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Abstract: In the process of underground engineering construction, rock mass often faces the dual
influence of dynamic load disturbance and groundwater, it is therefore essential to investigate the
mechanical response of the rock mass under the coupling effect of dynamic load disturbance and
water content. In this paper, dynamic load impact tests were carried out on sandstone with bullet
velocities of 5 m/s, 10 m/s, and 15 m/s and water content of 0, 0.3, 0.6, and 0.9, and the mechanical
behavior and mechanism response of water content to sandstone were investigated. The research
findings indicate that this study has made significant contributions in quantifying the along grain
and trans-grain fractures of microcracks. It has explored the influence of water content and dynamic
loading on the strength mechanism of sandstone. It was discovered that the dynamic loading
and water content significantly affect the ratio of along grain and trans-grain fractures, thereby
influencing the dynamic behavior of sandstone. The findings suggest a negative association between
rock strength and water content and that its peak strength rises as the bullet velocity rises. The
fracture characteristics of rock are influenced by water content and bullet velocity. The sample’s
fracture degree increases with an increase in water content, its particle size distribution map is
evident, and there is a positive relation between bullet velocity and fractal dimension. The energy
conversion mechanism of the rock is influenced by the water content, as the bullet velocity increases,
the absorbed energy density of the rock becomes higher. Furthermore, the correlation between the
absorbed energy intensity and density and its fractal dimension is quantified. It is found that energy
density and strength are positively correlated. The greater the fractal dimension, the higher the
energy density absorbed.

Keywords: impact load; saturation degree; weakening of strength; crushing characteristics;
energy conversion

1. Introduction

Under prolonged water immersion, the rock masses differ in their water content. The
water content can greatly influence the energy dissipation mechanisms and crushing char-
acteristics of rock, which has a significant impact on the safe construction of underground
engineering. In addition, the rock mass is often subjected to dynamic load disturbance in
underground engineering construction [1–4]. Therefore, water content and dynamic load
disturbance serve a critical role in the way rock fragmentation characteristics and energy
dissipation mechanism [5–8]. And thus, it is essential to investigate the energy dissipation
mechanisms and strength properties of the rocks with various saturation degrees under
impact for the safety of underground engineering.

The rock’s mechanical behavior when exposed to different water contents has been
extensively studied. Li examined the water content influencing the AE and mechanical
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behavior of the sandstone under static load and discovered that water content is inversely
proportional to rock strength and also significantly affects the AE behavior of rock [9].
Some scholars have also found that rock fracture mechanism varies as the water content
rises [10–13]. Yin investigated the impacts of fracture and water content on the sandstone’s
mechanical behavior under uniaxial compression, found that various fracture lengths lead
to different failure modes, and examined the mesoscopic degradation mechanisms in dry
and saturated sandstones [14]. Kim performed tension and compression tests on sandstones
of varying lithology and saturation to investigate the influence of saturation on Young’s
modulus, tensile strength and, and compressive strength came to the conclusion that the
existence of water attenuated the dynamic parameters of the rocks [15]. Li examined the
impact of water content on the sandstone’s dynamic tensile strength and revealed that it
has an inverse relationship with the sandstone’s dynamic tensile strength, with marked
differences in the degree of damage for sandstones with various water content [16]. Li
studied the effect of different porosity on the dynamic load energy evolution of sandstone.
It is found that water content significantly affects the mechanism of energy dissipation
in sandstone, the impact of water content on the mechanism of energy dissipation in
sandstones is studied from the aspect of fracture mechanics [17]. Zhao investigates the role
of water content on the mechanism of energy evolution under mono-axial compression
and finds that dry sandstone has a significantly higher energy release rate than saturated
sandstone [18]. Wang conducted dynamic Brazilian splitting tests at different temperatures,
water content, and loading rates and found that saturated rock samples had stronger rate
dependence than dry rock samples, and temperature differences would affect the dynamic
fracture mechanism of sandstone. Water content was found to be positively correlated
with microwave heating of sandstone, and microwave treatment had a significant effect
on sandstone water content [19,20]. Niu implemented dynamic impact tests on the red
sandstone, which revealed that the crack propagation time was closely associated with the
rock’s water content, and the rate of crack extension reduced with rising water content.
Furthermore, the experimental results were verified by numerical simulation [21]. Huang
discovered that the saturation rate presents a critical strength value for the rock strength
weakening [22]. Zhang examined the impact of water content on the sandstone’s mechanical
behavior at ultra-low temperatures and discovered that the failure pattern of the dry
sandstone at ultra-low temperatures was markedly dissimilar to that of sandstone under
saturated water conditions [23]. Matejunas researched the influence of water saturation
on the damage properties and strength of concrete. Water saturation has been discovered
to have a different influence on its strength and failure characteristics under static and
dynamic loading conditions [24]. In a series of experiments to examine the pore distribution
of sandstones in various saturated water, Zhou and Cai discovered that at identical water
content, the sandstone tensile strength differed considerably [25–28]. Sandstone’s fracture
penetration rate clearly varies with varying water contents, based on Liu’s study of the
impact of water content on the damage features of the sandstone [29]. Natural and saturated
sandstones were tested with tensile tests by Liu, who discovered that the crack propagation
in sandstones began in the center [30]. Qi has carried out tensile tests on the ring sample
with different saturation degrees and different temperatures, indicating that the water
temperature is different, and the degree of sandstone rupture is different [31]. Corentin
Noel studied the fracture toughness of sandstone under different water content conditions,
and Stian Almenningen studied the effect of water on the transition of hydrate inside
sandstone.

In summary, most research on rock mechanical behavior under different water content
focuses on static load. Nevertheless, there are few studies on the mechanical behavior and
fracture mechanism of sandstone under the coupling effect of different bullet velocities
and different water contents. In this paper, dynamic compression tests were performed
on sandstones with various water content and bullet velocity. The fractal size, strength,
energy density–strength curves as well as energy density–fractal size of the sandstone were
acquired, and the sandstone energy dissipation mechanism and strength features under the
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coupling effect of various water content and elastic velocity were gained. In addition, the
study has revealed the fragmentation characteristics and energy dissipation mechanism
of sandstone under the coupled effects of different bullet velocities and water content.
Additionally, it has made significant contributions by quantifying the fractures along and
across grain boundaries at the microscale. The investigation has also explored the strength
mechanism of sandstone under the coupled influence of water and dynamic loading.

2. Sample Treatment Process

Illustrated in Figure 1, the sample was taken in a mine in the Chinese province of
Shaanxi. The XRD analysis revealed that the sample’s main components were quartz
(44.9%), clay minerals (28.3%), plagioclase (21.1%), siderite (2.3%), and calcite (1.3%). The
collected rock samples were machined into cylindrical specimens with a height of 50 mm
and a diameter of 50 mm.
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Figure 1. Rock specimen sampling and processing procedure.

Figure 2 shows the loading process of the test, at the same time, to maintain sample
homogeneity as much as possible, when selecting samples for testing, it is important to
avoid samples that exhibit prominent macroscopic cracks and voids. Before carrying out
the test, we first tested the rock’s natural water absorption properties. Figure 3 indicates
that with the addition of soaking time to the rock sample, the rock saturation increases
rapidly at first and then tends to be stable. This is due to the fact that rock samples have a
finite water absorption rate, and when the rock sample is immersed in water at first, the
fractures and pores in the rock open up and the water saturation of the rock initially rises
rapidly. As the degree of saturation grows, the pores and cracks of the rock are gradually
filled with free water. Therefore, the saturation of the rock sample tends to stabilize as the
soaking time rises. In this paper, the relative saturation degree f is employed to depict the
saturation of the rock samples. The following is the formula:

f =
ωw

ωs
=

(m w −md)/md

(m s −md)/md
(1)

where f is the sample’s saturation degree; ωw is the moisture content after absorbing water;
mw is the mass after absorbing water; md is for natural mass; ms is the mass at saturation.
In this paper, as shown in Table 1, selected samples were immersed in water for 0, 0.6,
3, and 100 h, and the rocks with saturation degrees of 0, 0.3, 0.6, and 0.9 were prepared,
respectively. In addition, we have to say that relative to the actual engineering, the bullet
speed of 5 to 15 m/s is relatively low. To research the sandstone’s energy conversion, failure
and strength mechanisms under varying saturation degrees and bullet velocities, three
dynamic loading tests were conducted on sandstone with different saturation degrees and
different bullet velocities.
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Table 1. Parameter table of sandstone.

Number. Soaking Time
/h

Natural Mass
/g

The Mass after
Absorbing Water

/g

The Moisture Content
after Absorbing Water

/%

The Saturation Degree
f

B-1 0 245.62 245.62 0 0
B-2 0 247.28 247.28 0 0
B-3 0 252.16 252.16 0 0
C-1 0.6 242.26 242.36 0.04 0.3
C-2 0.6 244.32 244.44 0.05 0.3
C-3 0.6 245.60 245.72 0.05 0.3
D-1 3 246.43 246.62 0.08 0.6
D-2 3 250.52 250.74 0.09 0.6
D-3 3 248.34 248.56 0.09 0.6
E-1 100 246.67 246.99 0.13 0.9
E-2 100 244.54 244.92 0.16 0.9
E-3 100 245.65 246.13 0.20 0.9

3. Test Equipment

Figure 4 and Table 2 display that the SHPB test system is adopted in this study.
The system consists of a bullet launching system, a stress wave conduction system, an
energy absorption system, and a data processing system, which can carry out dynamic
impact tests on the sandstone with various impact velocities and saturation degrees. When
performing this experiment, both ends of the sample were first wiped clean, and the
ends of the sample were subsequently greased to minimize contact forces with the rod.
After anchoring the sample, the bullet was inserted into the launching rod, fired, and the
dynamic load compression test was completed. In addition, to decrease test error, the
test was conducted on the bullet in the same position as much as possible. In accordance
with the 1D stress wave theory, the sample’s dynamic parameters can be acquired by the
following formula [32–34], in addition, the strain (t) on the left is the strain of the sandstone
sample, and the ε I , εR, and εT on the right are the incident strain, reflected strain, and
transmitted strain recorded by the improved SHPB.

σ(t) =
AeEe

2As
[ε I(t) + εR(t) + εT(t)] (2)

ε(t) =
Ce

Ls

∫ t

0
[ε I(t)− εR(t)− εT(t)]dt (3)

.
ε(t) =

Ce

Ls
[ε I(t)− εR(t)− εT(t)] (4)

where Ae, Ce and Ee denote the cross-sectional area, and wave velocity together with
the elastic modulus of the bar, ε I , εR, and εT represent the incident, reflected, and the
transmitted strains, separately, As and Ls are the sample’s cross-sectional area and length.

Table 2. Parameter of test system.

Equipment Parameter of Apparatus

Bullet diameter 50 mm
Bullet length 45 mm
Bullet shape Spindle bullet

Incident rod and transmission rod diameters 50 mm
Incident rod length 2500 mm

Transmission rod length 2500 mm
Total length of SHPB 8000 mm
SHPB Model number ALT1000
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4. Test Results
4.1. Stress–Strain Curve

Figure 5 shows the voltage and time evolution curve of typical sandstone. According to
the figure, the author selects three kinds of waves to calculate the stress–strain of sandstone.
Rock properties undergo changes with varying water content, and the stress–strain curve
is a fundamental tool for studying these properties. In this study, stress–strain curves were
plotted for rocks subjected to different water content and impact velocities, as depicted in
Figure 6. The stress–strain curve exhibits three distinct stages: elastic, plastic, and post-peak.
Analysis of Figure 6 reveals a notable influence of water content on the strength of the rock
specimens. As water content increases, the peak value of the stress–strain curve decreases.
This phenomenon can be attributed to the enhanced interconnectivity of weaker pores and
fractures within the rock formation facilitated by increased water content, resulting in a
reduction in the peak value of the stress–strain curve.
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4.2. Rock Strength Mechanism

After absorbing water, the particles inside the rock will interact with water in a variety
of ways and resulting in a macroscopic difference in rock strength. Therefore, research into
the strength characteristics of water-bearing rocks has always become a hot topic in rock
mechanics. Many scholars have studied the strength characteristics of water-bearing rocks
and found that in most cases, water will weaken the strength of rocks, while some scholars
have discovered that water can enhance the strength of rocks [35–37]. However, there are
few studies on the dynamic strength of the rock at various impact velocities and degrees of
saturation. Thus, dynamic impact tests with diverse impact velocities were implemented
on rocks with different saturation degrees to further investigated the mechanism of impact
of impact velocity and saturation degree on rock strength. The rock’s dynamic strength
under different saturation degrees and impact velocities is depicted in Figure 7 and Table 3.
As for the cloud map, the color of the cloud image represents the different peak strengths of
the sandstone, and the corresponding relationship between the color and the peak strength
of the sandstone can be seen in the label on the right. It can be seen from the cloud map
that the peak strength of sandstone is proportional to the impact velocity and saturation
degree. The rock’s dynamic strength reduces as the saturation of water rises. For example,
when the saturation of the rock is 0, 0.3, and 0.6, the rock’s dynamic strength is 167.25 MPa,
146.13 MPa, and 139.89 MPa, respectively. This suggests that water exerts a strong effect on
the strength of the sandstone. Furthermore, the rock’s dynamic strength enhances with the
rise in impact velocity. As an example, the rock’s dynamic strength is 167.25, 191.62, and
224.62 MPa for impact velocities of 5 m/s, 10 m/s, and 15 m/s, separately.
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Table 3. Strength of different saturated sandstones.

Bullet Velocity (m/s) Satisfied Degree of Water
(%)

Peak Strength
/MPa

5 0 167.25
10 0 191.62
15 0 224.62

5 0.3 146.13
10 0.3 165.49
15 0.3 187.92

5 0.6 139.89
10 0.6 145.26
15 0.6 172.71

5 0.9 117.45
10 0.9 143.86
15 0.9 167.24

For further research into the mechanism of water weakening on the strength of rock,
the author discusses the reaction mechanism of water in the rock. As we can see in Figure 8,
numerous naturally hydrophilic minerals can be found throughout the rock’s interior, and
they all interact with water in different ways. These substances transform into different
substances when they interact with water, such as montmorillonite reacting with water
chemically as:

AI4SI4O10(OH)2 + nH2O→ AI4SI4O10(OH)2·nH2O

When a rock is immersed in water, the cracks and pores inside it will be filled with
water, which will create surface tension in the pores. This tension will also make the
rock less strong. This is because surface tension is the result of mutual attraction between
water molecules, causing the water film to exhibit a membranous structure. This surface
tension creates an internal positive pressure within the water film, attempting to reduce its
surface area. When rocks are subjected to external stress, the surface tension of the water
film induces internal tensile stress, thereby reducing the effective stress of the rock and
weakening its strength. Additionally, the capillary force formed by rock particles and water
is an important factor affecting rock strength. In Figure 8, when the rock is saturated with
water, hydrophilic material inside the rock will expand in volume after encountering water,
and its capillary force will decrease. So, its strength will also be reduced.
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The presence of free water in rock formations has a decelerating effect on crack
propagation at higher velocities. Figure 9 illustrates three primary factors contributing to
this phenomenon: σ1, induced stress from the meniscus effect. At lower bullet velocities, as
shown in Figure 9, free water is unable to reach the crack tip, resulting in the formation
of σ1. σ2 represents stress caused by the Stefan effect, while σ3 represents stress arising
from Newtonian internal friction. At higher bullet velocities, the inertia of free water
becomes a significant contributor to the formation of σ3. Moreover, the movement of water
molecules generates a tensile stress σ4 at the crack tip, denoted as h. Notably, at higher
impact velocities, the effects of σ3 and σ4 become more pronounced.
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The meniscus effect (σ1) is the phenomenon where the unique arrangement and
interaction of water molecules in crescent-shaped pores result in the generation of stresses
and strains within the rock. This effect has been extensively studied in rock mechanics
and plays a significant role in understanding stress and deformation in rocks in practical
engineering and geological environments.

The Stefan effect (σ2) refers to the phenomenon where temperature gradients or
changes in a water-containing rock induce internal stresses due to the phase transition
of water. The manifestation of the Stefan effect depends on the water content, rate of
temperature change, and physical properties of the rock.

The Newtonian inner friction effect (σ3) refers to the stresses generated by the frictional
interaction between water molecules and rock particles during parallel relative motion in
the presence of water. The Newtonian inner friction effect is particularly important in rock
mechanics, especially in lubricated rocks or in the presence of water-filled fractures.

Tensile stress at the crack tip (σ4) refers to the tensile stress state at the tip of a crack.
When cracks exist in rocks or other materials, the crack tip becomes a region of stress
concentration due to the abrupt change in the stress field at the tip.

4.3. Rock Size Distribution

Water will cause a chemical reaction with the material inside the rock mass once it
has been immersed in the water. Additionally, because of the different degrees of water
saturation, the degree of the chemical reaction varies as well. This effect will weaken
the strength of the rock. Different impact velocities will have different effects on rock
properties. Under the same load, rocks with different strengths have different degrees
of damage. Therefore, it is essential to quantitatively analyze sandstone fragments with
varying water contents to examine their fractal character. The fractal dimension calculation
process is as follows:

Mx

Mt
=

(
dx

dm

)3−D
(5)

In the equation, dx represents the size of an individual particle, dm refers to the
maximum size of the sample fragment, Mt represents the total mass of the sample after
crushing, Mx denotes the cumulative mass of the fragments with sizes smaller than dx, and
D represents the fractal dimension of the fragment size distribution in the sample.

lg
(

Mx

Mt

)
= (3− D)lg

(
dx

dm

)
(6)

Figure 10 is the fractal process of the specimen. The distribution of mass and frequency
is depicted in Figure 11. The figure illustrates that the water content will have a major
influence on the mass frequency distribution diagram of rocks. Furthermore, as can
be observed from the figure, the bullet velocity significantly affects the mass frequency
distribution of the rock. The mass frequency profile is at the top when the bullet is traveling
at 15 m/s. Figure 12 is a schematic diagram of the fractal dimension. From the figure,
it is clear that with a rise in water content, the fractal dimension increases. For instance,
when the velocity of the bullet is 15 m/s, D is 2.07 and the water content is 0. When the
water content is 0.9, D is 2.17. Bullet velocity also significantly affects the fractal dimension.
There is a positive association between fractal size and bullet velocity. The water content
influences the distribution of particle size in the rocks considerably. There is a positive
relation between the rock’s fractal dimension and water content.
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4.4. Rock Energy Dissipation Mechanism

Different water contents inevitably cause changes in the composition of rocks. There-
fore, the internal energy conversion must be affected by the water content. Therefore, the
following formula is adopted in this paper [38–40]:

WI =
AeCe

Ee

∫
σ2

I (t)dt (7)
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WR =
AeCe

Ee

∫
σ2

R(t)dt (8)

WT =
AeCe

Ee

∫
σ2

T(t)dt (9)

WS = WI −WR −WT (10)

ς =
WS
V

(11)

In formula: WI , WR, and WT is the incident, reflective, and transmitted energy, WS is
energy, ς is energy consumption density.

Calculations are made to determine the energy value and energy proportion of differ-
ent water-content sandstones to explore the impacts of water content and bullet velocity
on the energy conversion mechanism of sandstone. Figure 13 and Table 4 show energy
values for the sandstone with diverse water content. The energy conversion of sandstone is
significantly influenced by bullet velocity. Each sandstone energy value rises in line with
an increase in bullet velocity. In addition, Figure 14 shows the sandstone’s energy evolu-
tion curve. The figure shows the energy conversion mechanism of rocks with significant
water content. According to this figure, the water content affects little the incident energy
of the sandstone, while it strongly affects other energy values. In addition, the incident
energy of sandstone is significantly different with different bullet velocities. Therefore, the
author studies the relationship between reflected, absorbed, and transmitted energy of the
sandstone under the influence of varying incident energy from the point of view of incident
energy. Figure 15 presents that with rising incident energy, the reflected, absorbed, and
transmitted energy of the sandstone also increases. Moreover, energy dissipation density
is typically employed to describe the character of energy dissipation. Hence, this paper
explores the evolution of the energy dissipation density of sandstone under water content
and impact velocity. The figure shows that the water content has little influence on energy
dissipation density, whereas bullet velocity has a significant influence on energy dissipation
density. The velocity of the bullet is positively associated with the energy dissipation
density. Moreover, the bullet’s velocity is proportional to the rock’s incident energy. This
may be due to the fact that as the bullet’s velocity increases, the incident strain of the rock
also increases, and thus its incident energy increases.

Table 4. Energy of sandstone under different degrees of saturation.

Bullet Velocity
m/s f WI/J WR/J WT/J WS/J

5 0 198.24 44.12 62.9296 91.1904
10 0 376.24 94.67 119.7868 161.7832
15 0 587.98 154.78 168.609 264.591

5 0.3 204.86 52.24 62.4816 90.1384
10 0.3 396.67 99.28 134.7553 162.6347
15 0.3 610.98 167.45 168.589 274.941

5 0.6 189.24 46.28 63.4792 79.4808
10 0.6 410.56 109.87 120.0436 180.6464
15 0.6 606.24 167.24 184.3792 254.6208

5 0.9 210.78 55.24 73.3358 82.2042
10 0.9 398.89 102.54 144.7718 151.5782
15 0.9 589.23 178.26 163.4934 247.4766
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4.5. Relationship between Energy Consumption Density and Dynamic Intensity

Numerous studies demonstrate a significant correlation between rock’s dynamic
strength and energy dissipation density. As a result, this paper investigates the associa-
tion between the sandstone’s energy dissipation density and its dynamic strength under
different water content and bullet velocity. Figure 16 illustrates the correlation between
sandstone’s dynamic strength and energy dissipation density for a variety of elastic veloci-
ties and water content. As shown in the figure, the relation between dynamic strength and
energy dissipation density is basically positive. With a saturation degree of 0 and impact
velocity of 5 m/s, the energy dissipation density of sandstone is 1.06 and its dynamic
strength is 167.25 MPa. With a saturation degree of 0 and impact velocity of 10 m/s, the
dynamic strength of sandstone is 1.62, and its dynamic strength is 191.62 MPa. The findings
suggest that the dynamic intensity evolution and energy dissipation density are basically
consistent. In practical engineering, the rock’s dynamic strength will unavoidably increase
when the density of energy dissipation within the rock is high.
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4.6. Relationship between Energy Consumption Density and Fractal Dimension

Energy consumption plays a critical role in underground construction, particularly
in processes involving rock breakers or blasting. Rock breakers are mechanical devices
used to fragment rock mass in underground construction. The energy consumption of rock
breakers directly impacts their efficiency and performance. While higher energy consump-
tion often leads to more effective rock fragmentation, excessive energy usage can result in
unnecessary vibrations, noise, and equipment wear. Hence, finding the optimal balance
between energy input and desired rock fragmentation is crucial for maximizing efficiency
and minimizing drawbacks. Blasting, a widely employed technique for rock excavation,
primarily affects drilling and explosive charging processes. Drilling necessitates energy for
creating boreholes, while explosive charging involves energy consumption for handling
and placing explosives. Controlling the energy input in blasting is vital to achieve desired
results without wasteful consumption. Balancing explosive energy with rock properties
and confinement conditions is crucial for efficient fragmentation and minimizing environ-
mental impacts and structural damage. Environmental considerations are paramount since
increased energy consumption may lead to higher greenhouse gas emissions, contributing
to climate change. Exploring energy-efficient alternatives, such as advanced technologies,
optimized drilling and blasting parameters, and alternative energy sources, is vital for
reducing the environmental footprint of underground construction activities. In summary,
energy consumption significantly influences underground construction processes involving
rock breakers or blasting.
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In addition, in underground engineering construction, the rocks exhibit varying energy
absorption capacities, which are influenced by the impact energy levels. Consequently,
this discrepancy in energy absorption leads to variations in energy consumption density.
Furthermore, the extent of energy dissipation density directly impacts the degree of rock
failure. Hence, it holds great importance to quantitatively assess the relationship between
fractal dimensions and energy dissipation density in sandstones that possess diverse
elastic velocities and water content. Figure 17 describes the correlation between fractal
dimensions and energy dissipation density for the sandstones with diverse elastic velocities
and water content. The figure indicates that the energy dissipation density and fractal size
are essentially positively related. At a saturation of 0 and an impact velocity of 5 m/s,
the energy dissipation density of sandstone is 1.06 and its fractal dimension is 1.99. At a
saturation of 0 and an impact velocity of 10 m/s, the energy dissipation density of sandstone
is 1.62 and its fractal dimension is 2.04. The findings indicate that there is a consistency
between the evolution of fractal dimension and energy dissipation density. When the
density of energy dissipation within the rock is large, the degree of rock fragmentation
will inevitably increase in real-world engineering. Therefore, we should implement the
appropriate prevention and control measures to limit the rate at which rock mass breaks.

Processes 2023, 11, x FOR PEER REVIEW 19 of 24 
 

 

inevitably increase in real-world engineering. Therefore, we should implement the appropri-
ate prevention and control measures to limit the rate at which rock mass breaks. 

 
Figure 17. Correlation between samples’ energy consumption density and fractal dimension. 

4.7. Microscopic Fracture Mechanism 
Upon exposure to water, the microstructure of rock undergoes notable transfor-

mations. Additionally, different bullet velocities lead to variations in the internal micro-
structure of the rock under loading conditions. Consequently, comprehending the micro-
fracture mechanisms of rocks under the combined influence of dynamic loading and wa-
ter is of utmost importance. Figure 18 presents the SEM analysis of rock micro-sections 
following failure under the coupled effects of dynamic loading and water. Trans-grain 
fractures (TG) and along grain fractures (IG) are represented in the analysis. The SEM 
images demonstrate characteristic features including pores, cracks, channels, and steps in 
the rocks after failure under the combined effects of dynamic loading and water. With 
increasing water content, the rock’s porosity rises, and small pores tend to enlarge due to 
water infiltration, thereby augmenting the overall porosity. Lower water contents corre-
spond to a relatively dense internal micro-particle arrangement within the rock. Con-
versely, higher water contents weaken the interparticle forces, resulting in a looser particle 
arrangement. This transformation occurs due to chemical interactions induced by water, 
leading to a transition from a compact to a loose internal structure. Moreover, Figure 19 
illustrates the quantification of trans-grain fractures and along grain fractures, enabling 
an investigation into the microfracture mechanisms of sandstone under the combined ef-
fects of water and coupling. The presence of water significantly influences the ratio of 
trans-grain fractures to along grain fractures in the rock. Observing Figure 19, it becomes 
apparent that at lower saturation levels, the rock’s internal particles are primarily associ-
ated with trans-grain fractures, while along grain fractures play a secondary role. Con-
versely, at higher saturation levels, the rock’s internal particles are predominantly associ-
ated with along grain fractures, with trans-grain fractures assuming a secondary role. 

Figure 17. Correlation between samples’ energy consumption density and fractal dimension.

4.7. Microscopic Fracture Mechanism

Upon exposure to water, the microstructure of rock undergoes notable transformations.
Additionally, different bullet velocities lead to variations in the internal microstructure
of the rock under loading conditions. Consequently, comprehending the microfracture
mechanisms of rocks under the combined influence of dynamic loading and water is of
utmost importance. Figure 18 presents the SEM analysis of rock micro-sections following
failure under the coupled effects of dynamic loading and water. Trans-grain fractures
(TG) and along grain fractures (IG) are represented in the analysis. The SEM images
demonstrate characteristic features including pores, cracks, channels, and steps in the rocks
after failure under the combined effects of dynamic loading and water. With increasing
water content, the rock’s porosity rises, and small pores tend to enlarge due to water
infiltration, thereby augmenting the overall porosity. Lower water contents correspond to a
relatively dense internal micro-particle arrangement within the rock. Conversely, higher
water contents weaken the interparticle forces, resulting in a looser particle arrangement.
This transformation occurs due to chemical interactions induced by water, leading to a
transition from a compact to a loose internal structure. Moreover, Figure 19 illustrates the
quantification of trans-grain fractures and along grain fractures, enabling an investigation
into the microfracture mechanisms of sandstone under the combined effects of water and
coupling. The presence of water significantly influences the ratio of trans-grain fractures to
along grain fractures in the rock. Observing Figure 19, it becomes apparent that at lower



Processes 2023, 11, 2318 19 of 23

saturation levels, the rock’s internal particles are primarily associated with trans-grain
fractures, while along grain fractures play a secondary role. Conversely, at higher saturation
levels, the rock’s internal particles are predominantly associated with along grain fractures,
with trans-grain fractures assuming a secondary role.

The SEM images reveal notable variations with increasing bullet velocity. As illustrated
in Figures 20 and 21, lower bullet velocities predominantly exhibit along grain fractures
within the rock’s internal particles, accompanied by secondary trans-grain fractures. In
contrast, higher bullet velocities demonstrate a shift towards trans-grain fractures as the
primary mode, while along grain fractures assume a secondary role. It is worth noting
that along grain fractures occur along crystal boundaries, resulting in crystal fracture,
while trans-grain fractures transpire within the crystal structure itself. Notably, along grain
fractures consume less energy due to their occurrence along crystal boundaries, whereas
trans-grain fractures require more energy within the crystal structure. Consequently, rocks
exhibit lower strength under along grain fractures and higher strength under trans-grain
fractures at the macroscopic level. Thus, a microscopic analysis has been conducted to
elucidate the strength mechanism of rocks under the coupled effects of dynamic loading
and water.
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while trans-grain fractures transpire within the crystal structure itself. Notably, along 
grain fractures consume less energy due to their occurrence along crystal boundaries, 
whereas trans-grain fractures require more energy within the crystal structure. Conse-

Figure 19. Illustration of the ratio between IG fractures and TG fractures in sandstone at an impact
velocity of 15 m/s.
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5. Conclusions

(1) Water content and bullet velocity significantly affect rock strength characteristics.
Water content is negatively correlated with rock strength. Water weakens the rock’s
strength, while bullet velocity enhances the rock’s strength. The peak strength of the
rock increases as the velocity of the bullet rises.

(2) A novel approach was proposed to quantify along grain fractures and trans-grain
fractures. It was found that as the bullet velocity increases, trans-grain fractures
become dominant while along grain fractures play a secondary role. The presence of
water also leads to changes in the microfracture mechanisms of rocks. Additionally,
capillary forces, surface tension, and chemical reactions are equally significant factors
contributing to the weakening of rock strength by water.

(3) Water content and bullet velocity significantly affect rock failure characteristics. The
degree of sample fragmentation rises as the water content increases, and the fractal
dimension as well. The mechanism of energy conversion in rock at varying water
contents is very different.

(4) The density of energy dissipation has a major effect on the fractal dimension and
peak strength of the rock. The density and intensity of energy dissipation and their
fractal dimensions are quantified in this paper. It is observed that there is a positive
relation between the intensity and density of energy dissipation. The higher the fractal
dimension, the greater the rock’s energy dissipation density and absorbed energy
density.
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