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Abstract: The volatility and uncertainty introduced by increasingly integrated renewable energy
pose challenges to the reliable and stable operation of the power system. To mitigate the operation
risks, a two-stage optimal preventive control model that incorporates transient stability constraints
and considers uncertainties from multiple resources is proposed. First, the uncertainties of different
re-sources are modeled, with which the non-sequential Monte Carlo sampling method is used
to correspondingly generate the scenarios. Thereafter, a two-stage control model that balances
operational safety and economy and realizes preventive control and emergency control is built.
The operation schedule from the preventive control stage aims to minimize the transient stability
probability and operation costs. If any faults destabilize the system, the emergency control stage
will be activated immediately to help the system recover stability with minimal control costs. To
expedite the solving of the two-stage model, a multi-objective particle swarm algorithm based on
entropy-TOPSIS is proposed. Finally, the effectiveness of the proposed model and solving algorithm
are validated with the modified IEEE118 node system.

Keywords: preventive control; transient stability constraints; multi-resource uncertainties; two-stage
model; particle swarm algorithm

1. Introduction

With the increasing integration of renewable energy that introduces substantial un-
certainty, the stable operation of the system is facing severe challenges [1,2]. Traditional
optimal operation models usually ignore system transient stability, resulting in the gen-
erated operation schedules failing to satisfy the system’s stable operation requirements.
Therefore, it is necessary to consider the transient stability constraint in the optimal op-
eration model and thereby form an optimal preventive control model. The transient
stability-constrained optimal operation problem is a topic of much recent interest as it
offers a compromise between economic efficiency and safe operation of power systems.
The transient stability-constrained model uses differential-algebraic equations (DAEs) to
describe system dynamics and transient stability constraints [3] and is therefore usually cast
as a semi-infinite programming-based model, which re-quires a significant computational
effort to solve. Therefore, it is necessary to propose a new optimal control method which
can take the transient stability into consideration and can be easily solved.

Considering the involved uncertainty, paving the way to the optimal preventive
control of the systems should resolve three problems: (1) modeling the uncertainty;
(2) building the preventive control model; and (3) solving the optimal preventive con-
trol model.
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• Modeling the uncertainty: Reference [4] focuses on modeling the uncertainty of
wind and solar energy, mainly by adopting the Burr distribution model [5], Weibull
distribution model [6], Gamma distribution model [7], etc. The Weibull distribution
model has been widely used due to its simple principles and convenience in calculation.
In addition, the structure of a power grid can also be impacted by unexpected faults.
The uncertainty of the occurrence of faults is analyzed from three aspects: fault type,
fault location, and recovery time. In existing works, the uncertainty of fault types is
described with discrete probability distribution models [8], and the uncertainty of
fault recovery time is usually described with a normal distribution [9]. Similarly, the
load uncertainty, mainly caused by the fluctuation of active power injected into the
node, can be described by a normal distribution [10]. In the literature, random samples
are usually generated via Monte Carlo sampling simulations [11] and Latin hypercube
sampling simulations [12], and the generated scenarios are reduced using clustering
methods such as the k-means method.

• Building preventive control model: Non-anticipative changes on grid components
and the aroused redistribution of currents can destabilize the system. Preventive
control prevents possible system instability by adjusting the current operation status
with the cost of a higher operating cost. References [13–17] studied preventive con-
trol strategies on hourly time basis. The difference between these models is mainly
their objectives, which can be roughly divided into three categories: eco-nomic cost
minimization [13]; reliability maximization [14,15]; and joint economy and reliabil-
ity [16,17]. Reference [18] mainly studies the online preventive control and proposes a
method for safety and stability control considering large-scale wind energy. However,
preventive control is indeed a multi-timescale problem that is solved at different time
scales step by step. Therefore, it is reasonable to build the prevention and control
model in two parts, namely, preventive control and emergency control.

• Solving methodology: A optimization model can be cast as a given programming
problem, such as mixed integer linear programming (MILP), and then solved with
commercial solvers. On one hand, this methodology usually requires linearization of
the original model which is originally nonlinear and nonconvex; on the other hand, for
large-scale problems, the computational burden is heavy and sometimes unacceptable.
Intelligent algorithms, such as particle swarm optimization algorithms [19] and grey
wolf algorithms [20], are wildly used in solving complicated optimization model in
recent years. The advantage is that they can be applied to different models without
additional processing, but their solution stability is expected to be further improved.

This paper proposes a two-stage optimal preventive control model that considers
transient stability constraints and uncertainties from multiple resources. First, the un-
certainty from the generation units, the grid, and the loads are modeled, and a set of
scenarios is generated via the Monte Carlo sampling method. Second, a two-stage control
model that balances system operation safety and economy is proposed. The first stage is the
preventive control stage, with which the transient stability probability and operating costs
are considered based on the faults in uncertain scenarios. The second stage is the emergency
control strategy, which is executed in the event of a fault to minimize the control cost and
recover system stability. To improve efficiency, a multi objective particle swarm algorithm
based on entropy-TOPSIS is proposed to solve the problem. Finally, the effectiveness of
the proposed methodology is demonstrated with the modified IEEE118 node system. The
main contributions of the manuscript are as follows:

(1). The paper proposes a two-stage optimal preventive control model that incorporates
transient stability constraints and addresses the challenges aroused by the volatility
of renewable energy resources.

(2). The non-sequential Monte Carlo-based scenario generation method is used to sim-
ulate the uncertainties introduced by multiple resources. This provides a complete
under-standing of the system’s behavior and enhances the reliability of decisions in
grid operation.
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(3). An improved multi-objective particle swarm algorithm (IMOSPO) based on entropy-
TOPSIS is proposed to efficiently solve the proposed model.

The rest of this manuscript is organized as follows: Section 2 gives the uncertainty
models for multiple resources; Section 3 describes the details of the proposed two-stage
optimal preventive control model; the solution methodology is introduced in Section 4; the
case study is presented in Section 5; finally, Section 6 concludes this paper.

2. Probability-Based Uncertainty Models
2.1. Modeling the Uncertainty of System Components
2.1.1. Modeling the Uncertainty of Generation Units

With the sustainable development of renewable energy, the proportion of renew-able
generation with substantial uncertainty on the generation side gradually increases. Renew-
able resources have become the source of uncertainty on the generation side. Especially
for the wind turbine, the uncertainty of wind speed and turbine failure may frequently
result in wind power output fluctuation. Thus, in this paper, the wind tur-bine is taken as
an example to introduce the uncertainty modeling of the generation side. In addition, the
uncertainty of other renewable energy resources, such as PV, can be described following
the model of the wind turbine.

Weibull distribution is widely used to describe wind speed distribution. The prob-
ability density function of Weibull distribution can be written as in (1):

f (v) =
k
c
·
(v

c

)k−1
·exp

[
−
(v

c

)k
]

(1)

where c is the size factor; k is the shape factor; and v is the input wind speed.
The relationship of the output power PW and input wind speed of a wind turbine vi

can be expressed as in (2):

PW =


0, vi > vo or vi < vin

PW
N ·

(vi−vin)
(vN−vin)

, vin ≤ vi ≤ vN

PN , vN ≤ vi ≤ vo

(2)

2.1.2. Modeling the Uncertainty of the Grid

The uncertainty faced by the power grid is mainly aroused by the unexpected failures
on transmission lines and thus can be featured by the fault type, fault location, and the
corresponding recovery time. Therefore, describing these three features is im-portant to
model the uncertainty of the power grid.

Probability Distribution of the Fault Type

According to the statistical results of electrical faults that happened in North America
from the Institute of Electrical and Electronics Engineers (IEEE), the discrete probabilities
of different fault types are shown in Table 1.

Table 1. Probabilities of different fault types.

Fault Type Three-Phase Two-Phase Single-Phase Phase-to-Phase Total

Statistical results % 1 2 93 4 100
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Probability Distribution of the Fault Location

The fault location is described by the distance between the fault location and the end
of the line, and its probability distribution is modeled with a discrete distribution as shown
as in (3):

f (i) =


0.2, Li

L < 20%
0.6, 20% < Li

L < 80%
0.2, Li

L > 80%
(3)

where Li is the distance between the fault location and the end of a line; and L represents
the total length of the line.

Probability Distribution of the Recovery Time

The process of fault recovery on the grid cannot be ignored because the fault recovery
time will reflect the time duration that the impact of the fault lasts on the grid. Considering
the different operating statuses of relay protection systems and communication networks,
the fault recovery time is not constant and is modeled with normal distribution as shown
in (4) [21]:

f (ti) =
1√

2πσt
exp

[
− (ti − µt)

2

2σt2

]
(4)

where the ti is the fault recovery time; µt is the expectation of the fault recovery time; and
σt is the variance of the fault recovery time.

2.1.3. Uncertainty Modeling of Load

Load is randomness and volatility, whose distribution can be described by normal
distribution:

f (Pn) =
1√

2πσn
exp

[
− (Pn − µn)

2

2σn2

]
(5)

where Pn is the active power, µn is the expectation of active power, and σn is the variance of
active power.

2.2. Non-Sequential Monte Carlo Based Scenarios Generation Method

The Monte Carlo method is often used in analyzing the reliability and stability of large
complex networks. Based on the law of large numbers, the core idea of the Monte Carlo
method is to use enough repeated random experiments to solve problems with probabilistic
interpretations and obtain statistical results. Furthermore, the Monte Carlo method can
be classified as the category of non-sequential Monte Carlo methods and the category of
sequential Monte Carlo methods.

The non-sequential Monte Carlo method uses the random sampling method to gen-
erate the operation status of each component. It then analyzes the operation status of
the entire system according to the operation statuses of its components. Evidently, the
uncertainties contained by the components are finally aggregated as the uncertainty of the
entire system. The non-sequential Monte Carlo method is simple and computationally
friendly. Thus, it is ideal for analyzing the reliability of large-scale power systems with
speed requirements.

To generate a stochastic scenario of the entire system using the non-sequential Monte
Carlo method, the operation status of each component needs to be sampled first. Con-
sidering that the system contains N components, ek is used to indicate the component
k’s operation status, where k = 1, 2, 3, . . . , N. ek = 1 represents equipment k operating
normally; ek = 0 represents equipment k operating abnormally. The samples of every
component can be written as (6):

ek =

{
1 Tk ≤ Hk
0 0 ≤ Hk ≤ Tk

(6)



Processes 2023, 11, 2258 5 of 22

where Tk is the probability of component k being abnormal; and Hk is a random number
that obeys uniform distribution in the interval of [0, 1].

The above steps can be repeated to generate the operation statuses of the remaining
components. When the statuses of all components are determined, the random scenario
generation of the entire system is completed.

Considering the operation status of the simulated system is Ei, the corresponding
probability of the operation status of the system can be indicated by P(Ei) as in (7):

P(Ei) = ∏No
k=1 Tk ∏No−N

k=1 Hk (7)

where No is the number of abnormal components in the system. Based on the law of large
numbers, when the number of sampling times goes to infinite, the average value of samples
will be infinitely close to the expected value of samples.

3. The Two-Stage Optimal Preventive Control Model

The preventive control model proposed in this paper is a two-stage optimization
model. The first stage focuses on prevention control and considers the power and re-serve
from generation units and energy storage systems as variables. In this stage, the goal is to
minimize the total cost and the probability of system transient instability while considering
the economic and stable aspects of the system. The second stage is the emergency response
stage. With a fault event, evaluation is made to determine if the system will experience any
instability. If instability is detected, the emergency control stage will be triggered. During
the second stage, the decision variables involve the usage of reserves from generation units
and energy storage systems. The focus of this stage is to minimize the costs of delivering
reserves and to achieve a cost-effective restoration of the system’s transient stability.

3.1. Model of Preventive Control Stage
3.1.1. Objective Function

The preventive control stage needs to balance safety and the economy. Thus, the
objective of the proposed model can be written as in (8), where f1 represents the total cost;
and f2 stands for the stability of the system. The cost of the system consists of the expected
operation costs of the generation units. The cost function f

(
pt1,0

)
and f (pt,s), respectively,

represent the total cost of the system at the time t1 in the base scenario (scenario 0) and
at time t in scenario s. The stability of the system can be reflected by the probability
of transient stability, which is represented by (13). The stability of the system mainly
depends on the fluctuation of power and the failures of the components. β is the transient
stability probability.

Min F(x) = { f1, f2} (8)

f1 = f
(

pt1,0
)
+ ∑ns

s=1 πs ∑nT
t=t1+1 f (pt,s) (9)

f
(

pt1,0
)
= ∑nG

i=1[(ai

(
pG

i,t1,0

)2
+ bi pG

i,t1,0 + ci + rG,UP
i,t1

CUP + rG,DN
i,t1

CDN ]+∑ns
e=1

(
−pC

e,t1,0CC
e,t1 + pD

e,t1,0CD
e,t1

)]
(10)

f (pt,s) = ∑nG
i=1[(ai

(
pG

i,t,s

)2
+ bi pG

i,t,s + ci + rG,UP
i,t CUP + rG,DN

i,t CDN ]+∑ns
i=1

(
−pC

e,t,sCC
e,t + pD

e,t,sCD
e,t

)]
(11)

pt,s =
{

pG
i,t,s, pC

e,t,s, pD
e,t,s, rG,UP

i,t , rG,DN
i,t

}
(12)

f2 = β = 1− nss

S
(13)

In (10)–(13), pt,s represents the vector of decision variables; ai, bi, and ci are, respec-
tively, the cost coefficients of different sets of generation units; πs is the probability of
uncertainty scenario s; nG is the total number of generation units; nT is the number of time
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intervals of the preventive control stage; nG is the number of generators; ns is the number
of storage devices; nss is the number of scenarios that the system is in a statable status; pG

i,t,s
is the active power output of the ith generation unit at time t in scenario s; pC

e,t,s and pD
e,t,s are

the charging and discharging powers, respectively, of energy storage system e; CC
e,t and CD

e,t

are the charging and discharging costs, respectively, of energy storage system e; rG,UP
i,t and

rG,DN
i,t represent the up and down reserve capacity from generation units, respectively; CUP

and CDN represent, respectively, the unit costs for the up and down reserve capacity from
generation units; the probability of the system’s transient instability is β; and S represents
the number of scenarios.

3.1.2. Constraints

The constraints could be divided into five parts: system operation constraints; con-
straints of energy storage; constraints of generation unit; transient process constraints; and
stability margin constraints.

(1) System operation constraints

Constraints (14) and (15), respectively, represent the active and reactive power balance
of the system level. The probabilistic constraints of node voltage limitation and transmission
line capacity are shown in (16) and (17), respectively.

pG
b,t,s + pW

b,t,s − pC
b,t,s + pD

b,t,s − pL
b,t,s − ub,t,s ∑nb

j=1 uj,t,s

(
Gbjcosδbj,t,s + Bbjsinδbj,t,s

)
= 0 (14)

qG
b,t,s + qW

b,t,s − qL
b,t,s + ub,t,s ∑nb

j=1 uj,t,s

(
Bbjcosδbj,t,s − Gbjsinδbj,t,s

)
= 0 (15)

Pro
{

Ub ≤ ub,t,s ≤ Ub
}
> αU (16)

Pro
{
−Sl ≤ sl,t,s ≤ Sl

}
> αS (17)

In (14)–(17), nb denotes the number of nodes; pW
b,t,s and qW

b,t,s are the active and reactive
power output of the wind turbines at node b in the scenario s, respectively; pL

b,t,s and
qL

b,t,s, respectively, denote the active and reactive power of the transmission line; qG
b,t,s is

the reactive power of the ith generation unit at time t in scenario s; Gbj and Bbj are the
conductivity and admittance of branch bj, respectively; ub,t,s and uj,t,s are, respectively, the
voltage amplitude of node b and j in scenario s; δbj,t,s represents the difference of phase
angle between node b and j in scenario s; Ub and Ub are, respectively, the upper and lower
limits of the voltage amplitude of node i; sl,t,s and Sl are, respectively, the apparent power
of the ith line and the corresponding upper limit; αU and αS are, respectively, the probability
thresholds of node voltage and apparent power limitations.

(2) Constraints of energy storage

Energy storage’s charging and discharging power limits are enforced with (18) and
(19). The upward reserve of energy storage can be provided by discharging more and
the downward reserve can be provided by charging more. Constraint (20) enforces that
both the upward reserve and downward reserve should be positive. The energy evolution
function is shown in constraint (21), which builds the relationship between the eS

e,t−1 and
eS

e,t. Constraint (22) enforces the upper and lower bounds of stored energy. Moreover,
constraint (23) indicates that simultaneously charging and discharging is not allowed.

PC
e ce,t ≤ pC

e,t,s + rC
e,t ≤ PC

e ce,t (18)

PD
e de,t ≤ pD

i,t,s + rD
e,t ≤ PD

e de,t (19)
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rC
e,t ≥ 0; rD

e,t ≥ 0 (20)

eS
e,t = eS

e,t−1 + pC
e,tη

C
e ∆t− pD

e,t/ηD
e ∆t (21)

ES
e ≤ eS

e,t ≤ ES
e (22)

ce,t + de,t ≤ 1 (23)

In (18)–(23), PC
e and PC

e are, respectively, the upper and lower bounds of charging
power; ce,t and de,t are, respectively, the charging and discharging status of energy storage
system e; ∆t is the length of the time interval; ES

e represents the stored energy; ES
e and ES

e
are upper and lower bounds of stored energy system e, respectively; ηC

e and ηD
e are the

charging and discharging efficiencies, respectively.

(3) Constraints of generation units

Several aspects should be considered for the operation of generation units. To provide
the upward reserve and downward reserve, the upper and lower bound constraints of
generation units are modified via (24). The ramping constraint shown in (25) limits the
output change. The total upward reserve and downward reserve from generation units
and energy storage systems should satisfy the minimum reserve requirement of the system
as in (26) and (27). The reactive power outputs of generation units are limited by (28). The
active power outputs of wind turbines should be less than the corresponding forecasts as
in (29). Similarly, the reactive power outputs of wind turbines are limited by (30).

PG
i + rG,DN

i,t ≤ pG
i,t,s ≤ PG

i − rG,UP
i,t (24)

RPG
i
≤ pG

i,t,s − pG
i,t−1,s ≤ RPG

i (25)

∑nG
i=1 rG,UP

i,t + ∑nS
e=1 rD

e,t ≥ RUP
t (26)

∑nG
i=1 rG,DN

i,t + ∑nS
e=1 rC

e,t ≥ RDN
t (27)

QG
i ≤ qG

i,t,s ≤ QG
i (28)

0 ≤ pW
b,t,s ≤ PW

b,t,s (29)

0 ≤ qW
b,t,s ≤ QW

b,t,s (30)

In (24)–(30), PG
i and PG

i are, respectively, the upper and lower bounds of the power

outputs of generation units; RPG
i and RPG

i
, respectively, denote the upper and lower

bounds of the ramping capacity of generation units; RUP
t and RDN

t are, respectively, the

minimum requirements of upward and downward reserve of the system; QG
i and QG

i are,
respectively, the upper and lower bounds of the reactive power output of generation units;
and PW

b,t,s and QW
b,t,s are, respectively, the upper limits of the active and reactive power

output of the wind turbine.

(4) Transient process constraints
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The paper proposes a two-stage model that imposes constraints on both wind tur-bines
and traditional generation units. In transient stability analysis, a fourth-order model is
used to characterize the dynamic characteristics of the generation unit [22]. The PSASP7
governor model [23] is used as the governor and the commonly used IEEE1 excitation
system model [24] is used as the excitation system. The model primarily adopts the
dual-mass lumped dynamic model to describe the dynamic response of the wind turbine.
This model divides the rotor and the load of the wind turbine into two mass blocks. By
connecting the dynamic equations of the two mass blocks, the dynamic response of the wind
turbine with wind speed and load changes can be de-scribed. The differential equations for
the dual-mass lumped dynamic model are writ-ten below:

dθ

dt
= ωb(ωt −ωr) (31)

dωt

dt
=

1
2H

[
Pm

ωt
− Kθ − D(ωt −ωr)

]
. (32)

In (31) and (32), ωt, ωr, and ωb are, respectively, the rotational speeds of the wind
turbine, the generator, and the system synchronous speed; θ denotes the torsion angle (in
radians); K denotes the torsional stiffness coefficient (in p.u./rad); D denotes the torsional
stiffness and damping coefficient; H denotes the inertia constant of the wind turbine; and
Pm denotes the mechanical energy converted from wind energy.

The double-fed induction generator (DFIG) model [25] can be extended into the DFIG-
grid model by accounting for the grid side dynamics. If we ignore the transient behavior of
rotor current and DC capacitor, the comprehensive formulation for the DFIG-grid model
can be expressed as follows.

For stator circuit:
vs = Rsis +

dλs

dt
+ jωsλs (33)

ps = vsi∗s + vri∗r + PW
i,t,s (34)

qs = vs jXlsi∗s + vr jXlri∗r + QW
i,t,s . (35)

For rotor circuit:
vr = Rrir + jωrλr (36)

pr = vri∗r + vsi∗s (37)

qr = vr jXlri∗r + vs jXlsi∗s . (38)

For grid-side:

pW
i,t,s = Uj,t,svssin

(
θW − θgrid

)
− v2

s gs0 − vsvr(gs1cosδ− bs1sinδ) (39)

qW
i,t,s = Uj,t,svssin

(
θW − θgrid

)
− v2

s bs0 − vsvr(gs1sinδ− bs1cosδ), (40)

where vs represents the stator voltage; vr represents the rotor voltage; is represents the
stator current; ir represents the rotor current; Rs and Rr represent the stator resistance and
rotor resistance, respectively; Xls and Xlr represent the stator leakage inductance and rotor
leakage inductance, respectively; λs and λr represent the stator flux linkage and rotor flux
linkage, respectively; ps and pr represent the stator power and rotor power, respectively;
qs and qr represent the stator reactive power and rotor reactive power, respectively; ωs
and ωr represent the stator angular velocity and rotor angular velocity of wind turbine,
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respectively; vgrid represents the voltage magnitude of the grid, while θW represents the
voltage phase angle of the wind turbine; θgrid represents the phase angle of the grid voltage;
gs0 and bs0 represent the stator conductance and susceptance, respectively; gs1 and bs1 are
the stator AC conductance and susceptance of the wind turbine, respectively; δ represents
the rotor angle of the wind turbine; PW

i,t,s represents the active power of wind turbine; and
QW

i,t,s represents the reactive power of wind turbine.

(5) Transient stability constraint

The paper analyzes the stability margin of the power system and divides the system
states into stability and instability with Integrated Extended Equal Area Criterion (IEEAC).
The system condition can be evaluated via the following conditions.

• Instability condition: Synchronous machine equivalent electromagnetic power and
mechanical power in transient equilibrium are shown in (41). The bias of their differ-
ence is greater than 0 and tends to become larger, as shown in (42). So, it is difficult for
the system to achieve dynamic equilibrium.

Pa(tu) = PmE(tu)− PeE(tu) = 0 (41)

.
Pa(tu) =

dPa

dt

∣∣∣∣
t=tu

> 0 (42)

In (41) and (42), PmE and PeE, respectively, are equivalent to mechanical power and
electromagnetic power; tu is the moment of reaching the unstable equilibrium; and Pa is
the unstable power.

• Stability condition: When the system reaches the maximum swing angle, the system’s
equivalent angular velocity decelerates to 0, as shown in (44). The mechanical power
of the system becomes less than the electromagnetic power, so the system will reach
dynamic equilibrium, as shown in (45). The stability margin can be calculated as in
(43)–(45):

ω
(
tθ

)
= 0 (43)

Pt
(
tθ

)
= PmE

(
tθ

)
− PeE

(
tθ

)
< 0 (44)

fσ = −
∫ θu

θ
Pt(tt)dθ ≈ |Pt(tt)|

(
θu − θ

)
2

, (45)

where tθ is the moment of maximum swing angle; and Pt
(
tθ

)
and ω

(
tθ

)
are, respectively,

the unbalanced power and equivalent velocity of the maximum swing angle.
The system stability information under the fault scenario can be obtained by using

Monte Carlo sampling. If the system meets the constraint (43)–(45), it is in a stable condition,
namely nss = 1; if the system satisfies the constraint (41) and (42), the system is in an
instable condition. Through the analysis of S samples, the probability information of
system transient stability can be obtained.

3.2. Emergency Control Stage Model
3.2.1. Objective Function

In case of a system fault, it is advisable to apply Formulae (41)–(45) to ascertain
whether the system has lost its transient stability. If the system is operating steadily in line
with (43)–(45), then there is no urgent need for emergency control measures. However,
if the system is in an unstable status that is in line with (41) and (42), emergency control
measures become necessary. In this case, fast response of emergency control measures is
extremely important.
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In the emergency control stage, the optimization is carried out with the goal of mini-
mizing the operational costs of the system. The objective is shown in (46), which contains
two parts: the operation cost of generation units (47) and the operation cost of energy
storage (48), both of which include the cost of delivering reserve. The uncertainty in the
emergency control stage makes the problem difficult to solve; thus, in the emergency
control stage, only the forecasted scenarios are considered. After the fault is cleared, the
system returns to the preventive control stage using stochastic analysis.

min f3 = fG1 + fS1 (46)

fG1 = ∑nG
i=1[r

G,UR
i,t CUR + rG,DR

i,t CDR] (47)

fS1 = ∑nS
i=1

(
rRC

i,t CRC
i,t + rRD

i,t CRD
i,t

)
(48)

In (46) and (47), rG,UR
i,t and rG,DR

i,t are, respectively, the delivered upward and down-
ward reserve from generation units; CUR and CDR are the costs to deliver the upward
reserve and downward reserve, respectively; similarly, rRD

i,t and rRC
i,t are, respectively, the

delivered upward and downward reserve from energy storage systems; and CRD
i,t and CRC

i,t
are the costs to deliver the upward reserve and downward reserve, respectively.

3.2.2. Constraints

During the emergency control stage, the system still needs to satisfy the operational
constraints mentioned in the preventive control stage. Only by satisfying the above con-
straints can the system ensure stable operation and optimal economy after the disturbance.

Unlike the preventive control stage, the power balance in the emergency control
stage considers the delivered reserve from generation units and energy storage; thus, it is
rewritten as in (49) and (50).

pG
b,t + pW

b,t − pC
b,t + pD

b,t − pL
b,t + rG,UR

b,t − rG,DR
b,t + rRD

b,t − rRC
b,t − ub,t ∑nb

j=1 uj,t

(
Gbjcosδbj,t + Bbjsinδbj,t

)
= 0 (49)

qG
b,t + qW

b,t − qL
b,t + ub,t ∑n

j=1 uj,t

(
Bbjcosδbj,t − Gbjsinδbj,t

)
= 0 (50)

Different from the preventive control stage, reserved generation capacity during the
emergency control stage will be effectively delivered. Thus, the power limit constraint
should be revised as in (51). Since the upward and downward reserve capacities have been
determined in the preventive control stage, the available reserve capacities in the emergency
control stage cannot exceed the determined amounts. These limits are enforced by (52)
and (53). The constraints concerning the reactive power outputs of generator units and
the active/reactive power outputs of wind turbines remain the same as shown in (54)–(56).
The node voltage and the transmission line power flow constraints, as shown in (57) and
(58), should be strictly satisfied.

PG
i + rG,DR

i,t ≤ pG
i,t ≤ PG

i − rG,UR
i,t (51)

rG,UR
i,t ≤ RG,UP

i,t , rRC
e,t ≤ RC

e,t (52)

rG,DR
i,t ≤ RG,DN

i,t , rRD
e,t ≤ RD

e,t (53)

QG
i ≤ qG

i,t ≤ QG
i (54)

0 ≤ pW
b,t ≤ PW

b,t (55)
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0 ≤ qW
b,t ≤ QW

b,t (56)

Ub ≤ ub,t ≤ Ub (57)

−Sl ≤ sl,t ≤ Sl (58)

The constraints of energy storage systems in the emergency control stage remain the
same as in the preventive control stage, as shown in (59) and (60). The reserve capacity
constraint for energy storage is shown in (61). Similar to the generation units, the power
and stored energy of the energy storage will change after delivering the re-served energy
in the emergency control stage. Its modified model is formulated as in (59)–(63). It is
worth noting that the stored energy evolution constraint has been adjusted considering the
delivery of reserved energy. The energy evolution constraint is revised as in (61).

PC
e ce,t ≤ pC

e,t + rC
e,t ≤ PC

e ce,t (59)

PD
e de,t ≤ pD

e,t + rD
e,t ≤ PD

e de,t (60)

eS
e,t = eS

e,t−1 +
(

pC
e,t + rC

e,t

)
ηC

e ∆t− (pD
e,t + rD

e,t)/ηD
e ∆t (61)

ES
e ≤ eS

e,t ≤ ES
e (62)

ce,t + de,t ≤ 1 (63)

4. Solution Method

The two-stage model proposed in this paper involves two different types of problem,
and therefore requires different algorithms. The preventive control model is a multi-
objective collaborative optimization problem, which is handled by a multi-objective par-
ticle swarm optimization (MPPSO) algorithm; and the model of the emergency control
model is a single-objective problem, which is solved by a particle swarm optimization
algorithm (PSO).

The multi-objective particle swarm algorithm solves the multi-objective problem with
Pareto front solutions [26], which is illustrated in Figure 1.
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4.1. Initialization

The single-objective PSO algorithm and the MOPSO algorithm have the same rules in
particle initialization and iteration. Usually, the initialization of particle swarm is conducted
to randomly generate a group of particles as the initial solution. After randomly generating
the initial particles, if they are in the inferior solution space, the optimization results may
be compromised. In this paper, when solving the advanced preventive control model, the
operation schedule data of the previous day are used to set the initial values of particles;
and when solving the emergency control model, the current operation status is used for the
initial values of particles.

4.2. Particle Update

The location and velocity of PSO and MOPSO algorithms can be calculated as in (64):{
xi(t + 1) = xi(t) + vi(t + 1)

vi(t + 1) = ω(t)vi(t) + c1r1(pbest− xi(t)) + c2r2(gbest− xi(t))
(64)

where xi(t + 1) and vi(t + 1) are, respectively, the location and velocity of particle i in the
(t + 1)th iteration; gbest is the global best position of the particle; and ω is the inertial factor
whose magnitude determines the strength of the global and local search ability. In (64), vi
is the memory term, which denotes the velocity of particle i; xi is the current position of
particle i; c1 and c2 are learning factors and, usually, c1 = c2 = 2; rand denotes the random
number between (0, 1); r1 represents the individual cognitive factor, which is used to adjust
the influence of a particle’s personal best position during the update; r2 represents the social
cognitive factor, which is used to adjust the influence of the global best position during the
update; pbest represents the personal best position of a particle; and gbest represents the
global best position—it represents the best solution found by all particles.

To accelerate the convergence of the algorithm, a method that decreases the inertial
velocity of particles, called linearly decreasing weight (LDW), is used as in (65).

ω(t) =
(ωini −ωend)(Gk − t)

Gk
+ ωend (65)

In (65), Gk denotes the maximum number of iterations; ωini denotes the initial inertia
weight, which is typically set as 0.9; and ωend denotes the inertia weight when the iteration
number reaches the maximum, which is typically set as 0.4.

4.3. Fitness Function and Optimal Solution Construction

For the advanced prevention control model, the weights of the two different objectives
need to be determined. By contrast, the emergency control model is a single-objective
optimization problem, so Pareto optimal solution is not involved. In this paper, the entropy
method [27] and TOPSIS [28] method are used to deal with the weight of multiple objectives.
The combination of the two can help effectively find the objective weight of the Pareto
optimal frontier, and then the TOPSIS method can sort these Pareto optimal solutions as
options. The steps are as follows:

(1) Obtain the original indicator data matrix based on sample data. Let a matrix with
n-dimensional objective function and m Pareto solutions be X =

(
xij
)

m×n; then,
standardize it to obtain a new matrix Y =

(
yij
)

m×n:yij =
xij−minxj

maxxj−minxj
gain index

yij =
minxj−xij

maxxj−minxj
cost index

(66)

where maxxj is the maximum value of all evaluation data of index j; and minxj is the
minimum value of all evaluation data of index j. The gain index indicates that the
larger the value, the better the index. The cost index is the opposite.
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(2) Obtain the evaluation indicator pij and entropy Ej of samples; then, obtain the infor-
mation redundancy value dj based on the information entropy, as follows:

pij =
yij

∑m
i=1 yij

(67)

Ej = − ln n−1
m

∑
i=1

pij ln pij (68)

dj = 1− Ej . (69)

(3) Finally, calculate the weight of each index according to the information entropy:

wj =
dj

∑n
j=1 dj

. (70)

(4) Standardize the decision matrix to obtain the normalized attribute value of the original
scheme and introduce the weight vector V+ =

(
V+

1 , V+
2 , . . . V+

n
)

obtained via the
entropy weight method:

zij =
xij√

∑m
i=1 xij

2
(71)

Vij = wjzij . (72)

(5) Determine the optimal solution V+ and worst solution V−:{
V+ =

(
V+

1 , V+
2 , . . . V+

n
)

V− =
(
V−1 , V−2 , . . . V−n

) (73)

(6) Calculate the distance from each scheme to the optimal solution and the worst solution
in (74) and (75); then, calculate the relative proximity of each scheme to the ideal
solution according to Formula (75):

D−i =

√
∑n

j=1

(
Vij −V−j

)2

D+
i =

√
∑n

j=1

(
Vij −V+

j

)2
(74)

Oi =
D−i

D+
i + D−i

(75)

The flowchart of the entropy-TOPSIS method is shown in Figure 2.
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5. Case Study
5.1. System Discerption

The proposed model is validated with the modified IEEE 118-node testing system,
which is shown in the Figure A1, in Appendix A. The system data are available at [29].
The modified IEEE 118-node system contains ten wind farms, each of which contains
100 double-fed wind turbines (2 MW). The rated power and capacity of the energy storage
systems are, respectively, 10 MW and 20 MWh. The costs of upward and downward reserve
capacities are set as CNY 20/MW. The locations of the wind farms and energy storage
systems are shown in Appendix A. The system voltage limits are set as [0.97, 1.06] p.u. The
uncertainty of the system is simulated via Monte Carlo simulation. The corresponding
distributions and parameters are set as follows:

(1) The nodal load power is assumed to follow a normal distribution with a mean value
given by the provided standard data and a variance of ±10%. The load correlation
coefficient of the connected node is set to 0.15.

(2) The cut-in, cut-out, and rated wind speeds of wind turbines are, respectively, set as
3 m/s, 25 m/s, and 12 m/s.

(3) To simulate a fault on branches 18–35, the probability values of fault type and location
are adopted from Tables 1 and 2. The fault recovery time is assumed to follow a
normal distribution with a mean value of 350 ms and a standard deviation of 10%.

Table 2. Costs of preventive control stage.

Cases Case 1 Case 2 Case 3

Costs (USD/h) 95,634 98,985 104,182
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The non-sequential Monte Carlo sampling method is used to generate 1000 scenarios,
and K-MEANS clustering is used to reduce them to 15 typical scenarios.

This paper presents a rolling simulation analysis using the provided case study distri-
bution starting at 10:00 a.m. During the simulation, generation unit 17 (40 MW) experiences
a fault at 12:00 p.m. and recovers to the stability condition afterward. At 1:00 p.m., gen-
eration units 2, 10, 16, 21, 27, 35, and 43 experience faults. Specifically, the system is in
the preventive control stage between 10:00 a.m. and 12:00 p.m. Although a minor fault
occurs at 12:00 p.m., the system remains stable after fault recovery, maintaining preventive
control. After 2:00 p.m., the system enters the emergency control stage. The time steps in
the preventive and emergency control stages are, respectively, 15 min and 0.1 s. The solving
times of the two states are 2 h and 8 s. In addition, to further analyze the impacts of the
energy storage systems and the reserve requirements of the system, three different system
configuration schemes are used for analysis:

Case 1: Reserve and energy storage systems are not considered;
Case 2: Only reserve from generation units is considered (energy storage systems are not
considered);
Case 3: Reserve from both generation units and energy storage systems are considered.

5.2. Optimization Results
5.2.1. Analysis before Failure

From 10:00 a.m. to 11:59 a.m., the system remains fault-free and is in the preventive
control stage. In Case 1, the maintenance work of the system remained in the non-optimized
state as in the previous moment, and it was still undergoing the preventive control stage.
The average cost per hour in this scenario is USD 95,634/h.

In Case 2, although the preventive control stage is initiated, the energy storage partici-
pation is not considered, and only the reserve capacity from generation units is considered.
Due to the inclusion of the reserve cost of the generation units, the total cost before the fault
increases to USD 98,985/h.

In Case 3, the reserve from energy storage systems is considered in the preventive
control stage, which causes an increase in the cost before the fault to USD 104,182/h.

In the preventive control stage, the scheduled reserve capacities for Case 2 and Case 3
are illustrated in Figures 3 and 4, respectively.
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During the preventive control stage, the system’s demand for the reserve is mainly
concentrated on the peak load hours between 11:00 and 12:00. Based on Figures 4 and 5, it
can be observed that the scheduled reserve capacities in Case 2 and Case 3 in the preventive
control phase can meet the reserve capacity demand during peak load hours. In Case 3,
the energy storage systems provide 4.89 MW of upward reserve capacity and 3 MW of
downward reserve capacity in the loop. A horizontal comparison reveals that the energy
storage systems can provide a certain amount of upward re-serve capacity during peak
load hours, fulfilling about 5.4% of the system’s reserve capacity requirement. This would
enable other power supply units to remain at high output levels without increasing the
operational risk of the system. During valley load hours, the energy storage system can
provide a certain amount of downward reserve capacity to ensure the optimal utilization
of resources.
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The probabilities of the system stability with the three cases are shown in Figure 5.
In this scenario, the other probability indicators of the system do not meet the require-

ments; for instance, in the case of a three-phase short circuit fault with a fault lo-cation near
node 22, 1© the probability of node 21 voltage magnitude being in the range of [0.97, 1.06]
is only 0.2, which is lower than the required probability of 0.95; 2© the probability of the
transmission line flows being within the limit is only 0.6; and 3© the probability of the
system attaining transient stability is 0.54. Additionally, there are differences in safety
margins among the three schemes. In Case 1, for probability indicators, such as the prob-
ability of node voltage magnitude, the probability of the trans-mission line flows being
within the limit and the probability of then attaining transient stability are both below the
threshold. As a result, the obtained safety margin is only 0.52. In Case 2 and Case 3, the
probability indicators of the system are improved to a certain extent, and their stability
margins reach 0.95 and 1.00, respectively. Particularly in Case 3, by optimally controlling
the reserve capacity and considering energy storage systems’ participation, the system is
better secured.

5.2.2. Analysis on Single Failure

At 1:00 p.m., generation unit 17 (40 MW) encounters a fault. The power angle trajecto-
ries of the generation unit in all three cases are shown in Figure 6.
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In Case 1 and Case 2, the system loses stability in 2–4 s after the fault occurs. Case 1
loses stability first due to the lack of reserve support. In contrast, the re-serve capacity of
Case 3 was adequate to make up for the gap caused by the fault. The power angle oscillated
within 50 degrees, and the power angle deviation gradually de-creases over time. The
system shows a tendency towards stability recovery.

5.2.3. Analysis on Multiple Faults

At 2:00 p.m., generation units 2, 10, 16, 21, 27, 35, and 43 experience faults. With-out
implementing emergency control measures, the rotor angle trajectories of the generation
units in all three cases are shown in Figure 7.
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As shown in Figure 7, in all three cases, the system becomes unstable after the faults
occur in the absence of emergency control measures. Like the single fault case, the system
in Case 1 becomes unstable first; by contrast, the system in Case 3 can re-main stable for
some time, relying on the reserve from the generation units and the energy storage systems,
but it will eventually become unstable. The rotor angle trajectories for generation units
subjected to emergency control measures are shown in Figure 8.
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The system in Case 1 will still become unstable after 4 s of emergency control as it
does not account for the reserve capacity from generation units and energy storage systems,
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which results in significant power shortages during multiple faults. In such a case, the
system cannot compensate for the power shortage; hence, it loses stability. By contrast, Case
2 considers the reserve capacity from generation units, which helps reduce the deviation
of the generator power angle within 8 s after the emergency control, indicating a trend
towards stable operation. In comparison, for Case 3, which further considers the reserve
from energy storage system, the deviation of the generator power angle is reduced by
approximately 10%, and it exhibits a quicker recovery to stable operation. In Appendix A,
Figures A2 and A3 illustrate the reserve adjustment schemes.

The costs of the three cases in the emergency control stage are shown in Table 3.

Table 3. Costs of the emergency control stage of the three cases.

Cases Case 1 Case 2 Case 3

Costs ($/h) 98,421 92,112 90,101

Among the three cases, Case 1 incurs the highest cost since it fails to account for the
reserve capacity of generation units and the energy storage system, resulting in difficulty
stabilizing the system. In contrast, Case 2 considers the cost of reserve during the preventive
control stage, and the inclusion of reserve from generation units helps the system to remain
stable, which reduces the cost by 5.1% compared to that of Case 1. Moreover, Case 3 further
considers the reserve capacity from energy storage systems and has the lowest adjustment
cost; it reduces the cost by 9.6% compared to Case 1 and by 2.2% compared to Case 2.

5.2.4. Algorithm Comparison

To demonstrate the effectiveness of the proposed improvement to the solving algo-
rithm, Case 3 is taken as an example. The improved MOPSO (IMOPSO) and the traditional
MOPSO algorithms are used to solve the optimization problem for each objective. The
results are compared in Table 4.

Table 4. Results of different optimization algorithms.

Algorithm Costs ($) Iterations Average Calculation Time for Each Iteration

MOPSO 98,613 183 4.52 s

IMOPSO 90,101 145 4.43 s

Table 4 reveals that the comprehensive cost obtained by the IMOPSO algorithm is
8.63% lower than that obtained by the traditional MOPSO, while the iteration speed of
IMOPSO is 20.76% fast than that of the traditional MOPSO, demonstrating the effectiveness
of the algorithm improvement proposed in this paper, which enhances the global search
capability of the algorithm.

6. Conclusions

This paper proposes a two-stage preventive control optimization model that ad-dresses
the possible system transition instability issue caused by the uncertainties introduced
by different system components considering the balance of economy and system safe
operation. The first stage of the model is used to obtain an optimal operation schedule
which guarantees a high probability of the system being stable and a low operation cost. The
second stage is applied to respond to the emergency after the occurrence of any faults that
may result a stability issue. Furthermore, the multi-objective particle swarm optimization
algorithm based on entropy-TOPSIS is adopted to accelerate the solving process of the
two-stage model. The case study shows that with the proposed model, while pursuing
economics, the safety and stability mar-gin of the system can be reduced. In addition, when
multiple faults occur and threaten the system’s stability, emergency control can help the
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system meet the satisfy the stability margin requirements with a slightly higher cost on the
top of the schedule obtained in the preventive control stage.
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