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Abstract: A novel multiple solid waste-based cementitious material (MSWCM) was developed to
immobilize municipal solid waste incineration (MSWI) fly ash. The compressive strength of MSWCM
with different ratios of MSWI fly ash reached the standard requirements after curing for 28 days. X-ray
powder diffraction (XRD) in combination with the Rietveld method was employed to investigate
the content and phase transformation of hydration products. The main hydration products of pure
MSWCM paste were C-S-H, hydroxyapatite, ettringite and C-A-S-H. With increases in curing time, the
content of ettringite and C-A-S-H increased significantly. The main hydration products of MSWCM
paste with MSWI fly ash were C-S-H and Friedel’s salt. The contents increased markedly with
increased curing time from 21.8% to 28.0% and from 8.53% to 16.7%, respectively. Additionally, a
small amount of PbHPO4 (0.51–0.96%) and lead phosphate Pb3(PO4)2 (0.14–0.51%) were detected,
indicating that phosphate had an effective curing effect on lead ions. The results showed that most of
the hydration reactions had started at the initial stage of curing and reacted quickly to form a large
number of hydration products. The quantitative analyses of hydration products provide essential
information for understanding the immobilization mechanism of MSWI fly ash in MSWCM paste.

Keywords: cementitious material; MSWI fly ash; Rietveld method; multiple solid waste; heavy
metals; solidification; X-ray diffraction

1. Introduction

Urbanization, population growth and industrialization have led to a rapid increase in
municipal solid waste. By 2025, cities worldwide are expected to generate 2.2 billion tons
of municipal solid waste [1]. Landfill and incineration are the two main waste disposal
methods. Compared with landfill, the incineration method can save land resources. After
incineration, the volume of municipal waste can be significantly reduced, and the heat
generated by the complete incineration of organic matter can be used for heating and power
generation, realizing the resource utilization of waste [2–5]. Therefore, the incineration
method has been commonly used in the treatment of municipal waste. However, it tends
to produce a large amount of municipal solid waste incineration (MSWI) fly ash. The level
of MSWI has reached 146 million tons in China in 2020 and the production of MSWI fly ash
has exceeded 7 million tons [6]. MSWI fly ash is produced during waste incineration. It
contains a large amount of hazardous substances, such as leachable heavy metals, dioxins,
soluble salts and other harmful components, which may cause harm to the environment and
human health [7–10]. It can used in landfill only after solidification or stabilization [11–13].

Cement-based stabilization or solidification technology has been considered as the
main treatment option for MSWI fly ash [14–17]. Ordinary Portland Cement (OPC) is

Processes 2023, 11, 2311. https://doi.org/10.3390/pr11082311 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082311
https://doi.org/10.3390/pr11082311
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-6956-1004
https://doi.org/10.3390/pr11082311
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082311?type=check_update&version=1


Processes 2023, 11, 2311 2 of 15

a widely used cementitious binder for the treatment of MSWI fly ash [18,19]. However,
OPC will form a strong alkaline environment that is not conducive to the solidification of
heavy metals. The compressive strength of OPC–fly ash blocks may decrease significantly
in the case of high waste incineration fly ash content. [20–22]. In addition, during the
production process of Portland cement, some problems will become more prominent, such
as pollutant discharge, excessive consumption of energy resources and damage to the
balance of the ecological environment [23,24]. Therefore, it is necessary to develop a low
carbon environment-friendly binder material.

Recently, due to excellent mechanical properties and good environmental protection,
the cementitious material produced from multiple solid wastes, such as metallurgical slags
and industrial solid wastes, has been widely used to treat various hazardous wastes includ-
ing MSWI fly ash [25,26]. Blast furnace slag (BFS) and steel slag (SS) are commonly used
metallurgical slags for solid waste-based cementitious material, and the main components
are CaO, SiO2 and Al2O3 [27]. BFS and SS can be used as an alternative material for alkaline
activator because they are alkaline, which can provide Ca2+ ions and OH− ions for the
hydration reaction [28]. Desulfurization ash (DA) is a solid waste generated during the
dry flue gas desulfurization process, with CaO and SO3 as the main components [29,30].
Phosphoric acid sludge (PAS) is an industrial solid waste obtained from the production
of wet phosphoric acid [31,32]. PAS can be used to immobilize MSWI fly ash due to the
widespread use of phosphate as a curing agent [33–35]. Additionally, Pb can easily react
with PO4

3− and HPO4
2− to form insoluble phosphate precipitation [33]. Therefore, phos-

phate shows a good solidification effect on Pb. These industrial solid wastes can be used as
the raw materials of multiple solid waste-based cementitious material (MSWCM).

During the hydration process, heavy metals react with MSWCM through physical
cementation, chemical adsorption, isomorphic replacement and complex precipitation.
Finally, they settle in the cement hydration product in the form of hydroxide or complex [33].
The quantitative and qualitative analyses of mineral phases provide essential information
for understanding the immobilization mechanism of MSWI fly ash in MSWCM paste.
However, the study of assessing the mineral composition of fly ash and hydration products
by conventional X-ray powder diffraction (XRD) has been hampered due to the complex
phases and structures, which result in strong overlap of diffraction peaks [36]. Therefore, it
is necessary to find a method that can determine the relative content of the mixture phase
and hydration products accurately, effectively and conveniently in MSWCM.

XRD in combination with the Rietveld refinement method, is a powerful technique for
the characterization of mineral phases. The Rietveld method is basically a profile-fitting
method based on the least square approach, which can deal with complex diffraction
patterns with strong overlapping peaks [37]. However, few studies have focused on using
the Rietveld methods to study changes in the content of hydration products and mineral
phases during hydration process.

In this study, blast furnace slag (BFS), steel slag (SS), desulfurization ash (DA) and
phosphoric acid sludge (PAS) are used as raw materials to produce a novel multiple
solid waste-based cementitious material (MSWCM). The development of the mechanical
properties of MSWCM with different ratios of MSWI fly ash, including compressive strength
and leachability at different curing times, is investigated. The Rietveld method is employed
for the qualitative and quantitative analysis of the MSWI fly ash and of the hydration
products in pure MSWCM pastes and pastes containing MSWI fly ash. Meanwhile, the
changes in the hydration products and mineral phase content during the hydration process
and the immobilization mechanism of MSWI fly ash in MSWCM pastes are also discussed.

2. Materials and Methods
2.1. Materials

Raw materials for the preparation of multiple solid waste-based cementitious mate-
rial (MSWCM) included blast furnace slag (BFS), steel slag (SS), desulfurization ash (DA)
and phosphoric acid sludge (PAS). The BFS, SS and DA were provided by Wuhan Metal
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Resources Company in Hubei Province, China. The PAS was collected from China City
Environment Protection Engineering Limited Company. The chemical compositions and
heavy metal content of the four raw materials were summarized in a previous study [27].
CaO, SiO2 and Al2O3 were the major chemical compositions. Furthermore, the desulfuriza-
tion ash contained 33.28% SO3, the steel slag contained 26.12% Fe2O3 and the phosphoric
acid sludge contained 21.80% P2O5. It had a high content of Pb (2412.81 mg/kg), which
was the main heavy metal.

2.2. Orthogonal Experiment and Analysis
2.2.1. Orthogonal Experimental Design

Orthogonal experimental design is a method to study multi-factor and multi-level
experiments. An orthogonal experiment was designed to optimize the mass ratio of the
raw materials for the production of the MSWCM. The mass proportions of SS, DA and PAS
were set as the three factors in the orthogonal experiment. The level settings of each factor
are shown in Table 1. The mass proportion of BFS was calculated by [100% − (SS% + DA%
+ PAS%)]. The standard orthogonal experimental design table L16 (43) was used and a total
of 16 themes were tested. The orthogonal experimental design is displayed in Table 2.

Table 1. Factors and levels for orthogonal test.

Levels
Factors

Mass Proportions
SS/% DA/% PAS/%

1 28 8 20
2 32 10 26
3 36 12 32
4 40 14 38

Table 2. Experimental design schemes of orthogonal test.

Sample ID
Levels Mass Proportion of BFS/%

SS DA PAS

O1 1 1 1 44
O2 1 2 2 36
O3 1 3 3 28
O4 1 4 4 20
O5 2 1 2 34
O6 2 2 1 38
O7 2 3 4 18
O8 2 4 3 22
O9 3 1 3 24
O10 3 2 4 16
O11 3 3 1 32
O12 3 4 2 24
O13 4 1 4 14
O14 4 2 3 18
O15 4 3 2 22
O16 4 4 1 26

2.2.2. Range Analysis Method

In this study, the range analysis method was used to determine the factors’ sensitivity
to compressive strength according to the orthogonal experiment [38]. The range method is
to subtract the minimum value from the maximum value in the data. In the calculation, the
average value ki and the influence degree R are as follows [39]:

ki =
Ki
x

(1)
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R = max{k1, k2, k3 · · · } −min{k1, k2, k3 · · · } (2)

where, ki is the arithmetic mean value of the corresponding test results at level i; Ki is the
sum of the corresponding test results; and x is the number of tests on level i. The influence
degree R represents the influence of each factor on the index. The higher the R value, the
greater the influence of the factor on the experiment results.

2.3. Compressive Strength Test

Compressive strength was measured in an electro-hydraulic universal testing machine
(WAW-1000B) in compliance with the GB/T17671 [27] China standard. The measurements
were performed on specimens for 3, 7 and 28 days at room temperature and at least three
representative samples were tested to obtain the average values.

2.4. Leaching Test

The leaching toxicity of the heavy metals was evaluated by the Solid Waste-Extraction
Procedure for Leaching Toxicity—Horizontal Vibration Method (HJ 557-2010). The samples
were first crushed to below 3 mm, then 100 g was taken and put into a 2 L volumetric
flask, and we added 1000 mL of deionized water. After that, the mixtures were put into a
horizontal vibrator for 8 h with a frequency of 110 times per minute. After standing still for
16 h, the concentrations of heavy metals in the leachate were determined by inductively
coupled plasma mass spectrometry (ICP-MS).

2.5. X-ray Powder Diffraction (XRD) Analysis

The phase analysis of the samples was determined by the X-ray powder diffraction
(XRD) method. The XRD patterns were collected by an Rigaku D/Max-B diffractometer
with an X’Celerator detector and using Cu Kα radiation (λ = 0.154056 nm), 40 kV and
40 mA. The measured range of the powder specimens was set from 5 to 80◦ 2θ, with a 0.04◦

step size.

2.6. Rietveld Method

The Rietveld method is an advantageous technique for the refinement of crystal
structures and phase quantitative analysis. This method was employed to determine the
major phases of the MSWI fly ash and the hydration products during solidification in this
study. The principle of the Rietveld method is to minimize the difference between the
observed and calculated intensities by a least square approach (Equation (3)). The BGMN
program was used for the Rietveld refinement [40,41]:

∑i wi[yi(obs)− yi(calc)]2= Minimum (3)

where yi (obs) and yi (calc) are the observed and calculated intensities at point i, and wi is
the weight assigned to each intensity. The intensity at each point is calculated by summing
the contributions from all the neighboring Bragg reflections and background scattering:

yi = S ∑k

[
|Fhkl|2· G(∆ 2θ)· Lp(θ)·Mhkl· Tf(θ)· A· Pohkl

]
+ ybi (4)

where yi intensity of the angular position i in the powder pattern;
S—scale factor of the phase;
Fhkl—structure factor;
G(∆2θ)—profile shape function;
Lp(θ)—Lorentz and Polarization factor;
Mhkl—multiplicity factor;
Tf(θ)—temperature factor;
A—absorption factor;
Pohkl—correction factor of preferred orientation;
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ybi—background intensity.

3. Results and Discussion
3.1. Characterization of MSWI Fly Ash

Municipal solid waste incineration (MSWI) fly ash was collected from MSWI plants
in Wuhan, China. The main chemical composition and heavy metal contents are given in
Table 3. According to the results, CaO accounted for the largest proportion of MSWI fly
ash, accounting for 39.08%, followed by Cl (21.5%) and Na2O (7.03%). This is probably due
to the addition of alkali to neutralize the acidic gases generated during incineration, such
as HCl and SO2 [42]. The high content of chloride ion may be attributed to the incineration
of plastics and halite in food residues, e.g., NaCl [43,44]. The most abundant heavy metals
are Pb and Zn, with a content of 1769.9 mg/kg and 5636.2 mg/kg, respectively.

Table 3. Chemical composition and heavy metal content of MSWI fly ash.

Oxide (%) CaO SiO2 Al2O3 Cl SO3 Fe2O3 Na2O K2O MgO

39.08 1.94 0.31 29.17 7.37 1.46 7.03 10.58 0.56

Heavy metal (mg/kg) Pb Zn As Cr Hg

1769.9 5636.2 45.7 34.3 2.4

The phase content of the MSWI fly ash was determined by the Rietveld method.
Figure 1 presents the Rietveld refinement plot for the MSWI fly ash. The measured pat-
terns showed good agreement with the calculated patterns. The Rwp value was 10.25%.
According to the results, the main phases in the MSWI fly ash were NaCl (34.2%), CaClOH
(24.6%), Ca(OH)2 (16.5%) and KCl (14.3%) (Table 4). Moreover, CaCO3 and CaSO4 were
also detected.
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Table 4. Results of the Rietveld refinement of MSWI fly ash.

Halite Sylving
Calcium
Chloride

Hydroxide
Portlandite Calcite Gypsum

Rwp/% Rexp/%

NaCl KCl CaClOH Ca(OH)2 CaCO3 CaSO4·2H2O

Phase
content/w.t.% 34.2 (2) a 14.3 (1) 24.6 (2) 16.5 (1) 7.6 (5) 2.8 (7) 10.25 5.26

a Standard deviation.
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3.2. Orthogonal Experiment Results Analysis

The range analysis method was adopted for the orthogonal experiment results. The R
value (Range) is used to divide the impact degree of different factors on the experimental
objectives. Figure 2 and Table 5 present the results of the orthogonal experiment and range
analysis. According to the K value, the optimal combination of factors and levels is SS2 DA3
PAS1, and their corresponding mass proportions are 32%, 12% and 20%, respectively. The
mass proportion of BFS is calculated as 36%. As shown in Table 5, the order of the R value
is PAS > SS > DA, indicating that the mass ratio of PAS is the dominant factor affecting the
compressive strength, followed by the mass ratios of SS and DA.
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Table 5. The result of range analysis.

Levels
Compressive Strength/Mpa

SS DA PAS

K1 81.8 74.9 95
K2 83.7 80.7 81.4
K3 73.1 81.3 71.7
K4 75.8 77.5 66.3
k1 20.45 18.73 23.75
k2 20.93 20.18 20.35
k3 18.28 20.33 17.93
k4 18.95 19.38 16.58

Range 2.65 1.6 7.17
Ranking PAS > SS > DA

Optimum theme SS2 DA3 PAS1

Figure 3 shows the effect curves of different raw materials on the compressive strength.
Based on the results, the influence of the PAS ratio on the compressive strength is the
greatest. The compressive strength decreases with increases in the PAS mass ratio. How-
ever, the compressive strength shows a tendency to first increase and then decrease with
increases in the DA mass ratio. The effect of the SS mass ratio on the compressive strength
is fluctuating.

3.3. Effect of MSWI Fly Ash Proportions on Compressive Strength

The compressive strength of multiple solid waste-based cementitious material (MSWCM)
with different amounts of MSWI fly ash is plotted in Figure 3. The compressive strength
increased with curing time for all specimens and, after curing for 3, 7 and 28 days, the
compressive strength varied from 1.2 to 33.4 MPa, which all met the standard requirements
of Chinese technical standards for the solidification/stabilization treatment of MSWI fly
ash. The compressive strength of the MSWCM pastes without MSWI fly ash had reached
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27.2, 28.6 and 33.4 MPa after curing for 3, 7 and 28 days, respectively. It was noticed that
the 7-day compressive strength was 81.4% of the 28-day strength, indicating a rapid early
strength development.
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Figure 3. Effect of different raw materials on compressive strength.

According to Figure 4, the compressive strength showed a tendency to decrease with
increases in MSWI fly ash content. In comparison with the MSWCM pastes after a 28-day
curing period, the compressive strength of the MSWCM pastes decreased by 4.2%, 17.3%,
27.5%, 45.5%, 57.5%, 72.2%, 82.6% and 91.3%, respectively, with an increase in MSWI fly
ash content from 10% to 80%. The addition of MSWI fly ash had a negative impact on the
compressive strength of the MSWCM pastes, mainly due to the lower activity of MSWI
fly ash and the high level of heavy metals, which inhibited the hydration reaction and
weakened the compressive strength [42,45,46].
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3.4. Leaching Toxicity

The leaching concentrations of As, Cr, Pb and Zn of the MSWCM pastes with MSWI
fly ash at 3, 7 and 28 curing days are given in Figure 5. With increases in MSWI fly ash
content, the leaching concentration of As, Cr and Pb increased. The pure MSWCM pastes
showed a low leaching concentration of these four heavy metals. The maximum leaching
concentrations of As, Cr, Pb and Zn were 22.6 µg/L, 12.5 µg/L,113.0 µg/L and 75.6 µg/L,
respectively, which were far below the Toxicity Characteristic Leaching Procedure (TCLP)
standard requirement and the threshold value specified in Standard GB16889-2008. This
indicated that MSWCM can effectively immobilize these heavy metals.
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Figure 5. Leaching concentrations of heavy metals in MSWCM solidified body with different MSWI
fly ash content.

MSWCM after curing with MSWI fly ash can be used as a supplementary cementi-
tious material, replacing or partially replacing traditional cement and other cementitious
materials. This type of cementitious material can be widely used in various applications,
such as roadbed materials, landfill closure and ground hardening.

3.5. Characterization of MSWCM Hydration Products with and without MSWI Fly Ash
3.5.1. XRD Analysis of Hydration Products

The XRD patterns of the pure MSWCM pastes (MF0) and the MSWCM pastes with 30%
MSWI fly ash (MF1) at a curing time of 3, 7 and 28 days are shown in Figure 6 and the main
mineral phases have been labelled. According to the diffraction pattern, the diffraction peak
with the strongest intensity in the pure MSWCM pastes belonged to calcium carbonate, and
the main hydration products were hydroxyapatite, ettringite and calcium silicate hydrate
(C-S-H and C-A-S-H).
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Figure 6. XRD patterns of MF0 and MF1 samples with different curing times. The main peaks are
labelled as follows: 1-Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O); 2-Halite (NaCl); 3-Sylvite (KCl);
4-Gypsum (CaSO4·2H2O); 5-Calcite (CaCO3); 6-C-S-H; 7-Hydroxyapatite (Ca5(PO4)3(OH)); 8-C-
A-S-H; 9-PbO2; 10-PbHPO4; 11-C2S (2CaO·SiO2); 12-Ettringite (3CaO·Al2O3·3CaSO4·32H2O); 13-
Pb3(PO4)2; 14-Carnallite (KCl·MgCl2·6H2O).
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In contrast, strong peaks for chlorine salts such as halite and sylvite were observed
in the samples mixed with 70% MSWCM and 30% MSWI fly ash. Additionally, some
new hydrates such as Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O), PbHPO4 and Pb3(PO4)2
were formed. The diffraction peaks intensity of the Friedel’s salt increased significantly
with increases in curing time. Meanwhile, the diffraction peaks of the halite (NaCl) and
sylvite (KCl) gradually weakened with the increase of Friedel’s salt. It can be deduced
that chloride salts might be partially transformed into Friedel’s salt, which indicated that
part of the Cl in MSWI fly ash could be encapsulated in the MSWCM solidified body. The
generation of PbHPO4 and Pb3(PO4)2 in sample MF1 indicated that the Pb took part in
a chemical reaction with phosphate and then formed insoluble lead phosphate minerals.
This conclusion was consistent with [42] and confirmed that phosphate shows a good
solidification effect on Pb.

Furthermore, calcium-containing hydration products (C-S-H and C-A-S-H) were found
in both the MF0 and MF1 samples, and the intensity of these diffraction peaks in sample
MF1 is significantly stronger than that in sample MF0. However, no distinct peaks of
portlandite were observed in the MF0 and MF1 samples. It is indicated that these hydration
products were further hydrated with the components in the MSWI fly ash.

3.5.2. Immobilization Mechanism Analysis using Rietveld Method

Although the main mineral composition can be obtained by traditional XRD analysis,
it is difficult to identify minor minerals and their content, and the accuracy of the results
is not high. The qualitative and quantitative phases of the MSWCM pastes with MSWI
fly ash are crucial for understanding the hydration process and the hydration mechanism.
Therefore, the Rietveld method was employed in this work to investigate the mineral
composition and content and the mineral phase transformation of the hydration products.

The mineralogical compositions and quantitative analysis of the hydration products
in the MSWCM pastes (MF0) without or with MSWI fly ash (samples MF0 and MF1) at a
curing time of 3, 7 and 28 days are presented in Tables 6 and 7. The quality of the Rietveld
fitting was evaluated by the weighted profile factor Rwp and the expected factor Rexp.
Figure 7 shows the refinement results of samples MF0 and MF1 after curing for 28 days.
The calculated patterns of these two samples showed comparatively good agreement with
the measured patterns. The refinements of samples MF0 and MF1 after curing different
days achieved Rwp values in the range of 7.35% to 7.55% and 7.70% to 7.81%, and Rexp
values in the range of 5.85% to 5.90% and 6.01% to 6.12%, respectively. It is indicated that
the refinement results for these samples were acceptable and reasonable.
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Pure MSWCM Paste

As shown in Table 6, the pure MSWCM paste without MSWI fly ash (sample MF0)
contained C2S (17.85–20.55%) and calcite (12.59–14.71%). The main hydration products
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of sample MF0 were C-S-H (Ca5Si6O16(OH)·4H2O), hydroxyapatite (Ca5(PO4)3(OH)) and
ettringite (3CaO·Al2O3·3CaSO4·32H2O).

The hydration reaction of C2S and C3S in the raw material produced calcium silicate
hydrate (C-S-H) and calcium hydroxide (Equations (5) and (6)). The hydration reaction
of C2S is much slower than that of C3S. Therefore, after 28 days of curing, there was still
unreacted C2S. The content of C-S-H and hydroxyapatite at different curing times was in
the range of 19.8–24.7% and 11.29–19.87%, respectively. It can be seen from the results
that a large amount of C-S-H and hydroxyapatite have been formed when the curing time
is 3 days. This is very beneficial to the improvement of compressive strength and the
solidification of MSWI fly ash. The generated alkaline activator Ca(OH)2 can destroy and
dissolve the silica vitreous structure and increase the amount of Ca2+, Al3+ and SiO4

2−. This
may accelerate the hydration reaction, resulting in higher early compressive strength. With
the continuous accumulation of various ions in the liquid phase, the solution reaches the
supersaturated state of new hydration products, thus generating new hydration products.
For example, Ca(OH)2 further reacts with Al2O3 and CaSO4 to form ettringite and a small
amount of C-A-S-H (3CaO·Al2O3·2SiO2·2H2O) (Equations (7) and (8)). The generated
C-A-S-H content was 2.35–4.71%. Compared with the C-A-S-H, the content of generated
ettringite was relatively large, and with the prolonging of the curing time the content
increased significantly. Its content were 4.15%, 17.9% and 16.9% at a curing time of 3, 7 and
28 days, respectively. It indicated that the hydration process was constantly evolving.

In addition, PO4
3− produced from phosphoric acid sludge (PAS) reacted with Ca2+ in

the aqueous solution to form a new hydration product, hydroxyapatite (Ca5(PO4)3(OH))
(Equation (9)). The content of hydroxyapatite was 19.87%, 13.40% and 11.29% at a curing
time of 3, 7 and 28 days, respectively. The possible hydration reactions that occurred in the
pure MSWCM paste samples were listed as follows:

2C3S + 6H2O → 3C− S−H + 3Ca(OH)2 (5)

2C2S + 4H2O → 3C− S−H + Ca(OH)2 (6)

3Ca(OH)2+Al2O3+3CaSO4·H2O + 23H2O → 3CaO·Al2O3·3CaSO4·32H2O (7)

Ca(OH)2+Al2O3 +SiO2+H2O → CaO·SiO2·Al2O3·(n + 1)H2O (C−A− S−H) (8)

5Ca2++4OH−+3HPO2−
4 → Ca5(PO4)3(OH)+H2O (9)

Some heavy metal oxides were detected at very low levels, such as PbO (0.17–0.3%)
and PbO2 (0.43–0.52%). And, after curing for 28 days, a small amount of mayenite
(12CaO·7Al2O3) (0.55%) appeared.

The mineral phase quantitative analysis of MSWCM paste with MSWI fly ash (sample
MF1) under different curing times using the Rietveld method is listed in Table 7. It can
be seen from the results that the phase composition is relatively complex. The dominant
mineral phases were C-S-H, halite, sylvite, Friedel’s salt, K3PO4, hydroxyapatite, AlPO4,
calcite and gypsum, while the minor mineral phases were portlandite, periclase, mayenite,
ettringite, grossite, katoite, PbO2, CaCl2, PbHPO4 and lead phosphate (Table 7).

The main hydration products of sample MF1 were C-S-H (Ca5Si6O16(OH)·4H2O) and
Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O). The content of C-S-H and Friedel’s salt increased
significantly with increases in curing time and their contents were 21.8%, 26.2% and 28.0%
and 8.53%, 12.68% and 16.17% after the curing time of 3, 7 and 28 days, respectively. This
result is consistent with the intensity variation of the diffraction peaks (Figure 6). At the
same time, the amount of halite (NaCl) and sylvite (KCl) is decreasing, further illustrating
the effect of Friedel’s salt on the solidification of the chloride ions in the MSWI fly ash. C-S-H
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has been proved to immobilize heavy metals (such as Zn, Cd and Pb) effectively [33]. With
increases in curing time, the content of C-S-H increased, the stabilization efficiency should
be better. This is consistent with the leaching results shown above (Figure 5). Additionally,
the more C-S-H generated, the more beneficial it is to improve the compressive strength.
This is consistent with the growth trend in Figure 3. In addition, there was a small amount
of C-A-S-H (3CaO·Al2O3·2SiO2·2H2O) generated, the content of which is 2.54–4.22% at
different curing times.

Table 6. Quantitative results of sample MF0 using the Rietveld method.

Minerals Chemical Formula

Rietveld Quantitative Results
Contents/Mass %

3 d 7 d 28 d
Rwp = 7.55%
Rexp = 5.88%

Rwp = 7.35%
Rexp = 5.85%

Rwp = 7.36%
Rexp = 5.90%

Calcite CaCO3 14.70 (1) a 13.78 (1) 12.59 (1)
Ettringite 3CaO·Al2O3·3CaSO4·32H2O 4.15 (1) 17.90 (1) 16.90 (1)

C2S 2CaO·SiO2 20.10 (1) 20.55 (1) 17.85 (1)
C-S-H Ca5Si6O16(OH)·4H2O 24.70 (2) 17.80 (2) 19.80 (2)

Gypsum CaSO4·2H2O 4.08 (1) 3.09 (1) 4.23 (1)
Hydroxyapatite Ca5(PO4)3(OH) 19.87 (1) 13.40 (1) 11.29 (1)

Portlandite Ca(OH)2 0 0 0
Merwinite 12CaO·7Al2O3 9.79 (1) 9.37 (1) 11.44 (1)
Mayenite Ca12Al14O33 0 0.39 (2) 0.55 (2)

PbO - 0.30 (1) 0.16 (1) 0.21 (1)
PbO2 - 0 0.48 (1) 0.47 (1)

C-A-S-H 3CaO·Al2O3·2SiO2·2H2O 2.35 (1) 3.07 (1) 4.71 (1)
sum 100.04 100.00 100.04

a Standard deviation.

MSWCM Paste with MSWI Fly Ash

Halite (NaCl) and sylvite (KCl) were the main phases in the MSWI fly ash (Figure 1). NaCl
can react with calcium aluminate hydrate to form Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O)
(Equation (10)) and potassium ions may form potassium phosphate (K3PO4) (Equation (11)).
The content of halite and sylvite decreased with increases in curing days (Table 7). This
suggested that some chloride ions in MSWI fly ash could be encapsulated in MSWCM
paste by a chemical bonding effect.

A small amount of PbHPO4 (0.51–0.96%) and lead phosphate Pb3(PO4)2 (0.14–0.51%)
were detected. Irene et al. and Ren et al. [35,47] found that the presence of phosphate was
beneficial for the formation of insoluble lead phosphate salts (Equations (12) and (13)).
Compared with other heavy metal ions, such as Zn, Cr and As, the phosphate ions reacted
preferentially with Pb [48]. Due to the very low solubility of lead phosphate salts, Pb can be
stably solidified in MSWCM paste and have a good curing effect. The quantitative change
of the main hydration products is shown in Figure 8.

Al2O3+4CaO + 2NaCl + 11H2O → 3CaO·Al2O3·CaCl2·10H2O + NaOH (10)

PO43−+3OH−+3K+ → K3(PO4)+3H2O (11)

2PO43−+3Pb2+ → Pb3(PO4)2 (12)

HPO42−+Pb2+ → PbHPO4 (13)
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Table 7. Quantitative results of sample MF1 using the Rietveld method.

Minerals Chemical Formula

Rietveld Quantitative Results
Contents/Mass %

3 d 7 d 28 d
Rwp = 7.81%
Rexp = 6.07%

Rwp = 7.77%
Rexp = 6.12%

Rwp = 7.70%
Rexp = 6.12%

Portlandite Ca(OH)2 0.96 (2) a 0.17 (1) 0
C-S-H Ca5Si6O16(OH)·4H2O 21.8 (1) 26.2 (1) 28.0 (1)

Periclase MgO 0.49 (2) 2.32 (2) 1.43 (3)
Halite NaCl 11.22 (3) 12.27 (3) 6.76 (3)
Sylvite KCl 4.57 (2) 5.05 (2) 1.62 (2)

Mayenite Ca12Al14O33 0.86 (4) 0 0
Gypsum CaSO4·2H2O 5.52 (4) 5.17 (4) 5.79 (4)
Ettringite 3CaO·Al2O3·3CaSO4·32H2O 0 2.16 (1) 0.49 (1)

Friedel‘s salt 3CaO·Al2O3·CaCl2·10H2O 8.53 (5) 12.68 (5) 16.17 (6)
Grossite CaAl4O7 1.36 (3) 2.09 (5) 1.08 (3)
Calcite CaCO3 6.57 (5) 5.22 (5) 9.84 (5)
K3PO4 - 8.56 (3) 6.54 (3) 8.62 (3)
PbO2 - 0.68 (1) 0.27 (1) 0.41 (1)

AlPO4 - 7.07 (1) 7.57 (1) 6.71 (1)
Hydroxyapatite Ca5(PO4)3(OH) 7.95 (5) 6.68 (45) 8.2 (6)

CaCl2 - 0.28 (1) 0.52 (1) 0.39 (1)
PbHPO4 - 0.96 (1) 0.73 (1) 0.51 (1)

Pb3(PO4)2 - 0.19 (1) 0.14 (1) 0.51 (1)
C-A-S-H 3CaO·Al2O3·2SiO2·2H2O 2.54 (5) 4.22 (4) 3.44 (4)

Carnallite KCl·MgCl2·6H2O 9.87 (6) - -
Sum 100.0 100.0 100.0

a Standard deviation.

4. Conclusions

This study proposed the preparation of multiple solid waste-based cementitious
material (MSWCM) from blast furnace slag (BFS), steel slag (SS), desulfurization ash (DA)
and phosphoric acid sludge (PAS). The Rietveld method was applied for the qualitative
and quantitative analysis of the hydration products of pure MSWCM pastes and MSWCM
pastes with MSWI fly ash. The immobilization mechanism of MSWI fly ash by MSWCM
binders was explored in depth. The main conclusions can be drawn as follows:

(a) The optimal mass ratios of BFS:SS:DA:PAS for MSWCM preparation were 36:32:12:20
(w.t.%). The compressive strength of MSWCM with 80% MSWI fly ash content was
2.9 MPa during the 28-day curing period, which met the standard requirements. The
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leachability of As, Pb, Cr and Zn were far below Toxicity Characteristic Leaching
Procedure (TCLP) standard requirement and the threshold value specified in Standard
GB16889-2008.

(b) The XRD analysis showed that the phase composition of the hydrated product was
relatively complex. The most obvious diffraction peak in the pure MSWCM pastes was
calcium carbonate and the main hydration products were hydroxyapatite, ettringite
and calcium silicate hydrate (C-S-H and C-A-S-H). In contrast, strong peaks for
chlorine salts such as halite and sylvite were observed in the mixed sample of 70%
MSWCM and 30% MSWI fly ash. Additionally, small amounts of lead phosphate salts
(PbHPO4 and Pb3(PO4)2) were formed.

(c) The refinements of the samples MF0 and MF1 got low Rwp and Rexp values, which
indicated that the refinement results were acceptable and reasonable. Most of the
hydration reactions had started at the initial stage of curing and reacted quickly to
form a large amount of hydration products. For the pure MSWCM paste, the main
hydration products were C-S-H, hydroxyapatite and ettringite. With increased curing
time, the content of ettringite increased obviously. For the MSWCM paste with MSWI
fly ash, the content of C-S-H and Friedel’s salt increased significantly with increased
curing time. During a curing period of 3 days to 28 days, the content of C-S-H and
Friedel’s salt increased by 22% and 90%, respectively. Phosphate ions reacted with
Pb to form a small amount of PbHPO4 and Pb3(PO4)2. It was further confirmed that
phosphate had a good curing effect on lead ions. The hydration process could be
deduced and evidenced by the changes in the content of the hydration products.
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