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Abstract: Pipelines are the most economical and sensible way to transport oil and gas. Long-distance
oil and gas pipelines consist of many steel pipes or pipe fittings joined by welded girth welds, so
girth welds are an essential part of pipelines. Owing to the limitations of welding conditions and
the complexity of controlling weld quality in the field, some defects are inevitably present in girth
welds and adjacent weld areas. These defects can lead to pipeline safety problems; therefore, it is
necessary to perform failure risk assessment of pipeline girth welds. In this study, an artificial neural
network model was proposed to predict the failure risk of pipeline girth welds with defects. Firstly,
many pipeline girth weld failure cases, pipeline excavation, and inspection data were collected and
analyzed to determine the main factors influencing girth weld failure. Secondly, a spatial orthogonal
optimization method was used to select training samples for the artificial neural network model to
ensure that the training sample set could cover the feature space with a minimum number of samples.
Thirdly, a prediction model based on BP neural networks was established to predict the failure risk
levels. The training dataset/testing dataset was 602/4215, and the prediction accuracy for all risks of
girth welds achieved an acceptable level. This study can provide a valuable reference for pipeline
operators to prevent pipeline accidents.

Keywords: pipeline; girth welds; sample selection; failure risk

1. Introduction

Oil and natural gas are the most common energy sources. Compared with railway and
road transportation, pipelines are still the safest and most efficient oil and gas transportation
mode. However, with increasing energy demand, more and more long-distance oil and gas
pipelines are being used [1–5]. Long-distance pipelines consist of a large number of steel
pipes or fittings connected by girth welds formed by welding, including arc welding [6],
manual welding, fully automatic welding, etc.

Owing to the limitations of welding technical conditions and the complex control of
field construction quality, various welding defects, such as cracks, air holes, slag inclusion,
incomplete fusion, and excessive residual stress [7], are inevitable in the girth welds and
the adjacent weld areas [8–10]. Under the service conditions, girth welds may become a
relatively weak part in pipeline structures, which are easy to crack or even break, causing
a large amount of leakage of oil and natural gas and sudden and catastrophic accidents,
such as fires and explosions [11]. The causes of pipeline girth weld failure include poor
welding quality, corrosion and corrosion fatigue, third-party damage, soil movement, and
so on. The Myanmar–China pipeline once leaked and exploded due to the weak quality of
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girth welds, resulting in 24 people being injured. It is urgent that the safety risks of pipeline
girth welds are investigated, and the existing investigation is mainly based on the results
of internal the inspection of magnetic flux leakage, negative reassessment, and directional
sampling. However, the length of China’s pipelines exceeds 40,000 km and there are more
than 3 million welds, so the workload is large and high-risk welds cannot be effectively
found.

At present, many studies have focused on the failure prediction of pipelines, including
failure risk [12], failure probability and reliability [13], failure consequences [14], failure
types [15], failure rate [16], failure pressure [17,18], and others. These include qualitative,
quantitative, and semi-quantitative assessment methods. For instance, Markovki and
Mannan [19] developed risk-assessment methods for oil and gas pipelines through fuzzy
logic and fuzzy rule-based systems. Shahria and Sadiq [20] developed a sustainability
assessment method based on fuzzy tie analysis for oil and gas pipeline risk analysis.

As computing power continues to advance, researchers are showing growing interest
in computer simulation and intelligent approaches. Within the safety risk field, machine
learning methods have received widespread application. Kumari [21] developed a com-
prehensive risk prediction model. They selected the influencing factors and established
an artificial neural network model to predict the causes and consequences of accidents,
according to the importance of corrosion-induced pipeline accidents. Ren [22] developed a
BPNN prediction model using the mileage, height difference, inclination angle, pressure,
and Reynolds number of a natural gas pipeline as input parameters and the maximum
average corrosion rate of the pipeline as the output parameter. The results showed that the
model had good fitting accuracy and prediction results. Li [23] established an improved
SVR model to predict subsea crude oil pipeline corrosion effectively. The model will
serve as a valuable online tool to support the safety and digitalization of process systems.
Cai et al. [24] used ANN, SVM, and linear regression to develop a prediction model of the
strength of pipes containing corrosion defects. However, all these studies focused on whole
pipes, rather than welds.

For girth welds, Chang [25] used a numerical simulation method based on the Gurson–
Tvergaard–Needleman (GTN) model to analyze the crack initiation and dynamic fracture
behavior of a welded pipe under pure bending load. Wu et al. [26]. investigated the effects
of the crack size, pipe diameter–thickness ratio, and material parameters on the fracture
assessment accuracy of pipe girth welds based on the failure assessment diagram theory
and the equivalent stress–strain relationship method. He [27] established a numerical
simulation model of the stress-induced magnetic signal of a girth weld with unequal wall
thickness and used the model to calculate and analyze the quantitative variation law of
the magnetic gradient signal of a girth weld. The current studies on girth welds focus
on the failure mechanism, detection and evaluation, and repair technology, with some
research on failure risk prediction. Fortunately, a large amount of data on girth weld
construction, operation, failure, and testing accumulated during the construction and
operation of pipelines, which provides strong support for the further study of the risk
prediction of pipeline girth welds [28,29].

This study uses a large amount of collected girth weld failure data to conduct risk
prediction model research. The focus is on (1) the identification of failure factors of oil
and gas pipeline girth welds; (2) the use of a spatially orthogonal optimal method to
purposefully select samples with an extreme imbalance in data distribution; and (3) the use
of artificial neural networks to construct a pipeline girth weld failure risk prediction model.

The remainder of this paper is organized as follows: Section 2 focuses on the collection
and preprocessing of pipeline girth weld failure data. Section 3 proposes a sample data
selection method based on a spatially orthogonal optimal method. Section 4 describes the
construction of the failure risk prediction model based on a neural network. In Section 5,
influence factor analysis, model prediction performance, and sensitivity analysis are carried
out. Section 6 concludes the paper.
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2. Data Collection and Preprocessing
2.1. Data Sources

According to pipeline girth weld failure cases and field inspection data, a lot of girth
failure sample data in this study were collected. These samples were classified into three risk
levels, high, medium, and low, based on the service conditions of the welds. The samples
that failed or required replacement were defined as high-risk welds, those that required
repair, rather than replacement, were defined as medium-risk welds, and others as low-risk.
It was found that most of the available data samples focused on X70 and X80 steel pipes;
therefore, the prediction model was applied to these two pipe types. Table 1 shows the
basic information of the samples.

Table 1. The numbers and risk levels of the collected raw girth weld samples.

Risk Level Data Sources Number X70 Steel
Number

X70 Steel
Propor-

tion

X80 Steel
Number

X80 Steel
Propor-

tion

X70 and
X80 Pro-
portion

High risk Failed welds 86 15 17% 29 34% 51%

Medium risk Excavation and repair of
welded joints 2905 313 11% 2039 79% 90%

Low risk Excavation without repair of
welded joints 24,773 4365 18% 17,140 69% 87%

2.2. Influencing Factors and Normalization

Many factors affect the failure risk of girth welds in oil and gas transmission pipelines,
but the industry generally agrees that the three key factors are the pipe materials and
properties, weld defects, and loads [26,30]. Based on the samples collected, the factors that
cause girth weld failures can be divided into three categories: pipe type and performance-
related indicators, defect-related indicators, and load-related indicators. Table 2 shows
the details of the indicators and their normalization. There are 20 specific indicators of
girth weld failure risk. These indicators need to be normalized to make them valid training
samples for machine learning models. Some of these factors, such as the welding process,
repair, and defect type, are Boolean or enumerated types and require special normalization
methods, as shown in Table 2.

Figure 1 shows the effects of some main factors on the failure of the pipeline girth
welds. From Figure 1a, it can be found that the percentage of girth weld failures for pipe
diameters above 900 mm was 36%, 26% for pipe diameters from 600 mm to 900 mm and
300 mm to 600 mm, and 12% for pipe diameters below 300 mm. Figure 1b provides the
relationship between failed girth welds and wall thickness, and it can be seen that, in all
failure cases, the percentage of pipes with wall thicknesses of 10 mm and above was 65%,
while the percentage of those with wall thicknesses below 10 mm was 35%. Eighty-three
percent of the girth weld defects were located in the root of the welds (Figure 1c). Figure 1d
provides the circumferential distribution of defects; 48% of the defects were at the top of
the pipe (10 o’clock–2 o’clock) and 48% at the bottom of the pipe (4 o’clock–8 o’clock).
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Table 2. The indicators affecting the failure risks of the girth welds of pipelines.

Level I Indicators Level II Indicators Symbol Parameter Normalization
Method

Pipe material and
performance

Steel grade X1 X70;
X80

X70: 0
X80: 1

Diameter X2 D (D–1016)/(1219–1016)

Wall thickness X3/X4 t1; t2 (t–18.4)/(50–18.4)

Yield strength X5 σ (σ–485)/(700–485)

Toughness X6 CVN (CVN–20)/(300–20)

Welding process X7
Semi-automatic welding (SAW);

Manual welding (MW); Fully
automatic welding (FAW)

SAW: 1
MW: 0.5
FAW: 0

Construction in winter
or not X8 Yes or No Yes: 1

No: 0

Repaired or not X9 Yes or No Yes: 1
No: 0

Joint or not X10 Yes or No Yes: 1
No: 0

Fixed joint of not X11 Yes or No Yes: 1
No: 0

Welding defect

Defect Type X12 Volumetric; Planar;
Cracked

Cracked: 1
Planar: 0.5

Volumetric: 0

Defect position along
the depth direction X13 Outer surface; Interlayer;

Root

Root: 1
Outer surface: 0.5

Interlayer: 0

Defect position along
the circumference X14 S

2–4 and 8–10:1
10–2:0.5

4–8:1

Defect length X15 L L/πD

Defect height X16 a a/t2

Weld radiographic
grade X17 H H/4

Loading

Pressure X18 P P/12

Axial stress X19 Fixed joint; Elbow/Bend;
Normal

Fixed joint: 1
Elbow/Bend: 0.5

Normal: 0

Geological area X20 Located in a geologically
hazardous area

Yes: 1
No: 0
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 Figure 1. The effects of some main factors on the failure of the pipeline girth welds. (a) Relationship
between failed girth welds and pipe diameter. (b) Relationship between failed girth welds and wall
thickness. (c) Relationship between failed girth welds and location in the weld. (d) Relationship
between failed girth welds and circumferential distribution of defects.

2.3. Sample Extraction and Screening

According to the field data sources and the definitions of high-, medium-, and low-risk
samples, the format of each collected data sample was standardized. As many samples
in the original dataset were incomplete, it was necessary to clean and preprocess them to
obtain usable samples. The principle was that each data sample was complete, and the
outlier points in the data needed to be excluded during data cleansing and pre-processing.
After that, a total of 44 high-risk, 1823 medium-risk, and 2950 low-risk samples were
extracted and sorted, as shown in Table 3. Table 4 shows examples of the girth weld
samples.

Table 3. The samples extracted from the raw data.

Risk Level Source Welds from X70 Steel
Pipelines

Welds from X80 Steel
Pipelines

High risk Failure analysis 13 7
Cutting treatment 2 22

Medium risk

B-type sleeve 179 236
Epoxy sleeve 14 464

Composite material 30 866
Polishing treatment 7 27

Low risk

Level 1 weld junction 53 590
Level 2 weld junction 155 1863
Level 3 weld junction 29 251
Level 4 weld junction 0 9

Total / 482 4335
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Table 4. The examples of the girth weld samples.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 Risk
Level

X80 1219 18.4 555 60 SAW No 18.4 No No No Cracked Root 6.33 23.5 0.9 4 12 Elbow/Bend No High
X80 1219 15.3 555 60 SAW No 18.4 Yes Yes No Cracked Root 5.8 35 2.7 4 12 Elbow/Bend No High
X80 1219 18.4 555 60 SAW Yes 22 No No No Cracked Root 6 64 3.5 4 12 Elbow/Bend No High
X80 1219 18.4 555 60 SAW No 18.4 No No No Cracked Root 2.81 20 1 4 12 Elbow/Bend No High
X80 1219 18.4 555 60 SAW Yes 18.4 No No No Cracked Root 6 38 9.3 4 12 Normal No High
X80 1219 16.5 555 60 FAW No 16.5 No No No Planar Root 0.75 70 10 4 12 Normal No High
X70 1016 15.3 555 60 SAW No 15.3 No No No Cracked Root 4 48 0.2 4 10 Normal No High
X70 1016 15.3 555 60 SAW No 15.3 No No No Planar Root 11.94 39 2.67 4 10 Normal No Medium
X70 1016 18.4 555 60 SAW No 18.4 No No No Planar Root 4.78 65 2.8 4 10 Normal No Medium
X70 1016 15.3 555 60 SAW No 17.5 Yes No No Planar Outer surface 6.96 220 2.94 4 10 Elbow/Bend No Medium
X80 1219 18.4 555 60 MW No 18.4 No Yes No Planar Outer surface 5.58 40 1.5 4 12 Normal No Medium
X80 1219 18.4 555 60 MW No 18.4 No No No Volumetric Root 2.78 60 2 4 12 Elbow/Bend No Medium
X80 1219 22 555 60 MW No 22 No No No Planar Root 8.46 17 2.86 4 12 Elbow/Bend No Medium
X80 1219 18.4 555 60 SAW No 18.4 No No No Planar Root 0.05 8 2.4 4 12 Normal No Medium
X80 1219 18.4 555 60 MW No 18.4 No Yes No Volumetric Interlayer 3.95 4 1.2 2 12 Elbow/Bend No Low
X80 1219 18.4 555 60 MW No 18.4 No No No Volumetric Interlayer 6.27 0.9 1.1 1 12 Elbow/Bend No Low
X80 1219 18.4 555 60 MW No 18.4 No No No Volumetric Interlayer 0.97 8 1.7 2 12 Normal No Low
X80 1219 18.4 555 60 MW No 18.4 No No No Volumetric Interlayer 0 0 0 1 12 Normal No Low
X70 1016 18.4 555 60 SAW No 18.4 No No No Volumetric Interlayer 9.47 7 1.2 2 10 Normal No Low
X70 1016 15.3 555 60 SAW No 18.4 No No No Volumetric Interlayer 7.03 4 1.2 2 10 Normal No Low
X70 1016 15.3 555 60 SAW No 15.3 No No No Volumetric Interlayer 11.75 3 1.1 1 10 Normal No Low
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3. Selection of Training Samples

From the screened samples it, can be seen that there was a serious imbalance be-
tween the various types of risk welds. The number of high-risk welds was only 44, while
the number of low-risk welds was almost 3000, with huge differences between the num-
bers of welds of different risk levels. Whether linear regression or traditional neural
network training with randomly selected samples was used, the prediction results would
be heavily biased toward the higher number of risk types. To address this challenge,
this study proposed a spatially orthogonal optimal method for the targeted selection of
training samples.

Mathematically, it should be possible to successfully train a neural network using
training samples that contain most of the feature information and have minimal overall
linear correlation. Ideally, the training samples should be orthogonal to each other, so that
the training sample set can contain the maximum number of features with the minimum
number of samples. Therefore, the mathematical model for training sample set selection
can be expressed as Equation (1).

minC =∑i∈J;j∈J Vi·V j (1)

where J is the set of sample vector numbers in the training set and Vi is the i-th sample
vector. The solution objective of Equation (1) is J. Owing to the large number of samples,
it was difficult to produce a training set with the minimum overall linear correlation by
conventional methods. Therefore, this study proposes a training set selection algorithm
based on a heuristic method to achieve the overall correlation minimum. First, the sample
vector correlation matrix C (Equation (2)) could be constructed based on the sample vectors.

C =


V1V1 V1V2
V2V1 V2V2

. . . V1Vn

. . . V2Vn
. . . . . .

VnV1 VnV2

. . . . . .

. . . VnVn

 (2)

Let dij = ViVj; then, the algorithm for selecting the minimum correlation sample set
can be described as follows:

(1) Construct a set A Set =
{

dij
∣∣1 ≤ i; i < j ≤ N

}
and let J = {}. Determine the

number of training samples K;
(2) Search the smallest element dimin jmin in ASet and add its subscript (imin, jmin) to J,

then delete this element from ASet;
(3) Determine whether the number of elements in J (KN) is greater than or equal to K,

and if KN ≥ K, proceed to step (4); otherwise, proceed to step (2);
(4) Determine the corresponding Vim as the training sample based on the subscripts of J.

4. Establishment of Failure Risk Prediction Model
4.1. Prediction Model Selection

The results of the girth weld failure risk prediction were divided into three categories:
“high risk”, “medium risk”, and “low risk”. This means that risk prediction was actually
solving Equation (3).

r = g(c0, c1, . . . , cm−1) (3)

where c0, c1, . . . , cm−1 represent the corresponding indicators in Table 2. g is a mapping
relationship. r is the predicted result.

Owing to the complexity of the factors influencing the failure risk of girth welds, it
is extremely challenging to build a rigorous mathematical model to predict weld failure
risk. Machine learning is a potential alternative method because it can effectively mine
internal relationships and patterns from data. There are various methods for machine
learning, such as neural networks, support vector machines, and random forests. Artificial
neural networks (ANNs) [31,32] have powerful nonlinear mapping capability to analyze
any specific task, such as classification, prediction, and control, so it is a feasible approach to
construct an ANN-based girth weld failure prediction model using the collected actual data.
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In this study, a fully connected BP neural network was selected as the network architecture
for girth weld failure risk prediction. The general framework of the research methodology
is shown in Figure 2.
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4.2. Prediction Model Establishment

The back-propagation (BP) network [33] is a multilayer feed-forward neural network
whose neurons are passed as a Sigmoid function, which can achieve any nonlinear mapping
from input to output. It is called a BP network because the weights are adjusted using a
back-propagation learning algorithm. In the practical application of ANNs, the majority of
neural network models use BP networks and their variant forms [21]. A typical BP neural
network consists of an input layer, at least one hidden layer, and an output layer. Each
layer of the network is composed of neurons, represented by u = ∑ xiwi + b and y = f (u).
xi represents the neuron input and b represents bias. The f function generally takes the
Sigmoid function.

For the prediction of pipeline girth weld failure, the parameters involved are shown in
Table 2. The number of neurons in the input layer is the same as the number of dimensions
of the input parameters, which is 20. The number of nodes in the failure output layer is 3,
which are “high risk”, “medium risk”, and “low risk”.
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The number of hidden layers in neural networks and the number of nodes in the
hidden layers have a great impact on the prediction performance of networks [34]. If the
number is too small, the neural network cannot obtain enough information to solve the
prediction problem. If the number is too large, it will not only increase the learning time,
but also may have the problem of “overfitting”. In practice, a BP neural network is mostly
three layers with only one hidden layer. That is, the structure of the neural network for
girth weld failure risk prediction can be represented as Figure 3.
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By selecting the appropriate number of neurons in the hidden layer, the same mapping
effect as multiple hidden layers can be achieved. This study adopted a three-layer NN.
Before determining the number of hidden-layer neurons, the following speculation is given
first:

Speculation 1: As the number of inputs was 20, which was relatively small, the small
number of inputs may not fully capture all of the intricate patterns and dependencies
present in the data; therefore, a more complex network design is required to effectively
model the underlying relationships. The actual network structure required to achieve
accurate defect prediction is likely to be more complex than the theoretically optimal
network structure.

Speculation 2: For the three-classification pipeline failure risk prediction, the number
of hidden layer neurons is in the same order of magnitude as m × n, where m is the input
quantity dimension and n is the output quantity dimension.

Also, in order to make the neural network practical, the number of nodes in the hidden
layer should be less than N − 1 (N is the number of training samples); otherwise, the
systematic error of the neural network will tend to 0, independent of the characteristics of
the training samples, i.e., the neural network lacks generalization ability. In practice, the
number of training samples must be higher than the number of connection weights of the
network by 2 to 10 times. When the number of samples is not sufficient, the “rotational
training” method is generally used to obtain a reliable neural network. Therefore, the
number of neurons in the hidden layer is not only related to the prediction task, but is
also related to the number of training samples. In summary, the number of neurons in the
hidden layer is recommended to satisfy the following equation.{

O(n1) = O(m·n)
n1 ≤ N − 1

(4)

where n1 is the number of neurons in the hidden layer. For the prediction task in this study,
m = 20 and n = 3. According to speculations 1 and 2, it can be inferred that the minimum
number of hidden layer neurons was 10 and the maximum was 100, i.e., n1 ∈ [10, 100].
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This interval range was still relatively large. From Equation (4), it can be seen that the search
range of n1 could be further narrowed by determining the number of training samples.

From the perspective of statistics, it can be considered that the probability of selecting
the appropriate number of training samples K obeys a normal distribution,

f (K) =
e−

(K−µ)2

2σ2

σ
√

2π
(5)

This distribution is usually also denoted as K ∼ N
(
µ, σ2). From Equation (5), we can

derive µ ≈ 50. According to the “3σ criteria” in statistics, where almost all values of K are
concentrated within the [µ− 3σ, µ + 3σ], σ ≈ 10 can be inferred, i.e., K ∼ N

(
50, 102).

Taking a confidence level of 0.9, i.e., the sample size satisfies the training requirement
in 90% of cases, one has:

P(K < Kmax)� 0.9 (6)

where P is the probability function and Kmax is the maximum number of samples sufficient
to train the neural network.

Due to K ∼ N
(

50, 102
)

, it follows that

Kmax − 50
10

∼ N(0, 1) (7)

Knowing that ϕ(1.29) = 0.9015, then Kmax −50
10 ≈ 1.29, i.e., Kmax ≈ 63. As K obeys a

normal distribution, we can get Kmin ≈ µ− (Kmax − µ) ≈ 37. According to Equation (4), it
can be inferred that the number of neurons in the hidden layer is n1 ∈ [10, 35]. Considering
that the output of the network is three categories, n1 can be roughly determined to be 30 by
Speculation 1.

4.3. Training Algorithm

The training process of the BP neural network is mainly divided into two stages; the
first stage is the forward propagation of the signal, which passes from the input layer to
the hidden layer and finally reaches the output layer; the second stage is the backward
propagation of the error, which goes from the output layer to the hidden layer and finally to
the input layer, adjusting the weights and biases from the hidden layer to the output layer
and the weights and biases from the input layer to the hidden layer in turn. The derivation
of the specific training algorithm is shown in Appendix A.

During the training process, the algorithm will analyze the prediction model obtained
under the current training sample set. If it reaches the set accuracy, the algorithm will stop;
if it fails to reach the set accuracy, new training samples will be added. In this iterative
way, the trained model will reach the set classification accuracy. In this iterative way, the
training will stop until the trained model reaches the set accuracy.

There are many commonly used formulas for categorization metrics, such as accuracy,
precision, recall, etc. Here are the formulas for calculating the common classification metrics
based on true positive (TP), false positive (FP), true negative (TN), and false negative (FN):

Accuracy measures the overall correct predictions of the model, accuracy =
(TP + TN)/(TP + FP + TN + FN). Recall measures the proportion of correctly predicted
positive instances (true positives) out of all actual positive instances, recall = TP/(TP + FN). In
this paper, these two are equal; therefore, the term “accuracy” is used consistently throughout.

4.4. Sensitivity Analysis

Sensitivity analysis is a method for studying and analyzing the sensitivity of changes in
the state or output of a system (or model) to changes in system parameters or surrounding
conditions. Sensitivity analysis is often used in optimization methods to study the stability
of the optimal solution when the original data are inaccurate or changes occur. Sensitivity
analysis can also be used to determine which parameters have a greater effect on the system
or model.
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The conventional methods of sensitivity analysis are used by varying a particular input
on a fixed basis of all inputs and observing the change in output at that point. However, this
method does not work for practical nonlinear mapping systems. In the case of girth weld
failure risk prediction, for example, once the material of the pipe is changed, parameters
such as the pipe diameter, toughness, and design pressure will also change. Obviously, the
sensitivity analysis method that fixes other input values cannot obtain an accurate solution.
In this study, the analytical solution of the degree of influence of each input on the risk
prediction results is derived from the perspective of mathematical analysis.

As a BP neural network was used in the girth weld failure risk prediction, the sen-
sitivity of the output of the second layer o2

i2
to the input of the input layer z1

i1
can be

expressed as:
∂o2

i2
∂o1

i1

·
∂o1

i1
∂z1

i1

= s
(

z2
i2

)(
1− s

(
z2

i2

))
w1

i1i2 = ζ2
i2i1 (8)

The sensitivity of the output of the third layer o3
i3

to the input layer z1
i1

can be expressed as

∂o3
i3

∂z1
i1

= ∑N2
i2=1

∂o3
i3

∂o2
i2

·
∂o2

i2
∂z1

i1

= ∑N2
i2=1

∂o3
i3

∂o2
i2

· ζ2
i2i1 = ∑N2

i2=1 s
(

z3
i3

)(
1− s

(
z3

i3

))
· w2

i2i3 · ζ
2
i2i1 = ζ3

i3i1 (9)

The sensitivity of the output of the fourth layer o4
i4

to the input layer z1
i1

can be
expressed as:

∂o4
i4

∂z1
i1

= ∑N3
i3=1

∂o4
i4

∂o3
i3

·
∂o3

i3
∂z1

i1

= ∑N3
i3=1

∂o4
i4

∂o3
i3

· ζ3
i3i1 = ∑N3

i3=1 s
(

z4
i4

)(
1− s

(
z4

i4

))
· w3

i3i4 · ζ
3
i3i1 = ζ4

i4i1 (10)

By analogy, it can be inferred that the sensitivity of the output of the layer L to input
z1

i1
is:

∂oL
iL

∂z1
i1

= ∑NL−1
iL−1=1

∂oL
iL

∂oL−1
iL−1

·
∂oL−1

iL−1

∂z1
i1

= ∑NL−1
iL−1=1

∂oL
iL

∂oL−1
iL−1

· ζL−1
iL−1i1

= ∑NL−1
iL−1=1 s

(
zL

iL

)(
1− s

(
zL

iL

))
· wL−1

iL−1iL
· ζL−1

iL−1i1
= ζL

iLi1 (11)

The sensitivity of the input parameters on the output results can be calculated by the
above equation.

5. Results and Discussion
5.1. Influencing Factor Analysis

Spearman correlation analysis was adopted to determine the correlation between
influencing factors and failure risk. Figure 4 shows the correlation coefficients of influencing
factors with the failure risk of the girth weld. It can be seen that X1, X3, X4, X5, and X14
showed a negative correlation with the failure risk and others showed a positive correlation.
X17 (weld radiographic grade), X16 (defect height), X12 (defect type), X13 (defect position
along the depth direction), and X15 (defect length) had relative correlation coefficients with
the weld failure risk.

Figure 5 shows the correlation between the influencing factors in different sample
categories. The variability of the correlation coefficient matrices was not significant. X1
and X5, X1 and X6, X5 and X6, X12 and X13, X2 and X18, and X16 and X17 showed strong
correlations in all samples. Differently, there was a strong correlation between X1, X2,
X3, X5, X6, and X7 (all of these belong to pipe material and performance) in the high-risk
samples.
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5.2. Model Prediction Performance

The BP neural network used in this study contained three layers: an input layer of
20 neurons, a hidden layer of 30 neurons, and an output layer of 3 neurons. In the training
process, the initial number of training samples K was set to 10 and the learning rate was
set to 0.001. In the training process, the set classification accuracy was 80%. Owing to the
initial small number of samples, the training could not reach the set accuracy requirements,
and the program analyzed the prediction accuracy of the model for medium-, high-, and
low-risk data, respectively. If the prediction accuracy of a certain risk level failed to reach
the set accuracy, a new sample corresponding to the risk level was added to the training
set and the training would start again. Training did not stop until the model was able to
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achieve the set accuracy in the prediction of high, medium, and low risk levels. The final
count of training samples consisted of 25 high-risk samples, 247 medium-risk samples, and
330 low-risk samples.

Tables 5 and 6 show the evaluation of the prediction results of the model. It can be
seen that, in the presence of an extreme imbalance in the three risk levels of the samples,
a relatively accurate failure risk prediction could be achieved using the training sample
selection method and neural network architecture established in this study. The predic-
tion accuracy for all risks of girth welds was acceptable. In the case of high-risk welds,
the accuracy reached 73.7% with only 25 training samples. For further improving the
accuracy of the prediction, a higher accuracy can be set before the training starts, but the
higher the accuracy, the more training costs are usually required. Another option is to
increase the number of training samples, but the effects of imbalanced data should receive
more attention.

Table 5. Prediction results (including training samples) of the neural network for the failure risk
prediction of the girth weld.

Risk Level Correct
Identification

Incorrect
Identification Success Rate Number of Training

Samples

High risk 39 5 88.6% 25

Medium risk 1563 260 85.7% 247

Low risk 2533 417 85.9% 330

Table 6. Prediction results (excluding training samples) of the neural network for the failure risk
prediction of the girth weld.

Risk Level Correct
Identification

Incorrect
Identification Success Rate Number of Training

Samples

High risk 14 5 73.7% 25

Medium risk 1316 260 83.5% 247

Low risk 2203 417 84.1% 330

5.3. Parameter Sensitivity

Figure 6 shows the sensitivity of the input parameters of the prediction model on the
output. The sensitivity of different parameters varied considerably. X15 had the greatest
sensitivity, followed by X2, X5, and X4, which meant that the defect length, pipe diameter,
yield strength, wall thickness, and defect height had the greatest effect on the change in
pipeline failure risk. In contrast, the weld radiographic grade, geological area, repaired or
not, steel grade, and toughness had smaller effects on the change in risk. Therefore, the
elimination of weld defects during the welding process and the inspection and monitoring
of defects during the service life of the pipeline could play an important role in reducing
the risks of failure of the girth welds.
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This study focused on the failure risk of circumferential welds in oil and gas pipelines.
Based on the collection of pipeline failure cases and field inspection data, a total of
20 main factors (including 11 pipe-type and performance-related indicators, 6 defect-related
indicators, and 3 load-related indicators) affecting the failure risk of the girth welds of
pipelines and their normalization methods were identified. The samples were selected by
the spatially orthogonal optimal method to effectively avoid the overfitting problem caused
by the imbalance of classification samples. Using the BP neural network, a prediction model
for the failure risk of girth welds in high-strength steel pipelines was established and the
prediction accuracy reached more than 83% (except for high-risk samples), improving the
technical support for high-risk girth weld repair and maintenance decisions and avoiding
the failure of pipeline girth welds.

The advantage of this method is that it achieved high training accuracy with fewer
samples and was better for samples with imbalance sample distributions, but had require-
ments regarding the quality of the samples themselves and the quality of the distribution.
The disadvantage was that there may have been underfitting if the training data were small.

Some factors not included in the model, such as residual stress and the state of the
environment inside the pipe, also play an important role in pipeline weld failure. Future
research will take these factors into account to build a more accurate and applicable risk
prediction model for pipeline girth welds.
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Appendix A

The overall output error of the neural network for failure risk prediction is

E = ∑NL
jL=1

(
TjL −OL

jL

)2
(A1)

where L is the number of neural network layers; NL is the number of neurons in layer L;
TjL is the standard output of layer L; and OL

jL is the actual output of layer L. For the neural
network of girth weld failure risk prediction, L = 3 and N1 = 20, N2 = 30, and N3 = 3.

Let wL
jL−1 jL

represent the weight of the connection between the j-th neuron of the layer

L-1 and the j-th neuron of the layer L, then the partial derivative of the error to wL
jL−1 jL

can
be expressed as

∂E
∂wL

jL−1 jL

=
∂E

∂OL
jL

·
∂OL

jL

∂zL
jL

·
∂zL

jL

∂wL
jL−1 jL

(A2)

where the output OL
jL

and the input zL
jL

are sigmoid functions (see Equation (A3)).

OL
jL =

1

1 + e−zL
jL

= s(zL
jL) (A3)

According to Equation (A3), it can be inferred that

∂OL
jL

∂zL
jL

= s(zL
jL)·(1− s(zL

jL)) (A4)

Then ∂E
∂OL

jL

= −(TjL −OL
jL) (A5)

Due to the fact that the total input of neurons can be expressed as

zL
jL = ∑NL−1

jL−1=1 wL
jL−1 jL ·O

L−1
jL−1

+ bL
jL (A6)

It can be introduced that ∂zL
j

∂wL
jL−1 jL

= OL−1
jL−1

(A7)

Take Equations (A4), (A5), and (A7) into (A2) to get the partial derivative of output
layer deviation and weight

∂E
∂wL

jL−1 jL

= −
(

TjL −OL
jL

)
·s
(

zL
jL

)
·
(

1− s
(

zL
jL

))
·OL−1

jL−1
(A8)

The partial derivative of the bias can be easily obtained

∂E
∂bL

jL

= −
(

TjL −OL
jL

)
·s
(

zL
jL

)
·
(

1− s
(

zL
jL

))
(A9)

Let δL
jL
= −

(
TjL −OL

jL

)
·s
(

zL
jL

)
·
(

1− s
(

zL
jL

))
, then

∂E
∂wL

jL−1 jL

= δL
jL ·O

L−1
jL−1

(A10)

∂E
∂bL

jL

= δL
jL (A11)

For the hidden layer L − 1, the deviation of the error from the output of neurons in
the L − 1 layer can be expressed as

∂E
∂OL−1

jL−1

= ∑NL
jL

∂EjL

∂zL
jL

·
∂zL

jL

∂OL−1
jL−1

= ∑NL
jL

(
−
(

TjL −OL
jL

)
·s
(

zL
jL

)
·
(

1− s
(

zL
jL

))
·

∂zL
jL

∂OL−1
jL−1

)
(A12)
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From zL
jL
= ∑

NL−1
jL−1

OL−1
jL−1

wL
jL−1 jL

+ bL
jL

, it can be concluded that

∂zL
jL

∂OL−1
jL−1

= wL
jL−1 jL (A13)

Taking Equation (A13) into Equation (A12) yields

∂E
∂OL−1

jL−1

= ∑NL
jL

∂EjL

∂zL
jL

·
∂zL

jL

∂OL−1
jL−1

= ∑NL
jL

(
−
(

TjL −OL
jL

)
·s
(

zL
jL

)
·
(

1− s
(

zL
jL

))
·wL

jL−1 jL

)
= ∑NL

jL

(
δL

jL ·w
L
jL−1 jL

)
(A14)

Then

∂E
∂wL−1

jL−2 jL−1

= ∑NL
jL

(
δL

jL ·w
L
jL−1 jL

)
·
∂OL−1

jL−1

∂zL−1
jL−1

·
∂zL−1

jL−1

∂wL−1
jL−2 jL−1

= ∑NL
jL

(
δL

jL ·w
L
jL−1 jL

)
·s(zL−1

jL−1
)·(1− s(zL−1

jL−1
))·OL−2

jL−2
(A15)

∂E
∂bL−1

jL−1

= ∑NL
jL

(
δL

jL ·w
L
jL−1 jL

)
·s(zL−1

jL−1
)·(1− s(zL−1

jL−1
)) (A16)

Similarly, let δL−1
jL−1

= ∑NL
jL

(
δL

jL
·wL

jL−1 jL

)
·s
(

zL−1
jL−1

)
·
(

1− s
(

zL−1
jL−1

))
, and it follows that

∂E
∂wL−1

jL−2 jL−1

= δL−1
jL−1
·OL−2

jL−2
(A17)

∂E
∂bL−1

jL−1

= δL−1
jL−1

(A18)

Owing to the number of layers in the failure prediction neural network being 3, the
back-propagation of errors will reach the L − 2 layer. The deviation of the output error
from the output of L − 2 layer can be expressed as

∂E
∂OL−2

jL−2

= ∑NL−1
jL−1

∂E
∂OL−1

jL−1

·
∂OL−1

jL−1

∂OL−2
jL−2

(A19)

Take ∂E
∂OL−1

jL−1

= ∑NL
jL

(
δL

jL
·wL

jL−1 jL

)
into Equation (A19), then

∂E
∂OL−2

jL−2

=
NL−1

∑
jL−1

NL

∑
jL

(
δL

jL ·w
L
jL−1 jL

)
·
∂OL−1

jL−1

∂OL−2
jL−2

(A20)

Considering
∂OL−1

jL−1
∂OL−2

jL−2

=
∂OL−1

jL−1
∂zL−1

jL−1

·
∂zL−1

jL−1
∂OL−2

jL−2

= s
(

zL−1
jL−1

)
·
(

1− s
(

zL−1
jL−1

))
·

∂zL−1
jL−1

∂OL−2
jL−2

, from zL−1
jL−1

=

∑
NL−2
jL−2

OL−2
jL−2

wL−1
jL−2 jL−1

+ bL−1
jL−1, it can be concluded that

∂zL−1
jL−1

∂OL−2
jL−2

= wL−1
jL−2 jL−1

(A21)

Then ∂OL−1
jL−1

∂OL−2
jL−2

= s
(

zL−1
jL−1

)
·
(

1− s
(

zL−1
jL−1

))
·wL−1

jL−2 jL−1
(A22)

Introducing Equation (A22) into Equation (A19) includes

∂E
∂OL−2

jL−2

= ∑NL−1
jL−1

∂E
∂OL−1

jL−1

·
∂OL−1

jL−1

∂OL−2
jL−2

= ∑NL−1
jL−1

(
∑NL

jL

(
δL

jL ·w
L
jL−1 jL

)
·s
(

zL−1
jL−1

)
·
(

1− s
(

zL−1
jL−1

)))
·wL−1

jL−2 jL−1
(A23)
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By incorporating δL−1
jL−1

= ∑NL
jL

(
δL

jL
·wL

jL−1 jL

)
·s
(

zL−1
jL−1

)
·
(

1− s
(

zL−1
jL−1

))
into Equation

(A23), the backward error propagation of the neural network can be obtained

∂E
∂OL−2

jL−2

=
NL−1

∑
jL−1

δL−1
jL−1
·wL−1

jL−2 jL−1
(A24)

Based on Equation (A23), there are

∂E
∂wL−2

jL−3 jL−2

=
∂E

∂OL−2
jL−2

·
∂OL−2

jL−2

∂zL−2
jL−2

·
∂zL−2

jL−2

∂wL−2
jL−3 jL−2

= ∑NL−1
jL−1

(
δL−1

jL−1
·wL−1

jL−2 jL−1

)
·s
(

zL−2
jL−2

)
·
(

1− s
(

zL−2
jL−2

))
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Similar to δL−1
jL−1

= ∑NL
jL

(
δL

jL
·wL

jL−1 jL

)
·s
(
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jL−1

)
·
(

1− s
(
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jL−1

))
, let δL−2

jL−2

= ∑
NL−1
jL−1

(
δL−1

jL−1
·wL−1

jL−2 jL−1

)
·s
(

zL−2
jL−2

)
·
(

1− s
(
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jL−2

))
, then

∂E
∂wL−i

jL−i−1 jL−i

= δL−i
jL−i
·OL−i−1

jL−i−1
(A26)

∂E
∂bL−2

jL−2

= δL−2
jL−2

(A27)

Equations (A26) and (A27) are the error derivations of the backward iterative calcula-
tion of the neural network.
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