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Abstract: A modified thermal Bhatnagar–Gross–Krook Lattice Boltzmann (BGK-LB) model was
developed to study the convection phenomenon of non-Newtonian fluids (NNFs). This model
integrates the local shear rate into the equilibrium distribution function (EDF) of the flow field and
keeps the relaxation time from varying with fluid viscosity by introducing an additional parameter. In
addition, a modified temperature EDF was constructed for the evolution equation of the temperature
field to ensure the precise recovery of the convection–diffusion equation. To validate the accuracy and
effectiveness of the proposed model, numerical simulations of benchmark problems were performed.
Subsequently, we investigated the natural convection of power–law (PL) fluids and examined the
impact of the PL index (n = 0.7–1.3) and Rayleigh number (Ra = 103–5 × 105) on the flow and
temperature fields while holding the Prandtl number (Pr = 7) constant. The obtained results indicate
that, for a given value of n, the convective intensity exhibits a positive correlation with Ra, which is
illustrated by the rising trend in the average Nusselt number (Nu) with increasing Ra. Additionally,
shear-thinning fluid (n < 1) exhibited increased Nu values compared to the Newtonian case, indicating
an enhanced convection effect. Conversely, shear-thickening fluid (n > 1) exhibits reduced Nu values,
indicating weakened convective behavior.

Keywords: lattice Boltzmann method; heat transfer; natural convection; power–law model; non-
Newtonian fluids

1. Introduction

Natural convection (NC) is a crucial mechanism for cooling electronic devices, facilitat-
ing thermal management in solar collectors and building insulation, as well as promoting
efficient food processing applications, among others. Consequently, NC has received
significant attention in recent decades [1,2]. However, many practical fluids in nature
and engineering applications exhibit non-Newtonian behavior. Compared to extensive
research on Newtonian fluids (NFs), research on the NC phenomena of non-Newtonian
fluids (NNFs) has been relatively limited [3].

There have been some efforts to study the NC of NNFs using traditional computational
fluid dynamic (CFD) methods despite the difficulties in simulating NNFs. Ozoe et al. [4]
were pioneers in investigating heat transfer (HT) involving NNFs. They conducted a study
specifically targeting the HT behavior of PL and Ellis fluids within a rectangular enclosure
with a heated bottom wall and concluded that there was a positive correlation between
the critical Ra value and the PL index. In a related study, Ohta et al. [5] explored the
NC of pseudoplastic fluid in a square enclosure and observed that the convective flow of
NNFs was more complex compared to that of NFs. Building on this work, Kim et al. [6]
investigated the NC of PL fluids in a square cavity and discovered distinct variations in the
HT rate and convective intensity between NNFs and NFs at a given Ra number. Extending
this line of research, Lamsaadi et al. [7] conducted numerical simulations of NC for PL
fluids in a shallow cavity. These findings demonstrate that the HT rate is enhanced for a
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pseudo-plastic fluid and weakened for a dilatant fluid compared to the Newtonian case.
Furthermore, Turan et al. [8] investigated the NC in square and rectangular cavities filled
with PL fluids. Their findings revealed a positive correlation between Nu and Ra, indicating
that Nu increased as Ra increased. Conversely, they observed a negative correlation between
the Nu and the PL index, as a rise in the PL index corresponded to a decline in the Nu value.
Khezzar et al. [9] conducted numerical investigations on NC in tilted rectangular cavities
filled with NFs and NNFs. Their findings showed that decreasing the PL index resulted in a
significant increase in the HT rate while increasing the PL index caused a notable decrease
in the HT rate. In separate research conducted by Matin et al. [10], they investigated the
NC phenomenon of NNFs between two horizontally placed eccentric square ducts. The
results showed that as the Ra number increased, the cooling effect of shear-thinning fluids
became more pronounced, while the insulating effect of shear-thickening fluids became
more prominent. According to their research, NNFs have more complicated flow and HT
properties than NFs because their dynamic viscosity varies with the shear stress [11,12].

The lattice Boltzmann method (LBM) has potential beyond traditional methods for
modeling complicated flows and associated phenomena as a numerical technique. Distinct
from the traditional macroscopic approaches that treat fluid as a continuous medium, LBM
is a mesoscale numerical technique that uses the probability of finding molecules in a
lattice-discrete domain to provide a statistical description of molecular dynamics [13]. This
unique kinetic framework gives the LBM numerous advantages, including its straightfor-
ward implementation, capability for parallelization, easy handling of complex boundary
conditions, and exceptional computational efficiency [14]. As a result, the LBM has made
major advances in the simulation of complex hydrodynamic phenomena when coupled
with thermodynamics [15,16]. For instance, Kefayati et al. [17] utilized the LBM to examine
the behavior of NFs within a rectangular cavity. The authors observed an increase in the
HT rate as the Ra number increased. Dash et al. [18] employed a combination of LBM and
the immersed boundary method to investigate NC within an eccentric annulus formed
between heated square inner cylinders. Sheikholeslami et al. [19] employed the LBM to
investigate the HT of Newtonian copper oxide nanofluids under NC conditions. They
focused on a specific cavity that was subject to constant and angular magnetic flux, study-
ing the impact of various parameters on the velocity and temperature distributions. The
findings demonstrated that increasing the Ra number resulted in an augmentation in the
HT rate while increasing the Hartmann number resulted in a decrease in the HT rate.

Inspired by the achievements of LBM in simulating flows of NFs, endeavors have
been undertaken to expand its capabilities to simulate flows of NNFs as well. NNFs, in
contrast to NFs, possess a variable viscosity that is contingent upon derivatives of the
velocity field. Numerical accuracy diminishes, and instability may arise in the solution
process due to the differentiation of the velocity field. The LBM offers notable advantages
for NNFs. Specifically, the LBM allows the shear rate to be determined directly from the
distribution function, eliminating the need for derivation from the velocity field [20].

It can be noted that the majority of existing LB models used to simulate thermal flow
and non-Newtonian flow employs the BGK collision operator due to its efficiency and
simplicity [21]. However, it is necessary to recognize that the tradeoff for such efficiency
and simplicity is the compromise in numerical stability. To overcome the deficiencies of the
BGK-LB model, alternative approaches such as the MRT-LBM (Multiple-Relaxation-Time
LBM) or hybrid approaches combining traditional numerical methods with LBM should
be employed. Kefayati et al. [22] utilized a finite-difference LBM (FD-LBM) to investigate
the convection flow properties of non-Newtonian molten polymers characterized by PL
fluids. Zhang et al. [23] used the same approach to investigate the influence of a magnetic
field on the NC and the entropy formation of non-Newtonian PL fluids within an L-shaped
chamber. Their approach used a conventional numerical scheme to derive the shear stress
equation. However, this needed to solve the Poisson equation, which made the solution
procedure more complicated. Boutra et al. [24] used a combination of MRT-LBM and FDM
to analyze the fluid flow of Bingham plastic fluids inside a side-heated cube. To solve the
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equations for dynamics and energy, they adopted the MRT-LBM and the FDM, respectively.
Jahanbakhshi et al. [25] investigated the magneto-hydrodynamic convective flow inside
an L-shaped chamber containing NNFs by adopting the finite volume method and LBM.
Their approach deviated from the traditional kinetic-based LBM and spoiled computational
efficiency. Rahman et al. [26] analyzed the impact of a magnetic field on non-Newtonian
flow within a side-heated rectangular enclosure using the MRT-LBM. Despite its improved
stability, the MRT-LBM requires more computational resources than the BGK-LB model,
especially for NNFs [20].

In summary, despite its simplicity and efficiency making it the most popular model,
the BGK-LB model has not gained substantial popularity in the field of the thermal flow
of NNFs due to its numerical instability under low viscosity conditions. Therefore, it is
imperative to develop a numerically stable BGK-LB model to study the thermal flow char-
acteristics of NNFs. This paper aims to address this need by developing a non-Newtonian
thermal BGK-LB model and utilizing it to investigate the NC of PL fluids, demonstrating
its ability to simulate the thermal flow of NNFs. In Section 2, we present an improved
BGK-LB model for the thermal flow of NNFs. This method incorporates the shear rate
into the EDF of the velocity field and allows the relaxation time to be invariant to the fluid
viscosity by introducing an additional parameter. Section 3 describes the physical model of
natural convection and the setting of the boundary conditions. In Section 4, we conduct
a grid independence analysis and validate the proposed method. We then systematically
analyzed the impacts of the Ra and PL index on the NC of PL fluids in a square cavity.

2. Numerical Method
2.1. BGK-LB Equations for the Flow Field

The LBM is a flexible numerical technique that can be utilized to address a wide
range of challenges in relation to fluid dynamics, convective heat transfer, and mass
diffusion. Within the framework of LBM, the fluid domain was discretized and represented
as a collection of virtual particles that underwent discrete velocity-based movements in
predefined directions influenced by the lattice structure. Furthermore, these particles collide
with each other at lattice nodes. The LB equation for the velocity field is expressed as:

fi(x + eiδt, t + δt)− fi(x, t) = − 1
τf

[
fi(x, t)− f eq

i (x, t)
]
+ δtFi(x, t) (1)

in which fi is the particle distribution function (DF) that describes the probability of finding
fluid molecules at time t and at point x with the discrete velocity ei while τf denotes the
dimensionless relaxation time, Fi denotes the external force term.

The equilibrium distribution function (EDF) f eq
i has the following form:

f eq
i (x, t) = f e(0)

i (u) + si(u) (2)

where

f e(0)
i (u) = ωiρ

[
1 +

ei · u
c2

s
+

uu :
(
eiei − c2

s I
)

2c4
s

]
, si(u) = ωiρδt

AS :
(
eiei − c2

s I
)

2c2
s

(3)

in which S represents the shear rate, I represents the unit tensor, and A is an adjustable
additional parameter. It is evident that the present model is based on the standard LBM
with the addition of the term si.

Fi takes the following form to obtain the fluid dynamics equations:

Fi(x, t) = ωiρ

(
1− 1

2τf

)[
ei · u

c2
s

+
(ua + au) : (eiei − c2

s I)
2c4

s

]
(4)
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where a stands for the acceleration resulting from the external force, which is determined
by Equation (9).

The fluid density ρ and velocity u are obtained through:

ρ = ∑
i

fi, u =
1
ρ∑

i
fiei +

1
2

δta (5)

In this paper, the D2Q9 model (as shown in Figure 1) [27] is adopted, and the corre-
sponding ei is defined as:

ei = c
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 1

]
(6)

with c = δx/δt, where δx and δt denote the step sizes for the spatial and temporal, respec-
tively, both of which are set to 1. The weight factors are given by ω0 = 4/9, ω1–4 = 1/9,
ω5–8 = 1/36 and cs = c/

√
3.
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By applying the Chapman–Enskog expansion, the macroscopic equations for the flow
field could be derived from the LB Equation (1) (the details are presented in Appendix A):

∂ρ

∂t
+∇ · (ρu) = 0 (7)

∂(ρu)
∂t

+∇ · (ρuu) = −∇P +∇ · τ + F (8)

where τ = ρνS is shear stress. The shear rate S = 2ε = ∇u + (∇u)T , ε refers to the strain
rate tensor, and F is the external force.

The Boussinesq approximation is employed for NC. Correspondingly, the forcing term
in Equation (8) takes the form:

F = ρa = −ρgβ(T − T0)j (9)

where g denotes the gravitational acceleration, β represents the thermal expansion coef-
ficient, j denotes a unit vector pointing in the gravitational direction, and T0 denotes a
reference temperature.

The kinematic viscosity ν is determined by:

ν = c2
s

(
τf − A− 0.5

)
δt (10)

In the conventional BGK-LB model, the viscosity of the fluid can be determined solely
by the relaxation time (A = 0). In order to simulate the behavior of NNFs accurately, it was
necessary to dynamically adjust the relaxation time in the BGK collision term to reflect
real-time variations in viscosity. Nevertheless, it should be emphasized that numerical
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instability phenomena arise when the relaxation time approaches 1/2 [28]. This restriction
limits the applications of the BGK-LB model in non-Newtonian simulations. Equation (10)
shows that the fluid viscosity in the improved BGK-LB model was not only determined
by the relaxation time. This characteristic provided the model with superior numerical
stability compared to the traditional BGK-LB model. To describe the behavior of NNFs in
this study, we employed the PL model, where the apparent viscosity is given by:

µ = K|S|n−1 (11)

where µ = ρν. The consistency index K and PL index n are measures of consistency and the
non-Newtonian characteristics of a fluid, respectively. For n values less than 1, the fluid’s
apparent viscosity decreased with the increasing strain rate, which characterized it as shear-
thinning or pseudo-plastic. Conversely, when n values exceeded 1, the apparent viscosity
increased with higher strain rates, categorizing them as shear-thickening or dilatant. When
n equals 1, the PL fluid exhibits Newtonian behavior. |S| is given as

|S| =
√

2(ε : ε) =
√
(S : S)/2 (12)

The localization of DF’s evolutionary process in this model was ensured by calculating
the shear rate S using the following formula (as presented in Appendix A):

S =
∑i eiei

[
fi − f e(0)

i

]
+ δt

2 ρ(ua + au)

c2
s ρ
(

A− τf

)
δt

(13)

According to Equation (13), the calculation of the strain rate tensor is not dependent
on velocity gradients. This advantageous property simplifies the calculation process and
reduces the required computational resources compared to traditional CFD methods.

2.2. BGK-LB Equations for the Temperature Field

The transport of energy due to diffusion processes was modeled using the convection-
diffusion equation (CDE), which takes the following form:

∂T
∂t

+∇ · (uT) = ∇ · (α∇T) (14)

where α denotes the thermal diffusivity. For most existing LB models used to solve CDE,
some assumptions were required to eliminate the deviation terms in order to recover
Equation (14). However, for most practical cases that do not satisfy the assumptions, the
deviation term may still exist. To remove this drawback, a modified EDF was constructed,
and the temperature evolution equations were adjusted by incorporating a source term
inspired by Chai’s proposal [29]. The LB equation for the temperature field is given by:

gi(x + eiδt, t + δt)− gi(x, t) = − 1
τg

[
gi(x, t)− geq

i (x, t)
]
+ δtRi(x, t) (15)

The temperature DF is referred to as gi(x, t), and τg denotes the dimensionless relax-
ation time. geq

i is expressed as:

geq
i = ωiT

(
1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u · u

2c2
s

)
+ λiT (16)

where λ1–8 = ω1–8, λ0 = −
8
∑

i=1
λi.
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The source term Ri is defined as:

Ri = ωi

(
1− 1

2τg

)[
ei · (TF + P∇T)

c2
s ρ

]
(17)

The temperature can be obtained by the temperature DF:

T(x, t) = ∑
i

gi (18)

By applying the Chapman–Enskog technique to Equation (15), the CDE could be
precisely deduced. The thermal diffusion coefficient D is related to τg through:

α = c2
s
(
τg − 0.5

)
δt (19)

To ensure the localization of the evolutionary process of the present model, the gradient
term in Ri can be computed through:

∇T = −
2∑i ei

[
gi − geq

i

]
+ δtaT

c2
s
(
1 + 2τg

)
δt

(20)

3. Physical Problem

In Figure 2, the physical model of NC within a square cavity is presented. The cavity,
with a side length of L, contained a non-Newtonian PL fluid. The left boundary of the cavity
was subjected to a prescribed temperature of Th, while the right boundary was maintained
at a temperature of Tc (Th > Tc). Both temperatures remained constant throughout the
analysis. The top and bottom boundaries of the square cavity were considered adiabatic.
Initially, the fluid within the cavity was stationary, with a uniform temperature denoted as
T0 = (Th + Tc)/2. Additionally, the solid boundaries of the cavity adhered to the no-slip
condition, ensuring zero velocity at these interfaces.
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It is worth mentioning that the current work involves two essential parameters, the
Rayleigh number and the Prandtl number, which have the following definitions [30]:

Ra =
gβ(Th − Tc)L2n+1

αn(K/ρ)
, Pr =

(
K
ρ

)
αn−2L2−2n (21)

The Ra number is a measure of the relative magnitudes of thermal transport induced
by the buoyancy force and thermal diffusion. It characterizes the relative influence of these
two mechanisms on HT. The Pr number serves as a measure of the relative importance of
momentum diffusivity and thermal diffusivity in a fluid.
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When the system reaches stability, the HT rate is quantified using the Nu number,
which represents the ratio of the convection-induced HT rate to the conduction-induced
HT rate. It is defined as [31]:

Nu = 1 + 〈uxT〉 L
α(Th − Tc)

(22)

where < � > denotes the average over the whole flow domain.

4. Results and Discussion
4.1. Research on Independence from the Grid

In our study, the basic length unit is the lattice unit (lu), and the time unit is the time
step (ts). Unless otherwise stated, τf and τg are set to one. We conducted a grid indepen-
dence analysis in order to find an optimal grid that could ensure acceptable computational
accuracy while minimizing computational costs. Table 1 displays the Nu number for Pr = 7,
n = 0.7, 1.0, 1.3, Ra = 105, and the different grid sizes. The results indicate that a grid size
of Nx × Ny = 256 × 256 (lu) is good enough for numerical calculations. Similar analyses
for Ra = 103, 104, and 5 × 105 determined their computational grids to be 128 × 128 (lu),
192 × 192 (lu), and 256 × 256 (lu).

Table 1. Grid dependence research for n = 0.7, 1.0, 1.3, Ra = 105 and Pr = 7.

Nx × Ny (lu)
Nu

n = 0.7 n = 1.0 n = 1.3

64 × 64 9.4011 4.8734 3.6996
96 × 96 9.3896 4.7816 3.6619

128 × 128 9.3812 4.7309 3.6324
160 × 160 9.3768 4.6867 3.5982
192 × 192 9.3745 4.6702 3.5803
224 × 224 9.3725 4.6582 3.5624
256 × 256 9.3719 4.6578 3.5620

4.2. Numerical Validation

To verify the correctness of the model, simulations of NC were conducted for Pr = 0.71
and n = 1. Th = 1 and Tc = 0 were maintained for the vertical boundaries while the
horizontal boundaries remained adiabatic. Figures 3 and 4 depict the streamlines and
isotherms, revealing several important features of the flow behavior at different Ra values.
At low Ra values, the heated fluid ascended along the left boundary, encountering the
adiabatic top boundary, moving toward the cold boundary, and then descending, forming
a steady clockwise rotational flow and a central single vortex. This vortex formation
corresponds to the characteristic NC flow pattern. As Ra increases, the single vortex
becomes elliptical, and at Ra = 105, it splits into two smaller vortices. Further increasing Ra
to 106 leads to the movement of these two vortices toward the walls, which is accompanied
by the appearance of a third vortex at the cavity center. The isotherms at low Ra values
indicate that HT occurs predominantly through conduction between the vertical boundaries,
leading to nearly vertical isotherm lines. However, with increasing the Ra, convection
becomes the dominant HT mechanism. This transition causes the isotherms to assume
a horizontal orientation in the central region of the cavity while remaining vertical only
within the thin boundary layers adjacent to the hot and cold boundaries. Overall, the
findings depicted in the figures align well with previous works [32–34], validating the
presented model.
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Detailed comparisons for Nu along the heated sidewall were performed to quantify
the results, as shown in Table 2. The Nu values obtained in our work are consistent with the
results from earlier studies, providing further confirmation of the accuracy and reliability
of the current scheme.

Table 2. Comparisons of Nu obtained from the present method with previous works for n = 1 and
Pr = 0.71.

Ra
Nu

Present Study Turan et al. [32] Guo et al. [33] de Vahl Davis, G [34]

103 1.1182 1.118 1.1195 1.118
104 2.2453 2.245 2.2545 2.243
105 4.5239 4.520 4.5278 4.519
106 8.8342 8.823 8.7746 8.800

4.3. NC of Power-Law Fluids

The streamline and isotherm distributions obtained from NNFs (n 6= 1) were compared
to those obtained from NFs (n = 1) to explore the influence of non-Newtonian behavior on
the flow and HT within the cavity, as shown in Figures 5 and 6.
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Figure 5 illustrates the flow field for Ra = 103, 104, 105, 5 × 105, n = 0.7, 1.0, 1.3, and
Pr = 7. According to Figure 5, for a given value of n, both the streamline density along the
walls and the convective intensity increased as Ra rose. Furthermore, for a given Ra number,
an increase in n led to a rise in the apparent viscosity and a decrease in convection intensity.
Note that for Ra = 103, due to the poor convection within the cavity, the increase in n had
no obvious influence on the velocity field. However, for large Ra values, the convective
intensity was strong, and increasing n resulted in a considerable drop in velocity.

Figure 6 shows the temperature field for Ra = 103, 104, 105, 5 × 105, n = 0.7, 1.0, 1.3,
and Pr = 7. At low Ra numbers, heat conduction dominated HT, leading to only slightly
distorted isotherms. However, as Ra rose, convection took over as the primary mode of
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heat transmission, causing the isotherms to deform more drastically. When Ra increased to
105, the isotherms within the main cavity region became almost horizontal, while only in
the thin border layers were they parallel to the vertical walls. When Ra reached 5 × 105,
thermal stratification occurred. In addition, for any given Ra number, an increase in n led
to the dominance of shear-thickening behavior, which, in turn, weakened the convection
effect and resulted in a decrease in the flow velocity.

Figure 7 depicts the non-dimensional temperature (θ = (T − Tc)/(Th − Tc)) in the
vertical direction at the mid-section (y = L/2). As seen in Figure 7, for a given Ra number,
the temperature distribution became increasingly linear as n increased. In contrast, for a
given value of n, the degree of nonlinearity for the temperature distribution increased as
Ra increased. The linear temperature profile suggests that HT was primarily dominated
by conduction, while the increase in its nonlinearity indicated an enhancement in the
convection intensity at the cavity.
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Figure 8 illustrates the changes in non-dimensional vertical velocity (Uy = uyL/α) at
the cavity’s mid-section (y = L/2) for various Ra and n values. The changes in the shape of
these curves reflect variations in the flow patterns. From the figure, it can be observed that
as the n value increased for fixed Ra, there was a noticeable decrease in the strength of the
rotating cells, which could be attributed to the increased viscosity of the fluid. Therefore,
the amplitude of the vertical velocity decreased. In addition, for a given n value, the highest
and lowest values of the velocity component increased with Ra. This trend indicated that
the intensity of the convection increased with Ra.

Figure 9 depicts how the Nu number was influenced by Ra and n. As previously
stated, at low Ra numbers, conduction was the primary mechanism for heat transmission,
resulting in a small Nu number. As Ra increased, however, convection became more
dominant, leading to a higher HT rate and an increased Nu number. Figure 9 also shows
that as the n value increased, the convective effect weakened, resulting in a decrease in the
HT rate and a subsequent decline in the Nu number.
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5. Conclusions

This paper introduces a novel thermal BGK-LB model for NNFs. The proposed
model incorporated the local shear rate into the EDF of the flow field. Additionally, the
introduction of an adjustable parameter allowed for the determination of fluid viscosity
based on the relaxation time in conjunction with the adjustable parameter. This enabled
better numerical stability under conditions of low viscosity.

The present model was verified by simulating the NC of Newtonian fluids and com-
paring the results with those of previous works. Subsequently, the model was employed to
examine thermal convection in PL fluids, with a systematic examination of the impacts of Ra
and n on both the velocity and temperature fields. The outcomes of the analysis showed that:

(1) Increasing the Ra number could improve the convective strength and HT rate of both
NFs and NNFs.

(2) A decrease in the n value (0 < n < 1) improved the convective strength and HT rate
compared to Newtonian fluids (n = 1), whereas an increase in the n value (n > 1) had
the opposite effect.

(3) The current study presents a more efficient and simplified non-Newtonian thermal
BGK-LB model, which proved valuable for studying the mass or heat transfer in
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NNFs. The model’s ability to accurately capture convective heat transfer phenomena
and its computational efficiency contributed to its practical applications in optimizing
the design and performance of heat transfer systems using NNFs. Furthermore, this
model can serve as a framework for future research addressing more complex non-
Newtonian fluid behaviors and extending its application to different flow scenarios.
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Nomenclature

a Acceleration from the external force
c Lattice speed
cs Lattice sound speed
ei Discrete lattice velocity
F External force term
fi Density distribution function
f eq
i Equilibrium density distribution function

Fi Discrete forcing term
g Gravitational acceleration
gi Temperature distribution function
geq

i Equilibrium temperature distribution function
I Unit tensor
K Consistency index
L Side-length of cavity
n Power–law index
Nu Nusselt number
Nu Average Nusselt number
Pr Prandtl number
Ra Rayleigh number
S Shear rate
Th Temperature of the hot wall
Tc Temperature of the cold wall
T0 Reference temperature
Abbreviations
BGK Bhatnagar-Gross-Krook
CDE Convection Diffusion Equation
CFD Computational Fluid Dynamics
D2Q9 Two-dimensional nine velocity
DF Distribution Function
EDF Equilibrium Distribution Function
FDM Finite Difference Method
HT Heat Transfer
LBM Lattice Boltzmann Method
MRT Multiple Relaxation Time
NC Natural Convection
NFs Newtonian Fluids
NNFs Non-Newtonian Fluids
PL Power-Law
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Greek symbols
α Thermal diffusivity
β Thermal expansion coefficient
δt Time step
δx Lattice size
ε Strain rate tensor
µ Dynamic viscosity
ν Kinematic viscosity
ωi Weight factors
ρ Density of fluid
τ Shear stress
τf ,τg Relaxation parameters

Appendix A. Chapman–Enskog Expansion for Macroscopic Equation of Flow Field

We adopted the Chapman–Enskog expansion method and employed the following
multiscale expansions to obtain the macroscopic equations:

∂

∂x
= ξ

∂

∂x1
(A1)

∂

∂t
= ξ

∂

∂t1
+ ξ2 ∂

∂t2
(A2)

a = ξa(1) (A3)

fi = f (0)i + ξ f (1)i + ξ2 f (2)i + · · · (A4)

where ξ is a small parameter.
Equation (2) is expanded as the following multiscale form:

f eq
i = f e(0)

i + ξ f e(1)
i (A5)

where

f e(0)
i = ωiρ

[
1 +

ei · u
c2

s
+

uu :
(
eiei − c2

s I
)

2c4
s

]
(A6)

f e(1)
i = ωiρ

AδtS1 :
(
eiei − c2

s I
)

2c2
s

(A7)

where S1 is given by S = ξS1. These definitions make it simple to obtain:

∑i f e(0)
i = ρ, ∑i f e(0)

i ei = ρu

∑i f e(0)
i eiei = ρuu + c2

s ρI, ∑i f e(0)
i eieiei = c2

s ρ∆ · u
(A8)

∑i f e(1)
i = 0∑i f e(1)

i ei = 0, ∑i f e(1)
i eiei = c2

s ρAS1δt (A9)

where ∆ · u = uαδβγ + uβδαγ + uγδαβ, and δαβ is the Kronecker tensor.
By utilizing the Taylor series and selecting the terms up to O

(
δt

2), we obtained:

fi(x + eiδt, t + δt) = fi(x, t) + δt

(
∂

∂t
+ ei · ∇

)
fi +

δt
2

2

(
∂

∂t
+ ei · ∇

)2
fi (A10)

Substituting Equation (A10) into Equation (1), we obtained:(
∂

∂t
+ ei · ∇

)
fi +

δt

2

(
∂

∂t
+ ei · ∇

)2
fi +

1
τf δt

[
fi − f eq

i

]
+ δtFi + O

(
δt

3
)
= 0 (A11)
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Substituting Equations (A1)–(A7) into Equation (A11) produced the following results:

O
(

ξ0
)

: f (0)i = f e(0)
i (A12)

O
(

ξ1
)

:
(

∂

∂t1
+ ei · ∇1

)
f (0)i +

1
τf δt

(
f (1)i − f e(1)

i

)
− F(1)

i = 0 (A13)

O
(

ξ2
)

:
∂ f (0)i
∂t2

+

(
∂

∂t1
+ ei · ∇1

)
f (1)i +

δt

2

(
∂

∂t1
+ ei · ∇1

)2
f (0)i +

1
τf δt

f (2)i = 0 (A14)

Equation (A14) can be simplified with the assistance of Equation (A13) as follows:

∂ f (0)i
∂t2

+
(

1− 1
2τf

)(
∂

∂t1
+ ei · ∇1

)
f (1)i + 1

2τf

(
∂

∂t1
+ ei · ∇1

)
f e(1)
i

+ δt
2

(
∂

∂t1
+ ei · ∇1

)
F(1)

i + 1
τf δt

f (2)i = 0
(A15)

From Equations (7) and (A12)–(A14), with the help of Equations (A8) and (A9), we
established the following equations:

∑i f (eq)
i = ∑i fi = ρ (A16)

∑i ei f (eq)
i = ρu = ∑i ei fi +

δt

2
ρa (A17)

Similarly, we obtained:

∑i f (0)i = ρ, ∑i f (k)i = 0(k > 0) (A18)

∑i f (0)i ei = ρu, ∑i f (1)i ei = −
δt

2
ρa(1), ∑i ei f (k)i = 0(k > 1) (A19)

From Equation (4), we derived the following moments:

∑i F(1)
i = 0, ∑i eiF

(1)
i =

(
1− 1

2τf

)
ρa(1),

∑i eieiF
(1)
i =

(
1− 1

2τf

)(
ρua(1) + ρa(1)u

) (A20)

By taking the 0th and 1st moments of Equation (A13), the macroscopic equations on
the t1 time scale could be derived:

∂ρ

∂t1
+∇1(ρu) = 0 (A21)

∂(ρu)
∂t1

+∇1 ·
(

ρuu + c2
s ρI
)
= ρa(1) (A22)

Similarly, the macroscopic equations on the t2 time scale could be derived by taking
the 0th and 1st moments of Equation (A15):

∂ρ

∂t2
= 0 (A23)

∂(ρu)
∂t2

+
(

1− 1
2τf

)
∇1 ·

(
∑i eiei f (1)i

)
+ 1

2τf
∇1 ·

(
c2

s ρAS1δt
)

+ δt
2

(
1− 1

2τf

)
∇1 ·

(
ρua(1) + ρa(1)u

)
= 0

(A24)
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In order to compute ∑i eiei f (1)i , we made use of Equations (A12), (A13), (A18), and
(A19) and obtained:

∑i eiei f (1)i = −τf δt∑i eiei

((
∂

∂t1
+ ei · ∇1

)
f (0)i − F(1)

i

)
+ ∑i eiei f e(1)

i

= τf δt

[
∂

∂t1

(
c2

s ρI + ρuu
)
+ c2

s∇1 · (∆ · u)−
(

1− 1
2τf

)(
ρua(1) + ρa(1)u

)]
+ c2

s ρAS1δt

= c2
s ρ
(

A− τf

)
S1δt − δt

2

(
ρua(1) + ρa(1)u

)
(A25)

where the terms of order u3 are neglected under the low Mach number assumption. There-
fore, we rewrote Equation (A24) as

∂(ρu)
∂t2

+∇1 ·
[

c2
s ρ

(
A− τf +

1
2

)
S1δt

]
= 0 (A26)

Combining Equations (A21) and (A23), we obtained the mass equation:

∂ρ

∂t
+∇ · (ρu) = 0 (A27)

Similarly, by combining Equations (A22) and (A26), the momentum equation was
obtained:

∂(ρu)
∂t

+∇ · (ρuu) = −∇P +∇ · τ + ρa (A28)

where the pressure P = c2
s ρ, and the viscosity are expressed as:

ν = c2
s

(
τf − A− 1

2

)
δt (A29)

Multiplying ξ on both sides of Equation (A25) with ξ f (1)i = fi − f (0)i + O
(
ξ2), we

obtained:

S =
∑i eiei

[
fi − f e(0)

i

]
+ δt

2 ρ(ua + au)

c2
s ρ
(

A− τf

)
δt

(A30)
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