
Citation: Beak, S.; Han, Y.-H.; Moon,

Y.; Lee, J; Jeong, J. YOLOv7-Based

Anomaly Detection Using Intensity

and NG Types in Labeling in

Cosmetic Manufacturing Processes.

Processes 2023, 11, 2266. https://

doi.org/10.3390/pr11082266

Academic Editors: Jei-Zheng Wu

and Chia-Yu Hsu

Received: 21 June 2023

Revised: 23 July 2023

Accepted: 24 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

YOLOv7-Based Anomaly Detection Using Intensity and NG
Types in Labeling in Cosmetic Manufacturing Processes
Seunghyo Beak 1,2 , Yo-Han Han 1,2, Yeeun Moon 1 , Jieun Lee 1 and Jongpil Jeong 1,*

1 Department of Smart Factory Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,
Suwon 16419, Gyeonggi-do, Republic of Korea; bjh1205@g.skku.edu (S.B.); coco0416@skku.edu (Y.-H.H.);
mye1113@skku.edu (Y.M.); lu3873@g.skku.edu (J.L.)

2 AI Machine Vision Smart Factory Lab, Dev, 296, Sandan-ro, Danwon-gu,
Ansan-si 15433, Gyeonggi-do, Republic of Korea

* Correspondence: jpjeong@skku.edu; Tel.: +82-10-9700-6284 or +82-31-299-4267

Abstract: The advent of the Fourth Industrial Revolution has revolutionized the manufacturing sector
by integrating artificial intelligence into vision inspection systems to improve the efficiency and
quality of products. Supervised-learning-based vision inspection systems have emerged as a powerful
tool for automated quality control in various industries. During visual inspection or final inspection,
a human operator physically inspects a product to determine its condition and categorize it based
on their know-how. However, the know-how-based visual inspection process is limited in time and
space and is affected by many factors. High accuracy in vision inspection is highly dependent on the
quality and precision of the labeling process. Therefore, supervised learning methods of 1-STAGE
DETECTION, such as You Only Look Once (YOLO), are utilized in automated inspection to improve
accuracy. In this paper, we proposed a labeling method that achieves the highest inspection accuracy
among labeling methods such as NG intensity and NG intensity when performing anomaly detection
using YOLOv7 in the cosmetics manufacturing process.

Keywords: deep learning; YOLOv7; object detection; anomaly detection

1. Introduction

Pandemics and other forms of infectious disease outbreaks are unique examples of
manufacturing risk, characterized by high uncertainty, increased contagion, and long-term
disruption to manufacturers, supply chain actors, end users, and consumers [1]. The out-
break of the COVID-19 pandemic has had an enormous impact on various sectors, including
manufacturing. The numerous restrictions imposed to control the spread of the virus have
significantly disrupted manufacturing operations and supply chains across the globe. The
unprecedented nature of the pandemic has created significant uncertainty and volatility in
the manufacturing industry, requiring changes in working conditions and significant ad-
justments within manufacturing facilities. Developing sustainable products and processes
has become essential for the survival of manufacturers in the current competitive market
and Industry 4.0 era. The COVID-19 pandemic has intensified the impact of automation [2].
Humanity’s digitalization journey has begun, with the majority actively embracing smart
technologies and their benefits [3].

However experienced they are, humans can make mistakes. Manual assembly and
inspection tasks are particularly susceptible to human error, which can reduce the quality
of the final product [4]. Humans are fallible, no matter how experienced they are. Fatigue,
distraction, subjective judgment, or differences in individual expertise can all contribute
to inconsistencies and inaccuracies in quality inspections, and human error can lead to
acceptance of defective products or rejection of non-defective products, affecting overall
quality control and customer satisfaction.
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Detecting product defects is essential for manufacturing quality control [5]. Human
inspection can increase personal expenses. Inspections often need to be performed by
skilled workers, and it costs more to get their expertise. Training and retaining qualified
personnel can be costly for a company, especially if the inspection process requires special-
ized knowledge or certification, and furthermore, reliance on human inspectors can lead
to increased labor costs, especially if overtime or additional personnel are needed to meet
inspection requirements.

Manual quality inspections often require a dedicated space or area where inspections
can be performed. Allocating space for inspection activities can be challenging, especially if
floor space is limited or additional inspection stations need to be set up, which can increase
overhead costs associated with renting or building inspection facilities, equipment, and
storage space.

Artificial Intelligence (AI) has been successfully applied in industry for decades, from
the emergence of expert systems in the 1960s to deep learning today [6]. Machine vision
technology has been integrated into manufacturing workplaces to achieve an efficient and
high-quality production mode for manufacturing [7]. Leveraging deep learning technology
for quality inspection provides solutions that minimize issues related to human error,
personal costs, space costs, and time costs, enabling companies to accelerate R&D, improve
quality, reduce errors, and sustain supply chains through demand forecasting and outcome
simulation to generate higher margins in the face of fierce competition [8].

By harnessing the power of deep learning algorithms, smart factories can improve
quality control processes, optimize efficiency, and mitigate a variety of issues that tradi-
tionally plague quality inspection procedures. One important benefit of implementing
deep learning technology in smart factories is the ability to minimize problems caused by
human error. Quality inspection tasks often rely on human judgment, which can lead to
inconsistencies and mistakes, but by integrating deep learning algorithms into the inspec-
tion workflow, smart factories can use advanced computer vision systems to analyze vast
amounts of data and images. Because these algorithms can be trained using a wide range
of data sets, they can learn complex patterns and detect even the smallest deviations that
human inspectors might miss. As a result, smart factories can achieve consistently high
accuracy, minimizing human error and its associated consequences.

In addition to reducing human error, deep learning technologies also contribute to
minimizing personal costs in quality inspection. Traditional quality control processes often
require a significant number of human resources, making it costly to recruit, train, and
retain qualified personnel. However, by moving to a smart factory model, the integration
of deep learning algorithms can automate and streamline inspection tasks. Intelligent
machines and robotic systems with deep learning capabilities can take over repetitive and
time-consuming inspection processes, significantly reducing the need for a large workforce,
which in turn can optimize operational costs and resource allocation while minimizing
personal costs.

The application of deep learning in smart factories can dramatically reduce the cost
of time, a key factor in quality inspection. Traditional inspection processes can be time-
consuming, leading to delays in production schedules and potential customer dissatis-
faction. Deep learning algorithms allow data to be analyzed in real time to make quick
and accurate decisions. Smart factories can quickly process large amounts of data and
images to quickly identify defects or quality issues, allowing for timely intervention and
resolution. As a result, inspection time is minimized, leading to increased throughput,
improved production schedules, and increased customer satisfaction.

You can also integrate deep learning into your smart factory to continuously improve
and optimize your quality inspection processes. These algorithms can learn from real-time
data and adapt to changing conditions to continuously improve accuracy and performance.
Smart factories can leverage machine learning capabilities to detect trends, predict potential
quality issues, and implement proactive measures. This proactive approach minimizes
defects, improves product quality, and drives continuous improvement throughout the pro-
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duction cycle. When training a YOLOv7-based model with a supervised learning method, it
finds the labeling method with the highest accuracy and proceeds with anomaly detection
to improve the accuracy of detecting defective products [9].

This paper is organized as follows. In Section 2, we describe the related work that
helped us in our research, and in Section 3, we describe the architecture of our research.
Section 4 displays the experimental results, including the research environment and process,
and Section 5 concludes.

2. Related Work
2.1. Plastic Manufacturing Process

The widespread use of plastics as the main material for industrial products has at-
tracted much attention [10,11]. The injection molding process of plastics involves injecting
resin into a mold, where the melt cools and solidifies to form a plastic product. It is usually
a three-step process consisting of filling, packaging, and cooling stages [12]. However,
conventional plastic injection molding processes suffer from inconsistent product quality
and large variation.

Molding conditions or process parameters play an important role in plastic injection
molding. The quality of the molded part, such as strength, warpage, and residual stress,
is greatly affected by the processing conditions, and the molding conditions also affect
the productivity, cycle time, and energy consumption of the molding process. Molding
conditions are closely related to other factors such as material, part design, and tooling that
determine the quality of plastic products, and consist of important parameters such as melt
temperature, mold temperature, filling time, packing time, and packing pressure.

The quality of the molded part depends not only on the properties of the plastic
material, but also on the process parameters. Optimal process parameters reduce cycle
times and improve product quality. In practice, process parameter settings are mainly based
on the experience of plastics engineers, which does not always guarantee proper process
parameter values. Because plastics exhibit complex thermo-elastic properties, it is difficult
to set the right molding conditions to achieve the desired product quality. Therefore, process
parameters are often adjusted through a lot of trial and error. The trial-and-error approach
can prove to be costly and time-consuming [13].

2.2. Supervised Learning

Supervised learning is a machine learning task that learns a function that maps inputs
to outputs based on example input-output pairs. In supervised learning, both normal and
abnormal samples are present in the training data set, and these two samples are used
together to train a detection model. The trained model identifies test samples as either
normal or abnormal [14].

Supervised learning infers a function from labeled training data, which consist of
a set of training examples. The supervised machine learning algorithm is the following
algorithm. The input data set is divided into training and test data sets. The training data
set has an output variable that needs to be predicted or classified. All algorithms learn some
kind of pattern from the training data set and apply it to the test data set for prediction or
classification [15].

Supervised machine learning involves predetermined output attributes in addition to
the use of input attributes. The algorithm attempts to predict and classify the predetermined
attributes, and the accuracy and misclassification of the algorithm, along with other per-
formance measures, depend on the number of predetermined attributes that are correctly
predicted or classified. When the algorithm achieves an acceptable level of performance,
the learning process stops. According to [Libbrecht and Noble] [16], technically, supervised
algorithms first perform analytical operations using the training data and then construct
conditional functions for mapping new instances of the attributes. As discussed earlier,
the algorithm requires a pre-specification of the desired results and maximum settings for
the performance level [17]. Considering the approach used for machine learning, it has
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been observed that about 66% of the training subsets are reasonable and help to achieve
the desired results without requiring more computational time [18].

2.3. Yolo

In recent years, deep learning (DL) applications and systems have blossomed [19].
Among them, object detection, a key use in image processing, has grown rapidly since
2012 with unprecedented advances in convolutional neural networks (CNNs) and their
variants [20,21]. Object-based algorithms embed semantic information in groups of pixels
with similar characteristics such as color, texture, brightness, and shape rather than in
individual pixels [22].

Object detectors are broadly classified into two categories: two-stage object detectors
and one-stage object detectors. While two-stage detectors mainly focus on selective region
proposal strategies with complex architectures, one-stage detectors focus on proposing all
possible spatial regions with relatively simple architectures to detect objects at once. The
performance of all object detectors is evaluated through detection accuracy and inference
time. In general, the detection accuracy of two-stage detectors outperforms one-stage object
detectors. However, the inference time of the one-stage detector is better than the two-stage
detector. In addition, with the advent of the one-stage detector You Only Look Once (YOLO)
and its architectural successors, detection accuracy is improving significantly, sometimes
even better than two-stage detectors.

YOLO is an algorithm that uses neural networks to provide real-time object detection.
YOLO is mainly adopted in various applications due to its fast inference speed rather
than considering detection accuracy. For example, the detection accuracy of YOLO, a one-
stage detector, and Fast-RCNN, a two-stage detector, are 63.4 and 70, respectively, but the
inference time is about 300 times faster for YOLO [23]. YOLO uses a unique approach.
YOLO uses a clever convolutional neural network (CNN) to detect objects in real time. The
algorithm implements one neural network on the entire image, then sections the image into
multiple sections and estimates bounding boxes and probabilities for each region. These
bounding boxes are then weighted according to the estimated probabilities. In YOLO, the
CNN predicts multiple bounding boxes and probabilities for those boxes at any given
time. It trains on real images and optimizes performance directly. Improving real-time
object detector accuracy can improve recommendation hint generation and hint generation
recommender systems, as well as standalone process management, and reduce the need for
human input [24].

2.4. Anomaly Detection

Anomaly detection is the process of identifying outliers that have unexpected patterns
with respect to the normal data distribution [25]. Nowadays, it has become essential to
monitor the health of manufacturing environments to avoid unexpected repairs, downtime,
and to detect defective products that can cause large losses [26]. Anomaly detection for
industrial processes is essential for industrial process monitoring and is an important
technique to ensure production safety. There are numerous real-world applications for
anomaly detection, including sensor fault identification, product manufacturing quality
control, network intrusion detection, and pandemic geospatial modeling. Effective anomaly
detection on the factory floor improves availability, product quality, worker safety, and
reduces rework costs [27].

Manufacturing companies use cameras and laser sensors to create data on product
surfaces or product conditions, and then utilize these data to automatically perform quality
inspections, including statistical methodologies, image processing methodologies, and
methodologies utilizing machine learning models. Statistical methods collect and analyze
data produced in the field to improve quality control and processes, helping workers and
managers make meaningful decisions. Statistical methods help correlate, organize, and
interpret data, and statistical analysis reveals underlying patterns in a data set. Machine
learning is commonly presented as an approach used in smart manufacturing inspection
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and has implications for quality management systems in industry. Histogram analysis
performs various statistical analyses such as mean, geometric mean, standard deviation,
and median. Due to its simplicity, this method has been widely used for low-cost, low-
level analysis in a variety of problems. Autocorrelation analysis measures the correlation
between an image and the display vectors in the image by repeatedly using patterns or
textures on the surface of a product, such as wood or textile products. Anomaly detection
and timely assessment by machine vision systems can enable the industrial sector to take
an innovative leap forward.

Typical applications of anomaly detection research include big data anomaly detection,
Internet of Things (IoT), Wireless Sensor Networks (WSN), network anomaly/intrusion/attack
detection, manufacturing anomalies, and video surveillance anomaly detection. With
the development of new technologies such as sensor technology and information and
communication technology, vast amounts of data are continuously collected over time.
Data recorded in chronological order constitute a time series, and typical examples of
time series are data collected such as hourly temperature of a machine, daily stock price
of a company, weekly interest rate, monthly sales of a store, and annual Gross Domestic
Product (GDP) of a country. Time series anomaly detection is one of the fundamental tasks
in time series analysis, and much research has been focused on this area of study in the last
few decades.

3. Yolov7-Based Anomaly Detection Using Intensity and NG Types
3.1. System Architecture

In this paper, we compared the F1 score, mAP of labeling NG in cosmetic containers by
dividing them into Strong NG and Weak NG according to the strength of the product NG,
labeling each type of NG by subdividing the Region of Interest(RoI) into Scratch, Pollution,
Point, and Edge by separating the top and side of the cosmetic container, and labeling
each type of NG without separating the RoI. The performance of each labeling method is
evaluated for accuracy using the under- and over-check rates. To improve the performance,
we return to the preprocessing after the performance evaluation and repeat the process to
compare the final performance.

Figure 1 displays the architecture of anomaly detection in the painting process dur-
ing the cosmetics manufacturing process. The process begins with the acquisition of a
raw data set of the cosmetic container using a camera, lens, and optical illumination.
These components ensure clear and consistent image acquisition, enabling reliable data for
subsequent analysis and processing. Once acquired, the raw dataset is subjected to prepro-
cessing techniques to enhance the data and prepare it for further analysis. Preprocessing
includes operations such as Fourier transform, wavelet transform, and normalization. After
preprocessing, the dataset is classified into meaningful images suitable for training by
identifying and extracting relevant features from the images such as shape, size, and color
of cosmetic containers.

After preprocessing, image augmentation techniques are applied to improve the
generalization ability of the model, fill in gaps in the dataset, and increase diversity. These
techniques involve applying various transformations to existing images, such as rotating,
scaling, flipping, and adding noise, to create new training examples. Enriching the dataset
makes the deep learning model more robust and able to handle changes in container shape.
The labeled dataset is used to build accurate knowledge about normal cosmetic containers.
Each diversified image is assigned an appropriate label to indicate whether it represents
a normal or abnormal container. By dividing the labeling into three methods (labeling by
intensity of NG, labeling by type of NG without distinguishing RoI, and labeling by type
with distinguishing RoI), we find out which labeling method produces higher accuracy
when performing anomaly detection in cosmetics manufacturing process. The labeled
information is trained using the YOLO algorithm. By learning from the labeled data, the
model performs Anomaly Detection to accurately detect and distinguish anomalies such as
irregular shapes, deformities, or defects that deviate from the expected normal cosmetic
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container shape. Anomaly Detection with YOLO algorithm is used to analyze cosmetic
containers in real time.

Figure 1. System Architecture.

3.1.1. Dataset

Figure 2 is a photograph of the top and side of a plastic cosmetic container that has
undergone an injection molding process. The raw dataset consists of images of cosmetic
containers taken using a camera, lens, and optical illumination. These images form the basis
of the anomaly detection process. The obtained data is classified into meaningful images
that can be used to train a deep learning model. This classification involves identifying
and extracting relevant features or RoIs within the images. In the context of cosmetic
containers, these RoIs include areas such as the sides of the container, the top of the
container, and certain components that are important for inspection. By focusing on these
meaningful images, the model can learn to analyze and detect anomalies in specific areas
of the container, improving accuracy and efficiency.

Figure 2. Input Data.

Table 1 displays the experimental dataset, a cosmetic container Spec, and the configu-
ration of the experimental environment.
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Table 1. Cosmetic Container Spec and Lab Setup.

Side Top Distance between Products

30.15 × 28.11 (mm) 25.86 × 25.86 (mm) 80 (mm)

3.1.2. Meaningful Image Classification

Framework Darknet [28] can be used to train convolutional neural networks (CNNs)
for image classification, object detection, and segmentation, among other tasks. To perform
image classification to train a CNN, a high-quality training dataset containing both normal
and anomalous images must be prepared. The dataset should be carefully curated to include
a range of images that represent normal operating conditions of the system being monitored,
as well as images that contain anomalies. Once the dataset is ready, a CNN can be trained
for image classification using the Darknet framework. The network is trained using a
supervised learning approach where it learns to map input images to their corresponding
labels, and during training, the neural network adjusts its parameters to minimize the
difference between the predicted and actual labels. Once the network is trained, it can be
used to classify new images as normal or anomalous. If an image is classified as an anomaly,
you can trigger an alert or perform further analysis to determine the nature of the anomaly.

To achieve high accuracy in image classification, it is important to choose the right
network architecture and hyperparameters. The network architecture should be designed
to handle the specific features of the images being classified, and the hyperparameters
should be tuned to optimize performance on the training dataset. By accurately identifying
objects and scenes in an image, anomalies that deviate from the expected pattern can be
detected, allowing for timely intervention and preventing further problems.

3.1.3. Pre-Processing

Image preprocessing is a set of methods used to enhance the quality of an image for
subsequent processing purposes [29]. Quantum leaps in performance have been realized
in the last decade [30]. Different image preprocessing methods are required to perform
different tasks such as image sharpening, contrast enhancement, and cloud removal [31].
Data preprocessing is an important part of a deep learning project and is a large part
of the overall analytics pipeline [32]. It aims to improve the quality, consistency, and
relevance of the data so that the model can learn effectively and produce accurate results.
Preprocessing can be a simple stretching of histograms or a more complex approach such
as denoising or filtering [33,34]. Image preprocessing typically consists of enhancement
(i.e., improving image quality) and restoration (i.e., removing degraded regions); the
former is a more subjective process, while the latter is an objective process that models
the degradation (based on prior knowledge) and applies an inverse process to recover the
original signal. In the context of deep learning for anomaly detection in cosmetic containers,
preprocessing plays an important role in preparing the image data before training the
model. Preprocessing aims to improve data quality, reduce noise and inconsistency, and
provide optimal representations for training deep learning models, ultimately leading
to more accurate anomaly detection in cosmetic containers. The following preprocessing
techniques were used in this paper.

• Fourier Transform
The Fourier transform consists of decomposing a signal or image into a sum of funda-
mental signals, which has the property of being easy to implement and observe [35].
Since these fundamental signals are periodic and complex, the amplitude and phase of
the system can be studied. The Fourier transform is a powerful mathematical tool for
analyzing the frequency content of signals and functions. It finds a wide range of appli-
cations in various fields, providing insight into the fundamental properties of signals,
facilitating filtering operations, and enabling efficient data compression techniques.
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• Wavelet Transform
Wavelet transform is a mathematical tool used to analyze signals and data in both
the time and frequency domains. It provides a localized representation of a signal by
decomposing it into a series of wavelet functions called wavelets. Unlike the Fourier
transform, which uses a fixed sinusoidal basis function, the wavelet transform uses
wavelets that are localized in both time and frequency, allowing for more precise
analysis of signals with transient or localized features.
Wavelet functions are mathematical functions that are localized in both time and
frequency, and are typically derived from a mother wavelet through scaling and
transformation operations. The mother wavelet acts as a building block, and by
expanding or compressing it and moving it through time, a set of wavelets with
different sizes and positions can be obtained.
Wavelet transforms have a wide range of applications across multiple domains, in-
cluding signal processing, image compression, noise reduction, feature extraction,
and time-frequency analysis, and provide a powerful tool for analyzing signals with
localized or time-varying characteristics, allowing for more detailed and adaptive
representations compared to traditional Fourier-based methods.

• Normalization
Normalization is a common preprocessing technique used to standardize the scale
or range of input data, which involves transforming data in such a way that it has a
consistent scale and distribution that helps improve the performance and convergence
of many machine learning algorithms. The normalization process involves adjusting
the values of a feature or set of features to fall within a certain range or follow a
certain distribution, with the goal of bringing features to a similar scale and removing
any bias or variation that may exist in the original data. Normalization is especially
important when dealing with features that have different units of measure or vary
widely in range, as without it, certain features on a larger scale can dominate the
learning process and bias the model’s behavior for those features.

3.1.4. Image Augmentation

Deep learning requires sufficient defect data for training, but in general production
sites, there are problems such as data shortage, which means that it is difficult to obtain
a large amount of defect data or defect samples for training, and data imbalance, which
means that certain classes of data are much more or less than other classes. If training
is performed with an insufficient amount of data, it may display insufficient inspection
accuracy for field operation, so image augmentation is performed as a way to overcome this.

The purpose of image augmentation is to introduce variability to the train dataset
and increase diversity so that the model can better generalize to unseen data. Flipping,
rotating, scaling, cropping, and adding noise to the image can be utilized to improve
the robustness of the model to different lighting conditions, viewpoints, and opening
directions. By augmenting the training dataset with transformed versions of the original
image, the model can learn to recognize anomalies even when they occur under different
circumstances. Leverage deep learning models such as Cycle GAN [36] and SRGAN [37] to
generate anomaly data and training data to increase data diversity to address data scarcity,
data imbalance, and enhance generalization capabilities.

3.1.5. Labelling Processes

Labeling plays a pivotal role in supervised-learning-based anomaly detection, enabling
effective training, quantitative performance evaluation, iterative improvement, real-world
applicability, generalization, adaptability, and decision support. Accurate labeling provides
the basis for training accurate models to detect anomalies with high precision and recall.
Various industries can leverage the power of labeling to build robust anomaly detection
systems that drive efficiency, reliability, and improved outcomes, and by recognizing the
importance of labeling, organizations can unlock the full potential of supervised learning-
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based anomaly detection and solve critical problems in their domains. To improve accuracy
in supervised-learning-based anomaly detection for the cosmetics manufacturing process,
different labeling methods are utilized to find the optimal labeling method.

Figure 3 displays the sequence of a specific labeling process. First, select an initial data
point or region as the starting point for the labeling process. Then, define regions of interest
in the data set you need to label using criteria such as the top and sides of the container,
color, and texture. After defining the regions of interest, analyze the characteristics of the
pixels or data points within the regions of interest to determine whether they represent
normal or abnormal behavior. Assign a label or category to each region based on the
results of the analysis. Once the initial regions are labeled, expand the labeling to include
similar regions or patterns that may have been missed in the initial analysis. The process
of expanding, analyzing, and labeling repeats until all relevant data points or regions are
labeled. Repeat this iterative process until it converges, or until a certain level of accuracy
or completeness is achieved. Review the labeled areas to ensure consistency and accuracy
and validate the results using appropriate performance metrics such as F1 Score, mean
Average Precision (mAP), etc.

Figure 3. Labeling Flowchart.

3.1.6. Anomaly Detection

Figure 4 is the type of defective product that is determined by the inspection system.
During the injection molding process for manufacturing cosmetic containers, the RoI
is divided into the top and side areas of the container. The goal is to perform anomaly
detection and classify the anomalies into specific categories such as Scratch, Pollution, Point,
and Edge. A YOLO algorithm is used for this task. Anomaly detection is an important step
in ensuring the quality of cosmetic containers. The YOLO algorithm is trained to detect
and classify different types of errors that can occur during the injection molding process by
using information learned from the rest of the container, except for the putting lines caused
by the mold.

The classes defined for the above are as follows:

• Scratches
This category refers to surface defects that result in noticeable marks on the top or
sides of the container due to abrasions or scratches.

• Pollution
Pollution is when the surface of a container is contaminated or scratched by foreign
objects or debris.

• Point
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Point anomalies are localized irregularities, such as small dots or spots on the top or
sides of a container that can affect its appearance or function.

• Edge
Edge anomalies include irregularities or deformations along the edge of a container,
which can compromise its overall quality or structural integrity.

• Swelling
Swelling is the expansion of the surface of a part. Swelling can occur if the product’s
molding temperature is too high, the molding pressure is too high, or the material
overheats during the molding time. It can also occur if the product is poorly designed
and the material does not cool properly.

Figure 4. Types of defective products identified by the inspection system.

The classification also distinguishes between StrongNG and WeakNG anomalies. This
distinction helps to identify the severity or strength of the detected error.

• StrongNG
Indicates a larger, more serious issue that requires immediate attention.

• WeakNG
Anomalies that are confused with dirt or are relatively minor in nature.

By utilizing the YOLO algorithm, the system can effectively detect and classify these
anomalies in real time. The algorithm analyzes the input image, identifies the RoI (top and
side regions of the container), and applies object detection techniques to find and classify
anomalies within a given class. The algorithm’s ability to simultaneously detect and classify
multiple objects in an image is ideal for this task.

The YOLO-based anomaly detection system enables manufacturers to improve the
quality control process during the injection molding stage of cosmetic container production.
By accurately identifying and classifying anomalies, production problems can be quickly
resolved, reducing the number of rejects and improving quality. By using the YOLO
algorithm and defined anomaly classes for scratches, contamination, points, and edges, and
distinguishing between StrongNG and WeakNG anomalies, effective anomaly detection
and quality control in the injection molding process can be achieved, contributing to the
production of superior cosmetic containers.
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4. Experimental Results
4.1. Experimental Environments

Tables 2 and 3 describe the Development Environment used to perform Anomaly
Detection. OpenCV is an open source library that is widely used for developing image
processing and computer vision algorithms. CUDA is a programming model and platform
for NVIDIA’s parallel computing architecture, which leverages GPU acceleration to increase
computational performance. We use OpenCV version 6.4.16 and CUDA version 8.2.0 to
perform image processing and computer vision tasks. We utilize the Darknet framework
to perform deep neural network (DNN)-based object detection and classification tasks.
Darknet is an open-source DNN framework that is used to implement high-performance
object recognition algorithms. In our study, we set a working distance of 135 mm from the
top and 145 mm from the side. The working distance determines the depth of focus (DoF).
The speed of the conveyor belt is set to 150 mm/s. This speed is one of the components of
the automation system and is set to regulate the speed of object movement and processing.

Table 2. Software Development Environment.

OpenCV CUDA cuDNN Framework Working Distance Conveyor Belt Speed

v6.4.16 v11.1 v8.2.0 Darknet
Top: 135 mm
Side: 145 mm 150 mm/s

Table 3. Hardware Development Environment.

LENS

Lens Mount C Mount
Resolution 2464 × 2056
Pixel Size 3.45 × 3.45

Optical Format 2/3”

CAMERA

Name MG-A500M-22
Sensor Format 2/3”
Mono/Color Mono
Dimension 29 × 29 × 40 (mm)

IPC
Processor Intel Xeon Fold 5220R 6-Core Processor 2.20 Ghz

RAM 90 GB
GPU Tesla V100-SXM2-32 GB

Optical Lightning
Name ADQL4-300

LED Count 84 EA
Spec 300 × 300 × 100 (mm)

The Lens and Camera used in the study were chosen to capture high-quality video.
Lens is a lens system that utilizes optical properties to capture video. Camera is a device
that collects and converts footage into digital form, providing high resolution and an
appropriate frame rate. An IPC is a dedicated device for performing image processing,
which is used for efficient processing and analysis of image data. The IPC applies algorithms
and models developed in research to perform image processing tasks. Optical lighting is
used to provide proper lighting conditions during image acquisition. In this study, we
configured a proper lighting environment by adjusting the light intensity, color temperature,
etc. This is one of the factors that affect the quality and Signal-to-Noise Ratio (SNR) of
raw data. The above hardware development environment was assembled for raw data
acquisition and used for image acquisition, signal processing, and analysis in the course of
the study.

4.2. Data Collection and Processing

We studied a deep-learning-based EEG reading that can determine whether a cosmetic
container has defects such as scratches and pollution during the cosmetic manufacturing
process. In the context of anomaly detection in the cosmetic container manufacturing
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process, data collection and processing play an important role in identifying and mitigating
container defects. A total of five cameras and one optical lens were utilized to perform
real-time anomaly detection using top and side images of the container. The purpose of
data collection and processing is to identify deviations from expected standards and take
corrective action. By identifying and addressing defects early in the manufacturing process,
cosmetic container manufacturing companies can improve product quality, reduce waste,
and increase efficiency. The data collected can also be used to optimize the manufacturing
process by identifying areas for improvement, such as adjusting the speed of the production
line or changing the materials used in the manufacturing process. The cosmetic containers
being studied are those that are in the process of being painted after the injection process.

4.3. Performance Matrix

In this study, we use performance metrics such as F1 Score, mAP, and Accuracy to
evaluate the performance of YOLOv7 based on Anomaly Detection.

Accuracy is the ratio of TPs and TNs among the total samples identified. (TP = correctly
predicted positives, FP = incorrectly predicted positives, TN = correctly predicted negatives,
true negatives that are incorrectly predicted positives).

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision is the percentage of samples that the classification model determines to be pos-
itive that are actually positive. Precision indicates how accurate the results detected as
positive are.

Recall is the proportion of positive samples that the classification model identifies
as positive out of the actual positive samples. Recall indicates how well the classification
model identifies the true positive class without getting worse. (TP = correctly predicted
positives, FP = incorrectly predicted positives, TN = correctly predicted negatives, true
negatives that are incorrectly predicted positives)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Precision and Recall can be used interchangeably, with higher values for both metrics
indicating a better model. F1 score is the harmonic mean between precision and recall,
which is a metric that considers both accuracy and recall simultaneously. The F1-score
is calculated from the total number of True Positives (TP) and False Positives (FP) in the
failure data.

F1 Score = 2 ∗ Precision ∗ Recall
Pricision + Recall

(4)

Average Precision (AP) is a metric used in multi-class classification problems such as object
detection. It is obtained by calculating the area under the precision-recall curve of the
precision-recall curve to find the AP for a multi-class problem. AP takes into account the
imbalance between classes and evaluates the performance for all classes in the aggregate.
performance across all classes. These metrics play an important role in evaluating the per-
formance of machine learning models and are used to compare different models, optimize
model parameters, and measure progress on various tasks.

Evaluating the performance of an algorithm in a multi-class classification model, the
Average Precision (AP) for each class is calculated, then summed up and divided by the
total number of object classes to obtain the mAP. This metric facilitates fair comparisons
among different models and serves as a crucial measure to assess the overall effectiveness
of an object detection algorithm. By considering both precision and recall, mAP provides a
comprehensive evaluation of an object detection model’s performance.
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4.4. Results

Figure 5 displays the training graph when labeled by the severity of the defect. Labeling
NGs by intensity achieved F1 score of 53% and mAP of 41%.

Figure 5. Labeling training results for Intensities. Training results when labeling NGs by Intensities.

Figure 6 displays the Training graph when labeled by defect type. The method of
separating RoIs and labeling them by NG type achieved a 65% F1 score and 70% mAP.

Figure 6. Labeling training results for types. Training results when labeling NGs by type.

Figure 7 displays training graph for labeling defects by type without RoI. Labeling by
NG type without distinguishing RoI achieved an F1 score of 72% and a mAP of 76%.

Table 4 displays training results for labeling defects by Intensity. In this study, we ran
tests using 3592 pieces of data over the course of five studies, labeled by the Intensity of the
NG. After running the tests on the entire dataset, we analyzed the results to understand the
performance of the system. The Final results were a TN rate of 12.8% and a FN rate of 0%.
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Figure 7. Labeling training results for types without RoI distinction. Training results when labeling
NGs by types without RoI distinction.

Table 4. Labeling Training Results for Intensities.

Labeling Methods Threshold Total Number of Images TN FN TN Rate FN Rate

Intensity 0.5 939 69 68 7.35% 7.24%
Intensity 0.5 175 34 1 17.13% 1.71%
Intensity 0.5 480 55 1 11.46% 0.00%
Intensity 0.5 615 135 0 21.95% 0.00%
Intensity 0.5 1320 169 0 12.80% 0.00%

Table 5 displays training results for labeling defects by Type. In this study, we ran tests
using 8321 pieces of data over the course of five studies, labeled by the Type of the NG.
After running the tests on the entire dataset, we analyzed the results to understand the
performance of the system. The Final results were a TN rate of 3.88% and a FN rate of 0%.

Table 5. Labeling Training Results for Types.

Labeling Methods Threshold Total Number of Images TN FN TN Rate FN Rate

Type 0.5 1266 66 1 5.21% 0.08%
Type 0.5 485 44 1 7.59% 0.17%
Type 0.5 615 35 248 2.74% 19.42%
Type 0.5 4640 200 8 4.31% 0.17%
Type 0.5 1315 51 0 3.88% 0.00%

Table 6 displays training results for labeling defects by Type without RoI Distinction.
In this study, we ran tests using 3200 pieces of data over the course of five studies, labeled
by Type without RoI Distinction. After running the tests on the entire dataset, we analyzed
the results to understand the performance of the system. The Final results were a TN rate of
1.63% and a FN rate of 0%. A total of 15,113 data were obtained, and vision inspection was
performed by dividing the RoI into the top and side of the cosmetic container. Based on
these results, labeling by NG type without distinguishing RoIs achieved the highest F1 score
of 72% and mAP of 76%, meaning it had the highest overall accuracy of the three methods.
This suggests that focusing on labeling by NG type without considering the RoI leads to
better results compared to the other two methods. The mAP and F1 score combined provide
valuable insight into the precision, recall, and overall effectiveness of the model. mAP and F1
score combined provide valuable insight into the precision, recall, and overall effectiveness
of the model. The method that labeled RoIs by class without distinguishing between them
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had the highest f1 score and mAP. It achieved high precision, recall, and accuracy in object
detection or classification tasks, displaying good localization, accurate prediction, and
robust performance across different classes. The second best performing labeling method
is labeling by intensity class. In the area of anomaly detection, choosing an appropriate
labeling method is crucial to accurately identify and classify anomalies. This paper aims
to compare three labeling methods: labeling by NG intensity, labeling by NG type, and
labeling by NG type without RoI classification. Through a comprehensive evaluation, we
find that the labeling by NG type without RoI classification method outperforms the other
methods by achieving the highest F1 score and mAP.

Table 6. Labeling Training Results for Types without RoI Distinction.

Labeling Methods Threshold Total Number of Images TN FN TN Rate FN Rate

Type without RoI 0.5 1295 66 1 5.10% 0.08%
Type without RoI 0.5 195 20 44 2.74% 19.42%
Type without RoI 0.5 580 44 1 7.59% 0.17%
Type without RoI 0.5 824 45 0 5.46% 0.00%
Type without RoI 0.5 306 5 2 1.63% 0.00%

• Labeling for NG Intensity
Labeling by NG intensity involves labeling anomalies based on the severity or intensity
of the anomaly. This method focuses on quantifying the degree of anomaly, but
may lack specificity in identifying the exact type of anomaly. It provides important
information about the severity of the anomaly, but may not be suitable for accurate
classification tasks.

• Labeling for NG Type
NG labeling by type involves classifying anomalies based on a specific type or class.
This method aims to identify the underlying patterns and characteristics of anomalies so
that you can better classify and understand different anomaly types. Labeling anomalies
based on a specific class enables more accurate anomaly detection and classification.

• Labeling for NG Type without RoI Distinction
The NG type-specific labeling without RoI classification method focuses on labeling
anomalies according to their specific type without considering their RoI or location in
the image. This method primarily aims to accurately classify anomalies based on their
type without explicitly specifying their spatial location.

• Superior labeling performance by NG type without RoI classification
After thorough evaluation and analysis, we found that the NG type-specific labeling
method without RoI classification achieved the highest F1 Score and mAP compared to
other labeling methods. The reasons behind the superior performance are as follows.

• Precision and recall
This labeling method focuses on accurately classifying anomalies by type, ensuring
high precision and recall. Anomalies can be accurately classified regardless of their
spatial location.

• Flexibility
The lack of RoI classification gives you the flexibility to identify anomalies in different
areas of the image, and allows the model to capture anomalies that can occur in
different areas, giving you a comprehensive understanding of different anomaly types.

• Improved model performance
The NG type-specific labeling method without RoI classification provides a clear focus
on anomaly types, allowing the model to learn specific patterns and features associated
with each anomaly class. This enhanced learning contributes to better detection and
classification performance, resulting in higher F1 scores and mAPs.
In anomaly detection, the choice of labeling method has a significant impact on the
accuracy and efficiency of the model. After evaluating different labeling methods, we
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found that labeling by NG type without RoI classification outperforms labeling by NG
intensity and labeling by NG type in terms of F1 Score.

In a supervised-learning-based anomaly detection system for defective cosmetic con-
tainers, labeling methods play an important role in accurately identifying and classifying
anomalies. We used three labeling methods: labeling according to the intensity of an
anomaly (NG) by distinguishing regions of interest (RoI) on the top and sides of cosmetic
containers, labeling according to the shape, and labeling according to the type of anomaly
without distinguishing RoI.

To evaluate the performance of these labeling methods, we prepared a table to compare
the unconfirmed and overconfirmed rates for each anomaly type regardless of RoI. The
undetected rate represents the rate at which anomalous data was mistaken for normal,
indicating that the system failed to detect a defect. On the other hand, the over-check rate
represents the percentage of anomalous data that is misclassified as normal, which means
that defects are not detected.

As a result, the labeling method by anomaly type without RoI distinction achieved
the highest accuracy in supervised-learning-based anomaly detection with the lowest false
positive and false negative rates. The false positive and false negative rates for this labeling
method are 1.63% false negative and 0% false positive. This means that the system suc-
cessfully identified the majority of anomalous data as anomalous and correctly recognized
normal data as normal. The second best performance was observed with the labeling
method for each anomaly type, with a 4.11% false positive rate and a 0.15% false negative
rate. Although this method had a slightly higher miss rate than the best performing method,
it still performed well in accurately identifying abnormal and normal data. The labeling by
anomaly strength (NG) method ranked third with a 12.8% missed rate and 0% over-check
rate. Although this method has a higher false positive rate than the other two methods,
it scored a perfect overidentification rate, which means it has a low risk of misclassifying
abnormal data as normal.

The results of the study suggest that the labeling method for each anomaly without
RoI distinction outperformed the other methods in terms of accuracy, achieving the lowest
false positive and false negative rates. This labeling approach effectively identifies and
classifies anomalies on cosmetic containers, minimizing the likelihood of defective products
entering the market. Implementing an accurate and reliable anomaly detection system is
crucial to maintaining high quality standards in the manufacturing industry. By adopting a
labeling approach by anomaly type without RoI distinction, manufacturers can improve
the accuracy and efficiency of their quality inspection processes, resulting in improved
overall product quality.

4.5. Discussion

Both [6] and our proposal have in common the use of YOLO to detect objects and
supervised learning to detect anomalies. However, ref. [6] utilized YOLOv4 and this paper
utilizes YOLOv7. Because YOLOv7’s convolutional neural network architecture and new
object detection and classification methods are efficient, YOLOv7 has the advantage of
being more accurate and faster than YOLOv4. YOLOv7 is based on the convolutional neural
network architecture of YOLOv4 and introduces new object detection and classification
methods. YOLOv7 is also trained on a larger dataset than YOLOv4, resulting in more
accurate results.

5. Conclusions

While researching and experimenting with anomaly detection using a YOLOv7-based
supervised learning approach, we successfully found what we believe to be the optimal
labeling method. This method greatly improves the accuracy and efficiency of the anomaly
detection process. By utilizing the YOLOv7 framework, which combines deep learning
and object detection techniques, we were able to train a robust model that can detect
anomalies with high precision and recall. In conclusion, through extensive research and
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experimentation on anomaly detection using the YOLOv7-based supervised learning
approach, we successfully discovered and implemented an optimal labeling method. By
utilizing this labeling method, anomaly detection of cosmetic containers can be effectively
performed, which improves operational efficiency, reduces downtime, and improves overall
quality and performance.

The supervised-learning-based anomaly detection in this paper relies heavily on la-
beled data, which are expensive and time-consuming to acquire. In addition, supervised
learning models are designed to learn from labeled examples, which means that they can
only recognize patterns that are explicitly displayed during training, which means that
in many domains, they cannot detect the presence of underlying patterns or anomalies
that are not known or labeled in advance. Therefore, to address these issues, we seek to
compensate for the shortcomings of supervised learning by ensuring that the training data
contains a variety of anomaly types, including known and potentially unseen anomalies,
so that the model can learn generalized patterns that can be applied to a wider range of
anomalies, and by building more comprehensive and diverse datasets and using unsuper-
vised or semi-supervised anomaly detection techniques to complement supervised learning
methods. Semi-supervised learning techniques have the advantage of being particularly
useful for data exploration and preprocessing tasks. By adopting unsupervised learning
as a preliminary step to supervised learning, it can help researchers better understand
and preprocess data to improve model performance and gain more reliable insights by
identifying outliers, detecting anomalies, reducing data dimensionality, and revealing
hidden relationships or structures within the data. It can detect new or previously unseen
anomalies based on deviations from normal patterns without relying on labeled data, and
can act as a safety net to catch anomalies not considered during the labeling process. We
plan to conduct future research not only on supervised learning, but also on unsupervised
learning techniques and learning through semi-supervised learning.
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