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Abstract: Previous studies on the co-combustion of sludge and coal have not effectively utilized the
characteristics of the combustion process to predict thermal behavior. Therefore, focusing on these
combustion process characteristics is essential to understanding and predicting thermal behavior
during the co-combustion of sludge and coal. In this paper, we use thermogravimetric analysis to
study the co-combustion of coal and sludge at different temperatures (300–460 ◦C, 460–530 ◦C, and
530–600 ◦C). Our findings reveal that the ignition improves, but the combustion worsens with more
sludge. Then, we further employ curve extraction based on temperature and image segmentation to
extract the DTG (weight loss rate) curves. We successfully predicted the DTG curves for different
blends using nonlinear regression and curve extraction, achieving an excellent R2 of 99.7%. Moreover,
the curve extraction method predicts DTG better than artificial neural networks for two samples in
terms of R2 (99.7% vs. 99.1% and 99.7% vs. 94.9%), which guides the application of co-combusting
coal and sludge.

Keywords: sludge co-combustion; thermal behavior; prediction; thermogravimetric curve extraction
(TCE); artificial neural networks (ANN)

1. Introduction

The co-disposal of sludge in pulverized coal boilers is an effective approach to
rapidly and safely disposing of sludge, with benefits such as energy recovery and re-
source utilization [1,2]. The co-combustion of sludge with coal is currently employed as
a viable method to convert dried sludge into higher-value fuels or chemicals. This co-
combustion process offers specific advantages, such as substituting fossil fuels and
mitigating CO2 emissions [3]. However, several studies have investigated the co-
combustion behavior of sludge and coal due to their varying combustion characteristics.
Kang et al. [4] revealed that blending sewage sludge with coal has positive economic ben-
efits. Yang et al. [5] found that co-combusting coal gangue and sewage sludge improves
ignition performance and reduces SO2 and NOx emissions. Fu et al. [6] studied heavy
metals’ thermochemical, kinetic, and emission behaviors during the co-combustion of
industrial coal slime and sewage sludge. Results showed that the mixture has synergistic
combustion properties, and adding sludge improves ignition performance. Moreover,
the optimal synergistic effect of the mixture is achieved when the sludge addition ra-
tio is 20%. Due to the complex composition of sludge, its combustion characteristics
vary when mixed with different types of coal. This makes it challenging to accurately
characterize the combustion process and optimize the actual conditions.

Thermogravimetric analysis (TGA) is a technique used to study fuel characterization
by rapidly assessing combustion characteristics such as ignition temperature, maximum
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mass loss rate, and burn-up temperature. Merdun et al. [3] used TGA to study the
co-combustion behavior of sewage sludge and lignite coal and determine the optimal
mixing ratio. Wang et al. [7] used TGA to evaluate the synergistic effect of municipal
sewage sludge and coal slime and found that the effect peaked when the coal slime
ratio reached 40%. However, such studies require complex experiments to determine
co-combustion characteristics, leading to significant time and economic costs in practical
engineering applications. In the study of the co-combustion characteristics of coal and
sludge, researchers quickly obtained the combustion parameters of the mixture according
to the thermogravimetric curve [8].

Curve extraction employs specialized algorithms to recognize and process curve
images to derive corresponding data. As computer technology increasingly integrates
into various fields, curve extraction has found widespread applications in numerous
areas. Xiao et al. [9] proposed a multi-time-frequency curve extraction algorithm to
extract the characteristic frequency of instantaneous faults in variable-speed bearings.
Yochum et al. [10] proposed a method for curve generation based on the continuous
wavelet transform. The development of computer technology has facilitated the easy
storage and retrieval of numerous thermogravimetric curves from databases. However,
most studies on coal and sludge co-combustion do not include research on predicting
thermal behavior based on thermogravimetric curves, instead focusing on experimental
analysis. This limits the full utilization of the vast amount of data in the current database.
Thermogravimetric curve extraction (TCE) based on image segmentation technology
allows the conversion of thermogravimetric curve data into numerical form. This enables
the estimation of thermal behavior during coal and sludge co-combustion reactions. As
a result, this approach can offer valuable insights for practical engineering applications,
which can considerably reduce the time and economic costs associated with the practical
application process.

Prediction methods for thermal behavior mainly involve simulation and intelligent
algorithms, except for TCE. Simulation models utilize mechanism functions or simulation
software, which require extensive calculations and complex processes and rely on select-
ing mechanism functions for result accuracy. On the other hand, intelligent algorithm
prediction, such as artificial neural networks (ANN) [11], does not require an in-depth
understanding of the reaction process mechanism. ANN is often implemented to handle
nonlinear problems and predict unknown data [12–14]. There have been numerous studies
on the applications of ANNs in the field of thermal analysis. However, it is important to
note that the current utilization of ANNs in this field still has room for significant devel-
opment [15]. Ni et al. [14] investigated the co-combustion of sewage sludge and peanut
shells and used ANN to predict experimental data. Yildiz et al. [16] used ANN to predict
the TG data of co-combusting hazelnut shells and lignite, proving the accuracy of TG data
predicted by the ANN model. Given its high accuracy and predictive advantages, this
study employs the ANN model to predict the weight loss rate (DTG) and complements the
results with TCE.

In this paper, we explored the co-combustion characteristics of sludge and coal and
initially predicted the DTG of their co-combustion using TCE. We investigated the com-
bustion characteristics of coal and sludge at various blending ratios through TGA. We
employed the curve extraction method to utilize the thermogravimetric curve of coal and
sludge. Subsequently, we developed a thermal behavior prediction model for their co-
combustion reaction using nonlinear regression. Compared with the ANN model, the TCE
method performs better in predicting DTG values for the two test samples in terms of the
R2 evaluation index (99.7% vs. 99.1% and 99.7% vs. 94.9%, respectively).

2. Materials and Methods
2.1. Raw Material

In this study, coal and sludge samples were collected from a coastal city and a power
plant, respectively. The collected samples were dried at room temperature and subsequently
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crushed, sieved, and mixed to obtain the desired compositions. Specifically, the mixture
percentages included 0%, 5%, 7%, 10%, 15%, 20%, 30%, 50%, and 100%, which were named
ZC, SS5, SS7, SS10, SS15, SS20, SS30, SS50, and SS, respectively. Table 1 shows the proximate
and ultimate analyses of ZC and SS. SS was found to contain high levels of volatile matter
and ash but low levels of fixed carbon, while ZC exhibited low ash content and high
fixed carbon and volatile matter content. In addition, the ratios of C/H and V/FC in SS
were determined to be 6.49 wt.% and 165.85 wt.%, respectively, whereas ZC had ratios of
15.22 wt.% and 0.87 wt.%, respectively. Therefore, SS showed better ignition performance
compared to ZC.

Table 1. Proximate and ultimate analysis.

Sample
Proximate Analysis (wt.%) Ultimate Analysis (wt.%)

M A V FC V/FC C H N S O C/H

SS 2.60 63.63 33.57 0.20 167.85 12.07 1.86 1.41 0.23 18.20 6.49
ZC 1.68 3.63 44.06 50.63 0.87 70.75 4.65 1.57 0.55 17.17 15.22

2.2. Thermogravimetric Experiment

The TGA/DSC3+ simultaneous thermal analyzer with a temperature accuracy of
±5 ◦C was employed for thermogravimetric analysis. The experiment was conducted at
a constant air flow rate of 50 mL/min. During the process, an 8 mg sample was heated
from room temperature to 900 ◦C at a single rate of 20 ◦C/min [17,18]. Table 2 displays
the experimental conditions employed in the thermogravimetric analysis.

Table 2. Thermogravimetric experiment conditions.

Condition Value

Temperature room temperature ~900 ◦C
Temperature accuracy ±5 ◦C

Sample quality 8 mg
Heating rate 20 ◦C/min.
Air flow rate 50 mL/min

The comprehensive combustion characteristic index, S, is introduced to compare the
combustion performance of sludge, coal, and their mixtures.

S =
(|dw/dt|)max(|dw/dt|)mean

T2
i Tb

(1)

where (|dw/dt|)max is the maximum rate of weight loss (wt.%/s−1), (|dw/dt|)mean is the
average rate of weight loss (wt.%/s−1), and Ti is ignition temperature (◦C), determined
by the TGA tangent method. Tb is the burnout temperature (◦C), at which the mass loss
reaches 98%.

2.3. Thermogravimetric Curve Extraction

In this paper, the TCE method consists of three steps: curve grayscale, threshold
segmentation, and curve digitization. Curve grayscale converts the original curve image
into grayscale format. Thresholding separates the curve from the background in a grayscale
image by assigning pixels as the background or curve based on a specified threshold. This
separation allows the extraction of the curve, enabling subsequent processing and analysis.
And curve digitization converts the extracted curve into numerical data. Figure 1 illustrates
the TCE process.
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Figure 1. The TCE process.

Since the thermogravimetric curves had multiple colors, the color information of the
thermogravimetric curves was not relevant to the present study. Hence, it was necessary to
convert the thermogravimetric curve into grayscale, and the grayscale conversion algorithm
is shown in Equation (2).

Gray = 0.299R + 0.587G + 0.144B (2)

where Gray, R, G, and B are grayscale pixel values, red pixel values, green pixel values, and
blue pixel values, respectively.

Threshold segmentation was used to separate the thermogravimetric curve and the
coordinate axis from the background. The threshold segmentation algorithm is shown
in Equation (3).

g(x, y) =
{

1 f (x, y) ≥ t
0 f (x, y) < t

(3)

where (x, y) is pixel coordinates, f (x, y) is pixel value, and t is the threshold.
Finally, the extracted points on the image matrix needed to be converted into coordi-

nate values of the thermogravimetric curve by Equation (4).{
Y = ∆Y

n y
X = ∆X

m x
f (x, y) = 1 (4)

where X and Y are abscissae and ordinate values of the thermogravimetric curve. ∆X
and ∆Y are the lengths of the horizontal and vertical axes of the thermogravimetric curve,
respectively. n and m are the number of rows and columns of the image matrix.

2.4. Artificial Neural Networks

Artificial neural networks (ANNs) are a type of data-driven approach used to deter-
mine nonlinear relationships between input and output variables. They are widely used
in simulating physical systems by applying neural network structures and recognizing
patterns in a system after learning from a set of training data. The basic structure of an
ANN consists of three independent layers: input, hidden, and output. In this paper, the
ANNs used had one input layer, two hidden layers, and one output layer. The input layer
consists of temperature and mixing ratio, and DTG (the weight loss rate) was set as the
output layer. The activation function used for the hidden layer was the rectified linear unit
(ReLU) function, and the optimal number of hidden layers was determined using a grid
search. The number of iterations was set to 1000 steps, and the batch size was set to 64.
An early stop strategy was implemented to prevent overfitting, whereby training stopped
and the model was saved when the loss value stopped decreasing for 10 rounds with the
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validation set. The mean squared error (MSE) loss function was used, with default values
for all other parameters. The performance of the ANN model was evaluated using mean
absolute error (MAE), MSE, and R-squared (R2). The best ANN model had a high R2 value
and small MSE and MAE values [19].

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (5)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (6)

R2 =
∑(ŷi − y)2

∑(yi − y)2 (7)

where ŷi is the value of prediction, yi is the observed value, and y is the mean of all
observed values.

3. Results and Discussion
3.1. Co-Combustion Characteristics

During the experiment, TG represents the total mass loss of the samples, while DTG
represents the rate at which the mass loss occurs. Figure 2 displays the TG and DTG curves
of sludge and coal, and their different combustion characteristics are obvious. There are
four weight loss stages observed in sludge. The initial stage of weight loss (before 200 ◦C)
is caused by the volatilization of free water and chemically bound water [20]. The second
stage (200–400 ◦C) is primarily caused by the combustion of volatiles. The third stage
exhibits a shoulder peak between 400–600 ◦C, which is primarily because the combustion of
semi-volatile substances lags behind that of volatile substances. Fixed carbon and refractory
organic matter are primarily combusted at the fourth stage (600–730 ◦C) [21]. The weight
loss behavior of coal is similar to that of sludge at temperatures below 200 ◦C. However,
the DTG curve of coal only shows a weight loss peak after 200 ◦C due to the combustion
of volatile and fixed carbon in coal, which has no obvious boundaries. Fixed-carbon
combustion becomes prevalent at this stage. Additionally, the TG curves of both sludge
and coal slightly rise during the initial heating stage due to oxygen chemisorption on the
sample surface.
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The TG and DTG curves of the sludge–coal mixture lie between those of sludge and
coal and progressively shift towards coal as the percentage of sludge decreases. Within
the temperature range of 200 ◦C to 410 ◦C, the weight loss rate of the mixture escalates
as the proportion of sludge rises, primarily due to the incineration of sludge volatiles at
this temperature. This enhances the reaction intensity of thermal decomposition at lower
temperatures [22]. After that, the weight loss rate of the mixture dwindles with an increase
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in the percentage of sludge in the mixture, owing to the relatively low volatility and fixed
carbon content of the sludge. When the blending ratio of the sludge is less than 15%, there
is no significant difference between the weight loss of the blend and that of coal. At this
point, the mixture is dominated by coal, and the influence of sludge is minimal. However,
the weight loss of the mixture decreases significantly when the blending ratios are greater
than 15%.

In addition, the combustion characteristics of the mixture are similar to those of coal,
but more minerals are present in the residual residue after the sludge co-combustion.
According to the DTG curve, the peak of the mixture before 600 ◦C is similar to coal.
With the increase in the sludge blending ratio, the peak of the mixture gradually shifts to
the right, accompanied by a decrease in its magnitude. This suggests that the addition of
sludge reduces the combustion intensity of coal. Notably, when the blending ratio of
sludge exceeds 30%, the DTG curve exhibits a prominent peak after 600 ◦C. This peak
primarily arises from the decomposition and combustion of refractory organic matter
present in the sludge.

Table 3 shows the combustion characteristics of the samples. The ignition temperature
of ZC surpasses the ignition temperature of SS by 126.768 ◦C, indicating that sludge
undergoes pyrolysis and combustion at lower temperatures compared to coal. This is
because the chemical bonds of organic compounds like proteins and carbohydrates in
sludge are weaker than those in coal [7]. Consequently, these compounds undergo thermal
decomposition and combustion reactions at lower temperatures, as reported in previous
studies [23,24]. Furthermore, the ignition temperature decreases significantly as the sludge
blending ratio increases. The addition of sludge contributed to the reduction in the ignition
temperature of the mixture, and it has a significant beneficial effect on coal-fired boiler
ignition. However, the increase in the sludge blending ratio leads to a significant decrease
in the comprehensive combustion index, from 10% at 9.14 × 10−9 wt.%2/(◦C3s2) to 50% at
4.56 × 10−9 wt.%2/(◦C3s2). This indicates that excessive sludge incorporation results in a
decrease in the comprehensive combustion performance of the mixture.

Table 3. The combustion characteristic parameters.

Sample S×109 (dw/dt)max (dw/dt)mean Ti Tb Tmax

ZC 10.67 0.193 0.053 393.53 617.17 470.62
SS5 8.53 0.152 0.054 391.93 615.88 481.23
SS7 8.26 0.143 0.054 389.88 608.80 492.82

SS10 9.14 0.158 0.054 389.19 612.35 511.66
SS15 6.83 0.136 0.045 384.19 612.03 525.77
SS20 7.77 0.140 0.050 383.04 611.71 513.61
SS30 7.23 0.149 0.048 380.76 682.63 497.50
SS50 4.56 0.123 0.037 374.64 703.64 512.11

SS 1.56 0.044 0.019 266.76 750.21 312.21

3.2. Thermogravimetric Curve Extraction

The thermogravimetric curves of sludge and coal were extracted to further discuss
the synergistic effect of the co-combustion of sludge and coal and fully use the ther-
mogravimetric curve data. It can be seen from Figure 3 that the extracted results are
consistent with the experimental curve. Figure 4 shows the co-pyrolysis experimental
curve and theoretical calculation curve. The theoretical calculation curve is obtained by
the linear addition of the TCE results for sludge and coal. The equation for this process
is represented as Equation (8):

DTGTheory,mix = (1− p)DTGTheory−ZC + pDTGTheory−SS (8)

where DTGTheory-ZC and DTGTheory-SS are the TCE results of coal and sludge, respectively,
and p is the blending ratio of SS.
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Figure 4. Theoretical calculation and experimental curves of SS blending ratios of 5%, 15%,
30%, and 50%.

Figure 4 shows the combustion characteristics of the sludge–coal mixture and
reveals a remarkable synergistic effect. The extent of the synergistic effect varies with the
blending ratio of sludge and coal. Notably, the synergistic effect of co-combustion has a
differential impact on various temperature ranges, consistent with earlier findings [25,26].
Coimbra et al. [25] studied the synergistic effect between sludge and coal by comparing
theoretically calculated curves with experimental curves. They found that the synergistic
effect is affected by the temperature range and blending ratio.
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3.3. Thermal Behavior Prediction
3.3.1. TCE

Figure 3 shows ∆DTG of the theoretical calculation curve and experimental curve,
∆DTG obtained by Equation (9):

∆DTG = DTGExperiment − DTGTheory (9)

where DTGExperiment and DTGTheory are the experimental curves and theoretical calculation
curves, respectively.

The deviation between the theoretically calculated and experimental curves was
primarily influenced by the temperature and blending ratio of sludge and was most
pronounced within the range of 300–600 ◦C. The synergistic effect exhibited a slight
inhibition on the pyrolysis of sludge and coal within the temperature range of 300–460 ◦C,
which can be attributed to the influence of sludge pyrolysis products. Sludge tar is
one of the main products of sludge pyrolysis [27]. During co-combustion, viscous tar
produced by sludge may adhere to the coal surface and hinder the precipitation of
volatiles. However, as volatiles continue to decompose and the tar gasifies during the
pyrolysis process, the inhibitory effect gradually disappears. Within the temperature
range of 460–600 ◦C, the synergistic effect mainly promotes co-combustion due to the
promotion of fixed carbon combustion. This promotion is mainly influenced by the
inorganic components in sludge. The combustion rate of fixed carbon is related to
oxygen absorption. During combustion, metal and semi-metal components can capture
atmospheric oxygen through surface cavities, accelerating oxygen transfer to the fixed
carbon surface and increasing the combustion rate.

The blending ratio and temperature influence the synergistic effect of the mixture.
Hence, a nonlinear regression DTG curve prediction model is established based on the
DTG curve error analysis.

0 < p < 30%
DTGpre = (1− p)DTGTheory−ZC + pDTGTheory−SS + G1(T) 290◦C < T ≤ 460◦C
DTGpre = (1− p)DTGTheory−ZC + pDTGTheory−SS + ρG2(T) 460◦C < T ≤ 530◦C
DTGpre = (1− p)DTGTheory−ZC + pDTGTheory−SS + ρG3(T) 530◦C < T ≤ 580◦C

(10)

30% < p < 50%{
DTGpre = (1− p)DTGTheory−ZC + pDTGTheory−SS + G4(T) 425◦C < T ≤ 515◦C
DTGpre = (1− p)DTGTheory−ZC + pDTGTheory−SS + ρG5(T) 515◦C < T ≤ 570◦C

(11)

where DTGTheory-ZC and DTGTheory-SS are the TCE results of ZC and SS, respectively. p is
the blending ratio of SS, ρ is the correction factor, and ρ = 1 + p and G1(T)–G5(T) are
temperature-dependent correction curves, as shown in Figure 5.

The synergistic effect of co-combustion of coal and sludge mainly occurs in the tem-
perature range of 300 ◦C to 600 ◦C. The prediction results are shown in Figure 6. The
agreement between the experimental and predicted DTG curves in the temperature range
of 300 ◦C to 600 ◦C confirms the model’s accuracy. Table 4 presents the prediction results
of (|dw/dt|)max, Tmax, and R2. The R2 values of the model are greater than 96.5%, and the
maximum errors of (|dw/dt|)max and Tmax are 2.76% and 2.21%, respectively. These results
demonstrate the ability of the model to predict the reaction characteristics of sludge and
coal co-combustion.

3.3.2. ANN Models

The commonly used data split ratio is 8:2, which ensures a balanced division between
the training and validation sets. To ensure representative sampling, two data sets (SS7 and
SS30) were randomly selected as the testing sets. Therefore, the combustion data were
divided into two groups, with 80% used for training and 20% (SS7 and SS30) used for
testing. Before training, the min–max normalization technique was adopted. Table 5 shows
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the MSE, MAE, and R2 of different ANN models. The second column (layer size) indicates
the number of neurons in the respective layers. Among these models, ANN 24 achieved
the smallest MSE (0.000467) and MAE (0.010857), as well as the largest R2 value (0.9746). It
is important to note that prediction accuracy tends to be low when the number of neurons
is small or when there is a large difference in the number of neurons between the hidden
layers, as mentioned in previous studies [14,16]. The model accuracy has increased but
has leveled off or even overfitted [28,29] as the number of neurons increases. ANN 24
could be considered the best neural network model for predicting the DTG of CC and
ZC. Figure 7 shows the experimental values of SS7 and SS30 and the predicted values
predicted by ANN 24. Table 6 shows the prediction results of (|dw/dt|)max, Tmax, and the
regression coefficients R2. Notably, the neural network model exhibits significantly worse
performance within the temperature range of 400–530 ◦C compared to other temperature
ranges. This temperature range is the most intense phase of combustion [30] and has
significant variations in DTG for different mixture ratios, which results in the highest
prediction deviation.
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Table 4. The TCE prediction results of (|dw/dt|)max, Tmax, and R2.

Sample (|dw/dt|)max (wt.%/s) Tmax (◦C) R2

SS5
Predicted value −0.148 487.12

99.3%Error (%) 2.76 1.22

SS7
Predicted value −0.146 495.39

99.7%Error (%) 2.01 2.48

SS15
Predicted value −0.137 517.72

99.6%Error (%) 1.03 1.53

SS20
Predicted value −0.141 524.50

97.4%Error (%) 0.50 2.21

SS30
Predicted value −0.147 503.67

99.7%Error (%) 2.65 0.31

SS50
Predicted value −0.122 506.68

96.5%Error (%) 0.89 1.06
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Table 5. The performance comparisons of the artificial neural network model.

Model Layers Size MSE MAE R2

ANN 1 (2, 8, 1) 0.00104 0.022132 0.9433
ANN 2 (2, 16, 1) 0.001064 0.019928 0.942
ANN 3 (2, 32, 1) 0.017427 0.09442 0.0501
ANN 4 (2, 64, 1) 0.017925 0.096915 0.023
ANN 5 (2, 128, 1) 0.013364 0.072531 0.2716
ANN 6 (4, 8, 1) 0.000991 0.020615 0.946
ANN 7 (4, 16, 1) 0.001184 0.019918 0.9355
ANN 8 (4, 32, 1) 0.001295 0.021509 0.9294
ANN 9 (4, 64, 1) 0.001787 0.022526 0.9026
ANN 10 (4, 128, 1) 0.00101 0.018309 0.945
ANN 11 (8, 8, 1) 0.00115 0.021255 0.9373
ANN 12 (8, 16, 1) 0.000723 0.015966 0.9606
ANN 13 (8, 32, 1) 0.001363 0.020865 0.9257
ANN 14 (8, 64, 1) 0.000961 0.0179 0.9476
ANN 15 (8, 128, 1) 0.001038 0.017388 0.9434
ANN 16 (16, 8, 1) 0.00126 0.019521 0.9313
ANN 17 (16, 16, 1) 0.001354 0.019959 0.9262
ANN 18 (16, 32, 1) 0.000931 0.016625 0.9492
ANN 19 (16, 64, 1) 0.000983 0.018556 0.9464
ANN 20 (16, 128, 1) 0.001179 0.021205 0.9357
ANN 21 (32, 8, 1) 0.001418 0.022844 0.9227
ANN 22 (32, 16, 1) 0.000711 0.015996 0.9613
ANN 23 (32, 32, 1) 0.001004 0.01887 0.9453
ANN 24 (32, 64, 1) 0.000467 0.010857 0.9746
ANN 25 (32, 128, 1) 0.000948 0.018843 0.9483

Table 6. The ANN24 prediction results of (|dw/dt|)max, Tmax, and R2.

Sample (dw/dt)max (wt.%/s) Tmax (◦C) R2

SS7
Predicted value −0.153 516.15

99.1%Experimental value −0.149 507.99
Error (%) 2.68 1.61

SS30
Predicted value −0.136 488.77

94.9%Experimental value −0.151 502.13
Error (%) 9.93 2.66

Figure 7 demonstrates that ANN 24 fits DTG experimental values well at different
blending ratios (7% and 30%), with R2 values reaching 94% and 99%, respectively. Al-
though the ANN model can predict effectively after training, the TCE method outperforms
the ANN model in predicting DTG values, as indicated in Table 3. In SS7 samples, the
(|dw/dt|)max and Tmax errors of ANN 24 are higher than those of the proposed method
(2.68%, 1.61%, 2.01%, and 2.48%, respectively). In contrast, R2 values are lower (99.1%
vs. 99.7%). Similarly, in SS30 samples, the (|dw/dt|)max and Tmax errors of ANN 24 are
higher than those of the proposed method (9.93%, 2.66%, 2.65%, and 0.31%, respectively),
while R2 values are lower (94.9% vs. 99.7%). Therefore, the TCE method has a relatively
higher prediction accuracy than the ANN model in predicting DTG values for sludge
co-combustion. At the same time, while ANN models use large data for model training [31],
the TCE method needs fewer data and is interpretable in the prediction process. However,
the ANN model has a simpler prediction process and is suitable when large amounts of
data are available and fast prediction is required.
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4. Conclusions

This paper investigated the prediction of sludge and coal co-combustion characteristics
using thermogravimetric curve extraction and artificial neural network models. These were
not presented before in the study about the co-combustion characteristics and prediction
of SS-ZC. The co-combustion characteristics of SS-ZC were studied, and the combustion
synergistic effect was different in the temperature ranges of 300–460 ◦C, 460–530 ◦C, and
530–600 ◦C. Therefore, based on the curve extraction and TGA, a nonlinear regression
thermal behavior prediction model for coal and sludge co-combustion was proposed, in
which the R2 of DTG prediction results under different sludge blending ratios was greater
than 96.5%. In addition, the errors of the peak and peak temperatures of the predicted and
experimental curves were calculated. The maximum for different sludge blending ratios
was 2.76% and 2.21%, respectively. Finally, compared with the artificial neural network, the
proposed method better predicted DTG values for SS7 and SS30 samples in terms of the R2

evaluation index (99.7% vs. 99.1% and 99.7% vs. 94.9%, respectively). This shows the TCE
method has relatively higher prediction accuracy than the ANN model in predicting DTG
values for sludge co-combustion.

The results obtained will help to further understand the co-combustion process of
SS-ZC and provide reference and guidance for the operation of incinerators blended with
sludge. Therefore, future research can be conducted to explore co-combustion prediction
using alternative methods such as LSTM and image recognition techniques. Moreover,
based on the accuracy of the co-combustion characteristics prediction, further investiga-
tion can be carried out to forecast the operating conditions and other parameters of the
incinerator, leading to the optimization of incinerator control.
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Nomenclature

TGA Thermogravimetric analysis M Moisture, wt%
TCE Thermogravimetric curve extraction A Ash, wt%
ANN Artificial neural networks V Volatile matter, wt%
DTG The weight loss rate FC Fixed carbon, wt%
MAE Mean absolute error C Carbon, wt%
MSE Mean squared error H Hydrogen, wt%
TG The total mass loss N Nitrogen, wt%

ZC
The mixture

S Sulfur, wt%
(0% sludge and 100% coal)

SS
The mixture

O Oxygen, wt%
(100% sludge and 0% coal)
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