, and evolution
characteristics of the roadway surrounding rock has important guiding significance for the
rational and differentiated support design of the surrounding rock in various parts of the
underground roadway.

5.1. Thoughts on Support Design

The distribution of the boundary line of the peak deviatoric stress zone, and the
contour line of the plastic zone in the surrounding rock after the excavating stability of the
panel n. 218 with small coal pillars, is shown in Figure 11.
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the plastic zone in the surrounding rock after excavating stability.

From this, it can be seen that, after the excavation of the roadway and panel is stable,
the plastic zone maximum depth of the roof and entity coal is about 3.5 m and 4 m,
respectively. The plasticization degree of the coal pillar rib is about 67.5%. The boundary
line of the peak deviatoric stress zone on the entity coal rib is about 3.5 m from the roadway’s
surface, and the boundary line of the peak deviatoric stress zone on the coal pillar rib is
about 3.8 m from the roadway’s surface. In addition, the numerical simulation results
indicate that there is a trend of roof plastic zone depth expansion in the GSED surrounding
rock deeper part. Therefore, drilling crack detection was conducted on the surrounding
rock of the GSED roof and rib, and the crack development range and degree were obtained.
The peeping results show that the rock integrity is good at a depth of 8.3 m in the roof,
without apparent cracks. The roof anchor cable anchored at this position will have an
excellent anchoring effect. There is a certain degree of fragmentation and various irregular
cracks in the surrounding rock within the range of 3.2 m of the entity coal rib. The coal
mass of the roadway rib is relatively complete at a depth of 4.2 m, and the rib anchor cable
anchored at this position will have an excellent anchoring effect. However, the development
of shallow cracks inside the coal pillar is more pronounced than inside the entity coal rib,
and the coal pillar must be supported by reinforced anchor cables to maintain the integrity
of the shallow surrounding rock.

It can be seen that the damage degree of the coal pillar rib is much greater than that
of the entity coal rib. The key area for controlling the GSED surrounding rock is the coal
pillar rib. When supporting, it is necessary to reinforce the coal pillar rib. It needs to make
the anchor cable pass through the boundary line of the deviatoric stress peak zone of the
surrounding rock and the contour line of the plastic zone on the entity coal rib to anchor in
the relatively intact rock mass, making the anchor foundation more stable.

5.2. Control Measures for Surrounding Rock

The support countermeasures analysis of GSED is shown in Figure 12.



Processes 2023, 11, 2331 14 of 21

Processes 2023, 11, x FOR PEER REVIEW 14 of 21 
 

 

5.2. Control Measures for Surrounding Rock 
The support countermeasures analysis of GSED is shown in Figure 12.  

 
Figure 12. Support countermeasures analysis of GSED. 

Considering that the test roadway will experience the severe dynamic pressure dis-
turbance caused by the mining face, it is determined that the rib asymmetric channel steel 
truss anchor cable form will be used for the surrounding rock control of the panel n. 218 
GSED. Two anchor cables Φ15.24 × 4500 mm are arranged on the entity coal rib (the in-
clined arrangement of the top and bottom anchor cables can achieve an excellent anchor-
ing effect). Three anchor cables Φ15.24 × 4500 mm are arranged on the coal pillar rib (the 
inclined arrangement of the top and bottom anchor cables can achieve an excellent an-
choring effect). The roof adopts a combined support form of bolts and anchor cables, with 
the arrangement of two long anchor cables Φ17.8 × 8500 mm (the inclined arrangement of 
anchor cables on both sides of the roof can achieve an excellent anchoring effect). 

The bolt and anchor cable of the roadway roof and rib forms a high-strength anchor-
ing bearing structure. The high-strength anchoring bearing structure of the GSED sur-
rounding rock is a unified bearing structure formed by bolt support, anchor cable support, 
and the surrounding rock of the roadway. This structure is characterized by the mutual 
compression between bolts and bolts in the shallow surrounding rock. The bolts use trays 
and steel mesh to protect and support the rock mass in the fractured area of the shallow 

Figure 12. Support countermeasures analysis of GSED.

Considering that the test roadway will experience the severe dynamic pressure distur-
bance caused by the mining face, it is determined that the rib asymmetric channel steel truss
anchor cable form will be used for the surrounding rock control of the panel n. 218 GSED.
Two anchor cables Φ15.24 × 4500 mm are arranged on the entity coal rib (the inclined
arrangement of the top and bottom anchor cables can achieve an excellent anchoring effect).
Three anchor cables Φ15.24 × 4500 mm are arranged on the coal pillar rib (the inclined
arrangement of the top and bottom anchor cables can achieve an excellent anchoring effect).
The roof adopts a combined support form of bolts and anchor cables, with the arrangement
of two long anchor cables Φ17.8 × 8500 mm (the inclined arrangement of anchor cables on
both sides of the roof can achieve an excellent anchoring effect).

The bolt and anchor cable of the roadway roof and rib forms a high-strength anchoring
bearing structure. The high-strength anchoring bearing structure of the GSED surrounding
rock is a unified bearing structure formed by bolt support, anchor cable support, and the
surrounding rock of the roadway. This structure is characterized by the mutual compression
between bolts and bolts in the shallow surrounding rock. The bolts use trays and steel
mesh to protect and support the rock mass in the fractured area of the shallow surrounding
rock, preventing the shallow fractured rock mass from being squeezed out, thus forming a
shallow bearing structure. In addition, the application of prestressed long anchor cables not
only strengthens the load-bearing structure of shallow bolts but also applies lateral forces
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to the shallow load-bearing structure to improve its load-bearing capacity. At the same
time, the anchor cables can also form a load-bearing structure in the deeper surrounding
rock, improving the load-bearing capacity of the surrounding rock and the anchoring zone.
Based on improving the load-bearing capacity of the surrounding rock and the anchoring
zone, it can also transfer some of the stress on the load-bearing structure to the deeper part
of the surrounding rock, thus achieving a coordinated working state with the deep rock
mass, further strengthening the anchoring bearing structure. Therefore, the formation of the
high-strength anchoring load-bearing structure in the GSED surrounding rock can be seen
as the superposition and coupling of the prestressed bearing structure generated by the
bolts and cables support in the surrounding rock, as shown in Figure 13. The mechanical
action range of this high-strength load-bearing structure can cover the peak deviatoric
stress zone of the surrounding rock of the roadway, playing an active reinforcement role in
the areas where the surrounding rock is prone to damage and suppressing the sustained
destruction of the roadway’s surrounding rock.

5.3. Support Programme of GSED Surrounding Rock

A joint control technology for surrounding rock has been proposed to control the
deformation of the GSED surrounding rock, which includes a combination of a roof channel
steel anchor beam mesh, a rib asymmetric channel steel truss anchor cable beam mesh,
a grouting modification in local fractured areas, and an advanced strengthened support
using a single hydraulic support, as shown in Figure 14.

Roof channel steel anchor beam mesh support: a diamond-shaped metal mesh is laid
on the roadway roof and ribs, and H-shaped steel strip beams are hung perpendicular to the
axial direction of the roadway. The roof and ribs bolt adopts Φ22 × 2400 mm high-strength
threaded steel bolts with a spacing of 0.8 m × 0.8 m, with an anchoring force of no less than
15 tons and a torque of no less than 300 Nm. The roof anchor cable adopts two-channel
steel anchor cables arranged in a staggered interlocking manner along the roadway axial
direction. Each anchor cable is arranged 1 m away from the middle of the roadway, with a
spacing of 2.4 m. The specifications of the roof anchor cable are a Φ17.8 × 8500 mm steel
strand anchor cable, with a preload of no less than 130 kN.
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Figure 13. High-strength anchoring load-bearing structure. (a) Layout form and axial force of anchor
cables, (b) plan view of high-strength anchoring load-bearing structure, and (c) spatial graph of
high-strength anchoring load-bearing structure.
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Figure 14. Joint control technology for surrounding rock.

Rib asymmetric channel steel truss anchor cable beam mesh: two anchor cables,
Φ15.24 × 4500 mm, are arranged on the entity coal rib (the inclined arrangement of the top
and bottom anchor cables can achieve an excellent anchoring effect). Three anchor cables,
Φ15.24 × 4500 mm, are arranged on the coal pillar rib (the inclined arrangement of the top
and bottom anchor cables can achieve an excellent anchoring effect), with a row spacing
of 1.2 m × 2.4 m. The specifications of the rib anchor cable are a Φ15.24 × 4500 mm steel
strand anchor cable, with a preload of no less than 130 kN.

Grouting modification in local fractured areas: when encountering coal and rock
fragmentation and the surrounding rock is prone to large deformation and damage, anchor
cables on the roadway roof and two sides are replaced with grouting anchor cables to
modify and reinforce the surrounding rock. Before grouting, spraying concrete to seal the
surface fractured coal and rock mass of GSED is necessary. Grouting pressure of about
3 MPa and a slurry diffusion radius of about 1.5–2.0 m are set, improving the compressive
and shear properties of the coal rock mass.

Advanced strengthened support by single hydraulic support: the roadway within the
25 m range of the advanced panel is severely damaged, and single hydraulic supports are
used for advanced support to maintain the normal functioning of the roadway.
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5.4. Engineering Application

Continuous mine pressure monitoring was carried out to understand the deformation
status of the surrounding rock and the stress environment characteristics of the support
structure of GSED. The displacement of the surrounding rock and the stress change curve
of the anchor cable after the roadway excavation is shown in Figure 15.
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Figure 15. (a) Displacement of the surrounding rock and (b) the stress change curve of the anchor
cable after the roadway excavation.

From Figure 15, with the passage of time, the surface deformation of the surrounding
rock of the roadway and the stress of the anchor cable gradually increase. About 43 days
after the completion of the support, the surface deformation of the surrounding rock of the
roadway and the stress of the anchor cable tend to be stable, in which the deformation and
the stress of the anchor cable of the coal pillar rib are the largest, and the maximum values
are about 81 mm and 186 kN, respectively.

In addition, during the mining of the panel, the displacement change curve of the
surrounding rock of the roadway during the influence of the advanced dynamic pressure
of the panel is shown in Figure 16a.
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Figure 16. (a) Displacement change curve of the surrounding rock of the roadway during the mining
and (b) control effect of surrounding rock in the GSED of the panel n. 218.
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Affected by the advanced pressure of this panel, the surface deformation of the
roadway will increase. As the panel advances, the distance between the panel and the
monitoring section will continue to shrink, and the deformation of the surrounding rock
will gradually increase. Most of the deformation is formed within a range of 50 m from the
panel. At the same time, the maximum deformation of the four measuring points in the
roadway is about 307 mm, 287 mm, 273 mm, and 250 mm, respectively. In summary, the
deformation of the surrounding rock after roadway support is within a controllable range,
and the cross-sectional size meets the usage standards for roadway ventilation, pedestrians,
and transportation.

The control effect of surrounding rock in the GSED of the panel n. 218 is shown in
Figure 16b. It has been confirmed through engineering practice that the above overall
reinforcement technology can control the deformation of the surrounding rock. The coal
rock mass of the roof and the two sides are flat and intact. The control effect of the
surrounding rock of the roadway is good.

6. Conclusions

(1) Under the condition of ensuring that the coal pillar and roadway are in the stress
low-value zone and the coal pillar has a self-stabilizing ability, the maximum size of
the narrow coal pillar under this geological condition is 8.40 m, and the minimum
size is 5.47 m. Numerical analysis shows that the reasonable size of the coal pillar
should be within the range of 6.5 to 9 m. Within this range, the coal pillar has an
excellent stress environment and roof support conditions, which can fully utilize the
support effect of anchor cables. Based on the intersection of theoretical calculation
and numerical analysis results, it is comprehensively determined that the size of the
GSED narrow coal pillar is 6.5 m.

(2) The disturbance of the mining face results in the peak deviatoric stress zone mainly
concentrated on the entity coal rib, and the entity coal rib mainly bears the overlying
load pressure. During mining, the surrounding rock of the roadway within a range of
25 m ahead of the panel is severely damaged, and it is necessary to strengthen support
to control the unstable surrounding rock of the roof and rib.

(3) After the excavation of the roadway and panel is stable, the plastic zone maximum
depth of the roof and entity coal rib is about 3.5 m and 4 m, respectively. The
plasticization degree of the coal pillar rib is about 67.5%. The boundary line of the
peak deviatoric stress zone on the entity coal rib is about 3.5 m from the surface of the
roadway, and the boundary line of the peak deviatoric stress zone on the coal pillar
rib is about 3.8 m from the surface of the roadway.

(4) The rock integrity is good at a depth of 8.3 m in the roof, without obvious cracks. The
roof anchor cable anchors at this position will have an excellent anchoring effect. There
is a certain degree of fragmentation and various irregular cracks in the surrounding
rock within the range of 3.2 m of the entity coal rib. The coal mass of the roadway
rib is relatively complete at a depth of 4.2 m, and the rib anchor cable anchors at this
position will have an excellent anchoring effect. The development of shallow cracks
inside the coal pillar is more pronounced than in the entity coal rib. The key area for
controlling the GSED surrounding rock is the coal pillar rib.

(5) The support design of the GSED needs to make the anchor cable pass through the
boundary line of the deviatoric stress peak zone of the surrounding rock and make the
contour line of the plastic zone on the entity coal rib anchor into the relatively intact
rock mass. Joint control technology for surrounding rock is proposed, which includes
a combination of a roof channel steel anchor beam mesh, a rib asymmetric channel
steel truss anchor cable beam mesh, a grouting modification in local fractured areas,
and an advanced strengthened support using a single hydraulic support, effectively
controlling the deformation of the surrounding rock.
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