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Abstract: In recent years, cellular communication systems have continued to develop in the direction
of intelligence. The demand for cellular networks is increasing as they meet the public’s pursuit of a
better life. Accurate prediction of cellular network traffic can help operators avoid wasting resources
and improve management efficiency. Traditional prediction methods can no longer perfectly cope
with the highly complex spatiotemporal relationships of the current cellular networks, and prediction
methods based on deep learning are constantly growing. In this paper, a spatial-temporal parallel
prediction model based on graph convolution combined with long and short-term memory networks
(STP-GLN) is proposed to effectively capture spatial-temporal characteristics and to obtain accurate
prediction results. STP-GLN is mainly composed of a spatial module and temporal module. Among
them, the spatial module designs dynamic graph data based on the principle of spatial distance and
spatial correlation. It uses a graph convolutional neural network to learn the spatial characteristics of
cellular network graph data. The temporal module uses three time series based on the principle of
temporal proximity and temporal periodicity. It uses three long and short-term memory networks to
learn the temporal characteristics of three time series of cellular network data. Finally, the results
learned from the two modules are fused with different weights to obtain the final prediction results.
The mean absolute error (MAE), root mean square error (RMSE), and R-squared (R2) are used as
the performance evaluation metrics of the model in this paper. The experimental results show that
STP-GLN can more effectively capture the spatiotemporal characteristics of cellular network data;
compared with the most advanced model in the comparison model on the real cellular traffic dataset
in one cell, the RMSE can be improved about 81.7%, the MAE is improved about 82.7%, and the R2 is
improved about 2.2%.

Keywords: cellular network; traffic prediction; graph convolutional neural networks; short and
long-term memory networks; RMSE

1. Introduction

With the explosive development of the Internet and the widespread use of mobile
terminals, total Internet access has grown exponentially. Cellular network communications
have appeared in all aspects of people’s lives, brought great convenience, and met the need
for a better material life and spiritual life [1]. What follows is that a huge amount of cellular
network traffic data will be generated by users all the time [2]. Operators are caught off
guard by the countless amounts of cellular network traffic data and rising user demand.
Accurate cellular network traffic prediction can help mobile operators predict overall
network usage and make appropriate resource allocations based on this prediction, helping
them improve network resource utilization and avoid resource waste [3]. In addition,
accurate cellular network traffic prediction can improve the user experience and enable
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operators to dynamically adjust the base station usage in hotspot areas and times of day to
avoid network congestion, so that users can enjoy the most appropriate services anytime,
anywhere [4,5].

Therefore, cellular traffic prediction is an indispensable research field, but it is a
challenging problem [6]. For now, the main difficulty of cellular network traffic prediction
is the complex spatiotemporal characteristics. Cellular network traffic data are a kind of
temporal sequential data, but the mobility of cellular network users is constantly convenient
and fast, which makes the traffic values in different regions have cross-space characteristics,
which increases the complexity of data characteristics. Secondly, traditional forecasting
methods can only deal with simple temporal data and cannot deal with high complexity
data with concurrent temporal and spatial characteristics. In addition, traditional methods
also need to satisfy fixed assumptions, but in real life, highly complex data does not fit the
ideal assumptions. In this case, a novel algorithm is needed to deal with highly complex
data and make sure the two characteristics do not interfere with each other.

In summary, the challenges and problems in cellular network traffic prediction mainly
include the following points: Firstly, how to exact and make full use of the spatial-temporal
characteristics of cellular network traffic data? Secondly, how to avoid the influence of
other characteristics when capturing one? Finally, which network structure is applied
to meet the above two conditions and obtain accurately predicted values? To solve the
above problems, this paper proposes a spatial-temporal parallel prediction model based
on graph convolution combined with long and short-term memory networks (STP-GLN)
for predicting cellular network traffic, which can model temporal dependence and spatial
dependence, respectively. The main contributions of this paper are summarized as follows.

1. We build the cellular network on graphs based on the principle of spatial correlation
between cells within the same period. The Pearson correlation coefficient is used to
calculate the correlation between all cells at the time step t-th. The Euclidean distance
is used to calculate the spatial distance between all cells. The spatial correlation is
represented by the two together to construct the adjacency matrix so that the cellular
network is built on a graph for each time step. Thus, the spatial graph of the cellular
network is different for each time step.

2. We build the cellular network on time series based on the principles of temporal prox-
imity and periodicity. The hourly sequence, daily sequence, and weekly sequence of
each time step t-th are calculated by using the principles of proximity and periodicity,
and then all moments are combined together to obtain the final hourly sequence, daily
sequence, and weekly sequence.

3. A spatial-temporal parallel module is proposed to consider both spatial and temporal
characteristics. The graph convolution neural (GCN) network module is used to learn
the spatial characteristics of the graph data, and the long short-term memory (LSTM)
module is used to learn the temporal characteristics of three kinds of time series. The
input and output between modules do not affect each other. This allows us to capture
spatial and temporal dependencies more realistically and effectively.

4. Simulation experiments are carried out on real data sets and compared with other
models. The experimental results show that our model has better prediction results.

This paper is divided into five sections, and the rest of the structure is as follows. In
Section 2, we describe the relevant parts. In Section 3, we present the source of the dataset,
detailed data pre-processing, and analysis of the data. In Section 4, we explain how spatial
graph data, three types of time series data are constructed, and the network structure of
the prediction model. In Section 5, the experimental results are presented, compared, and
analyzed. In Section 6, the paper is summarized.

2. Related Work

Network traffic data are essentially time series data [7]. Therefore, in the initial stage,
the network prediction problem was only built on the time axis. The forecasting methods
only predict the future change trend according to the past traffic change law and use
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the differences between traffic values at different moments as a quantification of traffic
growth potential [8]. For example, Historical Averaging (HA) takes the average of the
flow value in the past period as the flow value in the next moment. Linear Prediction [9],
the Auto Regression Integrated Moving Average Model (ARIMA) model [10,11], and
the Seasonal Auto Regression Integrated Moving Average Model (SARIMA) [12,13] are
classical forecasting methods that usually have complete theoretical support and a good
performance in time series with obvious periodicity and smoothness. However, with
the strengthening of end-user mobility, network traffic data also has a certain degree of
regular distribution in space, the traditional linear time series methods only analyze the
characteristics of traffic data on the time axis, which can no longer obtain accurate prediction
results. Artificial intelligence methods can extract various characteristics of the dataset well.
The deep learning methods belonging to artificial intelligence have strong learning ability,
which can extract the most useful characteristics from the complex dataset and learn the
regularity and randomness of the data. For nonlinear time series data, deep learning can
learn the temporal and spatial characteristics well and obtain accurate prediction results.
Therefore, the prediction methods based on deep learning have become a hot spot in the
research of cellular network traffic prediction.

In recent years, machine learning/deep learning methods have received widespread
attention because of good fitting ability, inference ability, and expression ability. They have
been applied to various fields [14]. Many researchers also use machine learning/deep
learning as technical tools to study cellular network traffic prediction problems. Among
this, Zhang, L. et al. [15] proposed a model based on Support Vector Machine (SVM) for
multi-step traffic flow prediction. SVM can find the optimal hyperplane after finding the
data regularity, but there is no general solution to the nonlinear problem, and sometimes it
is difficult to find a suitable kernel function. Awan, F. M. et al. [16] used noise pollution
data to make smart city traffic prediction based on LSTM. Fu, R. et al. [17] used LSTM
and gated recurrent unit (GRU) for short-term traffic flow prediction. LSTM and GRU
can obtain the time series characteristics of traffic data well but did not consider the
impact of other factors on cellular network traffic data. Zhang, C. et al. [18] proposed
a neural network model STDenseNet. It used densely connected convolutional neural
networks (CNN) [19] to design two networks with shared structure, one for learning
temporal proximity, and one for learning temporal periodicity. Daoud, N. et al. [20]
used LSTM, CNN-LSTM, and ConvLSTM, three neural network models, to predict the
global dust zone aerosol optical depth (AOD). Since CNN has an excellent performance
capturing spatial characteristics, STDenseNet was also learning spatial characteristics while
learning temporal characteristics. However, CNN is more suitable for extracting spatial
characteristics than temporal characteristics, while LSTM is more suitable for extracting
temporal characteristics. CNN is limited to characterizing grid-based traffic data [21,22].
The CNN for traffic prediction is more suitable for Euclidean structures and cannot be
easily applied to non-Euclidean structures, but, in reality, most of the traffic data belong to
non-Euclidean data.

Guo, K. et al. [23] proposed a graph convolutional recurrent neural network model
named OGCRNN for traffic prediction, using the Graph Convolution Gated Recurrent
Unit (GCGRU) [24] to learn the spatial-temporal characteristics of traffic data. GCN can
be used for non-Euclidean structures, which is more realistic. Yu, B. et al. [25] proposed
a neural network model named STGCN. It constructed traffic networks on graphs and
proposed spatial-temporal GCN that used two graph convolution algorithms, Chebyshev
Polynomials Approximation [26,27] and 1st-order Approximation [28], to process the spatial
characteristics of traffic networks. GRU was used in temporal layers to process the temporal
characteristics of the traffic network, and the accuracy is significantly improved. The spatial-
temporal module in STGCN was a “sandwich” structure, where two temporal layers are
sandwiched by a spatial layer. The input of the spatial layer is the output of the temporal
layer plus the adjacency matrix, but the output generated by the temporal layer cannot
fully represent the pattern of the original transportation network data, and the original
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data pattern may change through complex temporal layer operations. OGCRNN [23]
and STGCN [25] were used for spatial-temporal characteristics of traffic data, but not for
spatial-temporal characteristics of cellular data [29].

3. Datasets
3.1. Data Sources

In 2014, Telecom Italia together with MIT Media Lab, and other institutions jointly
launched the “Telecom Italia Big Data Challenge” [30], which includes electricity data,
telecommunications data, social network data, and more for the city of Milan and the
province of Trentino (https://dataverse.harvard.edu/dataverse/bigdatachallenge, accessed
on 6 April 2022). This paper uses the telecommunications data portion of the dataset for
the city of Milan, which records 62 days of cellular network data from 0:00 on 1 November
2013 to 0:00 on 1 January 2014. Table 1 lists the dataset information.

Table 1. Dataset information.

Parameters Value

Location Milan, Italy
Span of time 1 November 2013~1 January 2014
Time interval 10 min
Type of data {SMS-in, SMS-out, Call-in, Call-out, Internet}

As shown in Figure 1, in order to have a uniform operation when using the dataset,
this dataset divides the city of Milan into M× N areas of M rows and N columns. Each
area with a size of 235 m× 235 m, and this paper refers to an area of this size as a cell. In
the actual data set, both M and N are 100. The grid division is designed according to the
WGS84 coordinate system.

Figure 1. The Basic information of Milan grid division: (a) the grid ID identification and the method
of Milan grid division; (b) the specific situation of Milan grid division.

Each cell records five types of cellular network data at a time granularity of 10 min,
i.e., all data of the five types generated are recorded and stored every 10 min in each cell,
and the five types of cellular data recorded by each cell are:

1. (SMS-in) Number of SMS messages received within the cell: If any user receives
an SMS message in any cell, a record of the SMS message reception service will be
generated for that cell;

https://dataverse.harvard.edu/dataverse/bigdatachallenge
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2. (SMS-out) Number of SMS messages sent within the cell: If any user sends an SMS
message in any cell, a record of the SMS message sending service will be generated
for that cell;

3. (Call-in) Number of Call messages received within the cell: If any user receives a
call message in any cell, a record of the incoming call message will be generated for
that cell;

4. (Call-out) Number of outgoing Call messages within the cell: If any user issues a
call message in any cell, a record of the outgoing call message will be generated for
that cell;

5. (Internet) Wireless network traffic data within the cell: If any user initiates an Internet
connection or ends an Internet connection in any cell, a record of wireless network
traffic data services will be generated for that cell. A record will also be generated
if the connection lasts longer than 15 min or if the user transmits more than 5 MB
during the same connection.

3.2. Data Pre-Processing

As shown in Figure 2, the data pre-processing in this paper mainly has the following
three steps.

Figure 2. Data pre-processing process.

1. Data aggregation. The original dataset collected data at a 10 min aggregate granularity,
which resulted in many cells having sparse cellular network data values, with mostly
recorded values of 0. Therefore, this paper takes 1 h as the time granularity of statistics
to ensure that most of the data have a value other than 0 and ensure the validity of
the data.

2. Data filtering. The original dataset divided the city of Milan into 100 × 100 cells, from
which we chose 20 × 20 cells as the dataset used in this paper. The cell IDs we chose
are 4041–4060, 4141–4160. . . . . . , 5941–5960 .

3. Data normalization. In this paper, the data are processed by using the maximum–minimum
normalization method and map its scale to the interval [0, 1]. Finally, when analyzing
and comparing the experimental results in Section 5, the data are reversed to the
original data range.

3.3. Data Analysis
3.3.1. Temporal Characterization

Figure 3 shows the trend of dynamic changes over time within five types of cellular
network data in one cell over a given period of time. The X-axis represents the time, where
we use 12 h as the interval unit and intercept a certain week in the dataset as the length
of time. The Y-axis represents the number of events that occurred at a given time for a
particular cellular network data type.

As can be seen from Figure 3, there is a disparity in the usage of the five types of
cellular network data. The number of SMS messages received is significantly higher than
the number of SMS messages sent. The number of incoming and outgoing calls is roughly
the same. Wireless network traffic data usage is significantly higher than the number of
SMS services and call services.

The dynamic change trends of five cellular network services in the temporal dimension
are similar. They will show the same trend of change in the same time period, such as up
or down. There is also a regularity in the amount of usage of the five services. For example,
within a day, data usage is significantly higher during the day than at night; within a week,
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data usage is higher on working days than on weekends. The temporal characteristics
have proximity; the data usage of adjacent periods in a day is similar, for example, the data
usage at 15:00 on Monday is similar to that at 16:00 on Monday. Temporal characteristics
also have periodicity: Every week from Monday to Friday there is a periodicity in the unit
of days, which is the daily periodicity, but the daily periodicity in working days is different
from the daily periodicity on weekends. Each month, there is a periodicity in the unit of
weeks, which is the weekly periodicity. The data usage of the adjacent weeks is similar.

Figure 3. Distribution of wireless traffic for the 30th cell in temporal distribution.

3.3.2. Spatial Characterization

This section takes wireless network traffic data as an example and selects the usage of
wireless network traffic data in Milan during the period from 03:00 to 04:00 on 1 November
2013 to analyze the spatial characteristics of wireless service traffic.

As shown in Figure 4, we show the usage of wireless traffic data in all cells at a certain
time period. Different colors in Figure 4 represent different sizes of wireless network traffic
data values. For example, red represents smaller values, and purple represents larger data
values. It can be concluded that the usage of wireless traffic data is unevenly distributed
among different cells. The usage of wireless traffic data in the densely populated urban
center is higher than that in the sparsely populated urban edge. Therefore, the place
with the maximum value means that the usage rate of wireless traffic in this area is high
and it belongs to the urban central area. The spatial difference of wireless traffic data
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is transitional, that is, the data usage of adjacent cells is similar, only when the spatial
distribution of the two cells exceeds a certain distance, the usage will have a big difference.
This shows that the spatial correlation of wireless service data between different cells
depends on the spatial distance between cells to a certain extent.

Figure 4. Distribution of wireless traffic in Spatial distribution.

In order to accurately characterize the magnitude of correlation of cellular network
traffic data in the spatial dimension, this paper uses Pearson’s correlation coefficient to
calculate the correlation of cellular network traffic data among all cells in the same time
period and serves as one of the bases for the spatial correlation metric [31]. The principle is

ρij =
cov
(

xi, xj)
σxi σxj

(1)

where cov(·) is the covariance and σ is the standard deviation; xi is the cellular traffic value
of cell i, and x

j
is the cellular traffic value of cell j. The larger the absolute value of Pearson

correlation coefficient is, the closer it is to 1 or −1, the greater the spatial correlation is, and
vice versa, the smaller it is.

Here, the wireless network traffic data for all time between the 20-th cell and the 29-th
cell is selected as an example. Figure 5 shows that, on the one hand, the wireless traffic
volume values between adjacent cells are similar. For example, the distance between cell 24
and cell 25 is close, while the distance between cell 24 and cell 26 is slightly farther, so the
spatial correlation between cell 24 and cell 25 is higher than that between cell 24 and cell 26.
On the other hand, the correlation between cells with the same distance from the target cell
is not necessarily equal, for example, cell 24 has the same spatial distance with cell 23 and
cell 25, but the spatial correlation between cell 24 and cell 23 is higher than that between
cell 24 and cell 25. Therefore, the spatial distribution of cellular data is regular. The smaller
the spatial distance between two cells, the more similar the amount of data used by the
two cells in the same period of time, the higher the spatial correlation. However, it is also
variable. If there are two cells with the same spatial distance from the target cell, the spatial
correlation between the two cells and the target cell may not be the same.

From the above, the spatial distribution of the amount of wireless network data used
is correlated, to some extent distance dominates, but not all depends on distance. In this
case, we should find a way as precise as possible to construct spatial correlation.
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Figure 5. Quantitative expression of spatial correlation using Pearson’s coefficient.

4. Data Construction and Forecast Model

Based on the analysis of the spatial-temporal characteristics of the data in Section 3, we
describe how to construct graph data and three kinds of time series data, an hourly series,
daily series, and weekly series, based on the pre-processed telecom data of Milan city, and
then explain the model constructed according to the spatiotemporal characteristics.

The constructed spatiotemporal data better highlights the spatiotemporal characteris-
tics, so that the deep-learning algorithms can find the regularity and randomness between
the data more easily and obtain more accurate prediction results.

4.1. Graph Data Construction

In this work, we use graphs to define the cellular network of the city of Milan.
As shown in Figure 6, the cellular network of the city of Milan is defined as a graph
Gt = (Vt, Et, At) in chronological order at intervals for each time step t-th.

Figure 6. Graph-structure of cellular network traffic data.

The city of Milan is divided into 20× 20 cells; each cell i at time step t-th is represented
as the node vi

t on the graph, Vt represents the set of all N nodes’ data at the time step t-th,
Vt =

(
v1

t , v2
t , . . . , vn

t
)
∈ RN×1. Et is the set of edges at the time step t-th. At ∈ RN×N are

the adjacency matrices of the graph at time step t-th, A = (A1, A2, . . . , AT) ∈ RT×N×N

represents the set of adjacency matrices of at all moments T. The graph structure changes
with time, and t = {t ∈ Z|0 ≤ t < 1488}.

In general, we can use the Euclidean distance between nodes to represent the spatial
correlation between nodes, but from Figure 5, it can be concluded that the spatial distribu-
tion of cellular traffic data does not depend entirely on spatial distance. Therefore, we use
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the Pearson correlation coefficient and the Euclidean distance between each cell to construct
the adjacency matrix At at time step t-th. The Pearson coefficient is already expressed by
Equation (1), the Pearson correlation between all cells at time step t-th can be represented
via a matrix.

ρt =


ρ11

t · · · ρ
1j
t

...
. . .

...
ρi1

t · · · ρ
ij
t

 (2)

The expression for the Euclidean distance between cell i and cell j is

dij =
√(

ri − rj
)2

+
(
ci − cj

)2 (3)

where ri is the row where cell i is located in 20× 20 cells, and ci is the column where cell
i is located in 20× 20 cells. Similarly, rj is the row where cell j is located in 20× 20 cells,
and cj is the column where cell j is located in 20× 20 cells. The spatial distance matrix
D ∈ RN×N denotes

D =


e−d2

11 · · · e−d2
1j

...
. . .

...

e−d2
i1 · · · e−d2

ij

 (4)

Therefore, this paper constructs the adjacency matrix at time step t-th as

At =

{
1 i = j

ρt � D othersize
(5)

where � is the Hadamard product.

4.2. Time Series Data Construction

Cellular traffic forecasting problems are essentially time series problems. We analyze
and extract the characteristics of historical time series XH = (Xt−T+1, . . . , Xt−1, Xt) ∈ RN×T

to predict the most likely cellular network data value XP = (Xt+1, . . . , Xt+H) ∈ RN×H in
the next H time steps.

Based on the above analysis of temporal characteristics in Section 3, we take into
account the cellular traffic data of the n-th node at time step t-th, it is represented as xn

t . Cel-
lular traffic data for all nodes at time step t-th is expressed as Xt =

(
x1

t , x2
t . . . , xN

t
)
∈ RN×1.

As shown in Figure 7, this paper divides the time series into three parts according to
proximity and periodicity: hourly sequence, daily sequence, and weekly sequence.

Figure 7. Time series of cellular network traffic data.

4.2.1. Hourly Sequence Xc

It consists of a sequence of cellular traffic data combined for ∆c hours before any time
t. Take the cellular traffic data of ∆c hours before any time t to form the hourly data of each
time, and the set of data at all time is the hourly sequence, that denotes

Xc =
(

Xt−c, Xt−(c−1), . . . , Xt−1, Xt

)
(6)

But there are some moments that do not have ∆c historical time steps, so there are
requirements for any time t, t ≥ ∆c.
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4.2.2. Daily Sequence Xp

It consists of a sequence of cellular traffic data combined for ∆p× 24 hours before any
time t. Take the cellular traffic data of ∆p× 24 hours before any time t to form the daily
data of each time, and the set of data at all time is the daily sequence, that denotes

Xp =
(

Xt−p×24, Xt−(p−1)×24, . . . , Xt−24, Xt

)
(7)

But there are some moments that do not have ∆p× 24 historical time steps, so there
are requirements for any time t, t ≥ ∆p× 24.

4.2.3. Weekly Sequence Xw

It consists of a sequence of cellular traffic data combined for ∆w× 168 hours before
any time t. Take the cellular traffic data of ∆w× 168 hours before any time t to form the
weekly data of each time, and the set of data at all time is the weekly sequence, that denotes

Xw =
(

Xt−w×168, Xt−(w−1)×168, . . . , Xt−168, Xt

)
(8)

But there are some moments that do not have ∆w× 168 historical time steps, so there
are requirements for any time t, t ≥ ∆w× 168.

4.3. Proposed Forecasting Model

In this section, we elaborate on the proposed architecture of STP-GLN. As shown in
Figure 8, the STP-GLN mainly consists of two parallel modules, one of which is a spatial
module and a temporal module. The spatial module consists of spatial GCN blocks, and
the temporal module consists of temporal LSTM network blocks. Details of each module
are shown below.

Figure 8. The framework of STP-GLN. XC is hourly sequence. XP is daily sequence. XW is weekly
sequence. A is adjacency matrix; data is historical time series. Y is the ground truth; Ŷ is the
forecasted value.

According to the spatial-temporal characteristics, STP-GLN adopts different data
input as support, and processes the original data into graph data form and three time
sequence forms, giving full play to the maximum advantages of each module. STP-GLN
uses two deep-learning algorithms to model the spatiotemporal dependencies. In the
temporal module, three LSTM networks are used to model the adjacency and periodicity
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of the time dependence. In the spatial module, GCNs are used to capture the spatial
dependence efficiently.

4.3.1. Graph Convolutional Neural Network Module

Previous studies have ignored the spatial nature of cellular networks [32], and while
the datasets meshing the city of Milan are conducive to constructing graph data, they do not
take into account spatial connectivity and the global nature. Even with two-dimensional
convolution, they can only roughly capture spatial characterization. Therefore, in our
model, graph convolution is used directly on graph structure data to extract highly mean-
ingful spatial characterization.

In order to capture the spatial characteristics at different timestamps, the module
captures the spatial characteristics of cellular network data through a two-layer graph
convolutional neural network. Since the cellular network data graph is considered to be an
undirected graph, we can use the first-order approximation method in spectral convolution
to perform feature extraction on the nodes in the cellular network data graph [28].

Feature extraction of graph convolutional layers can be expressed as

Θ ∗g X(l)
g ≈ θ0X(l)

g + θ1

(
2

λmax
L− In

)
X(l)

g = θ0X(l)
g − θ1

(
D−

1
2 AD−

1
2

)
X(l)

g (9)

where X(l)
g , A are the inputs to the layer of the graph convolutional, and 0 < l ≤ 2; In is

the identity matrix, L denotes the normalized Laplace matrix of the cellular network data
graph, and λmax is the maximum eigenvalue of L. Equation (9) approximates λmax to 2, so
the equation can transition to the second equal sign. The two kernel parameters θ0, θ1 can
be shared in the diagram, and for more efficient operation in practice, let θ0 = θ1 = −θ,
then Equation (9) can be simplified to

Θ ∗g X(l)
g ≈ θ

(
In + D−

1
2 AD−

1
2

)
X(l)

g = θ
(

D̃−
1
2 ÃD̃−

1
2

)
X(l)

g (10)

where A and D are renormalized by Ã = A + In and D̃ii = ∑j Ãij, respectively.

Generalizing Equation (10) to a signal X(l)
g ∈ RN×T×1, which has C input channels

and F filters, as follows
X(l)

G = D̃−
1
2 ÃD̃−

1
2 X(l)

g Θ (11)

where Θ ∈ R(None×N×N) is now the filter parameter matrix, and X(l)
G ∈ R(T×N) is the

convolutional signal matrix.
Each graph convolutional layer comes with a nonlinear ReLU(·) activation function,

so the output of the l − th layer denotes

X(l)
RGCN

= ReLU
(

X(l)
G

)
(12)

In order to ensure the successful transition from the graph convolutional layer to
the dense layer, a Flatten layer is added at the end of the spatial module to change the
dimension of the output to one dimension. The output of the graph convolutional layer of
the last layer is represented as XRGCN , so the output of the Flatten layer can be represented as

YS = Flatten
(
XRGCN

)
(13)

4.3.2. Long Short-Term Memory Network Module

Although RNN-based models are widely used in time series analysis, RNN suffers
from gradient explosions, which makes it impossible to correlate between inputs over
a long period of time when backpropagating to adjust parameters. LSTM can alleviate
the problems of RNNs in long-term sequences and make recurrent neural networks have
stronger and better memory performance [33].
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From the perspective of time characteristics, the changing trend of cellular network
has the characteristics of long time series, non-linearity, adjacency, and periodicity. This
section takes into account these characteristics to use LSTM to learn time characteristics
from historical time series.

Combined with the learning process of LSTM, the feature extraction of three time
series by the long short-term memory network can be expressed as

it = σ
(

WiX(l) + Uiht−1 + bi

)
(14)

ft = σ
(

W f X(l) + U f ht−1 + b f

)
(15)

ot = σ
(

WoX(l) + Uoht−1 + bo

)
(16)

C̃t = tanh
(

WcX(l) + Ucht−1 + bc

)
(17)

Ct = it � C̃t + ft � Ct−1 (18)

ht = ot � tanh(Ct) (19)

where it, ft, ot correspond to input gates, forget gates, and output gates. X(l) represents
the input of any time sequence of XC, XP, XW , and 0 < l ≤ 2. Ct−1 represents the state at
the previous time. C̃t is the new variable generated by the tanh(·) function. Ct represents
the state at the current time t. Ct−1 represents the state at the previous time t− 1. ht−1
represents the output at the previous time t− 1. ht represents the output at the current time
t. Wτ and Uτ represent the weight parameters. bτ represents bias vectors, Wτ , Uτ , bτ are
learnable parameters, τ ∈ {i, f , o, c}.

Each LSTM layer also comes with a ReLU(·) activation function, so the output of the
l-th layer denotes

Y(l)
RLSTM

= ReLU(ht) (20)

Finally, the attention mechanism assigns different weights to the three time series
features, forming the output of the final long and short-term memory network the output
YT . Luong-style attention [34] has been chosen as a measure of the importance of different
time series.

4.3.3. Output Block

The purpose of this block is to integrate the output of the Graph convolutional neural
network module and the Long short-term memory network module, and the impact of the
two modules on each cell is different, so we define the output module as follows

Ŷ = W(S,T)(Ys||YT) (21)

where W(S,T) = [WS, WT ] is a weight vector, and W(S,T) is learnable parameters.

4.3.4. Loss Function

In this paper, the mean squared error (MSE) is selected as the Loss function, and the
proposed STP-GLN model is trained to obtain the predicted value, and the loss function
can be written as

MSE =
1
n

(
n

∑
i=0

(
ŷi

t − yi
t

)2
)

(22)
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where yi
t represents the i-th ground truth at time step t-th, ŷi

t represents the i-th forecasted
value at time step t-th, and n represents the number of samples. Our model uses Adam’s
algorithm to minimize the root mean square error (RMSE) loss for parameter updating [35,36].

5. Experiment and Evaluation
5.1. Training Paraments

STP-GLN trains 50 epochs with a batch size of 32 and a learning rate set to 0.001,
optimized using Adam optimization techniques and ReLU(·) as an activation function. We
use 44 days as a historical time window, which uses 1056 data points to predict cellular
traffic data for the next 264 h. During the training process, 80% of the entire dataset is
randomly selected as the training set and 20% of the data is used as the test set. In total,
20% of the training set was randomly selected as the validation set. The model parameters
are also shown in Table 2.

Table 2. Parameters of training model.

Parameters Value

Observation window 1056
Forecast window 264

Epoch 50
Batch size 32

Learning rate 0.001
Optimization technology Adam

Loss function MSE
Training set: test set 8:2

5.2. Performance Evaluation Method

In this paper, MAE, RMSE, and R2 are selected as evaluation indicators to measure the
effectiveness of the proposed model and can be easily and quickly compared with other
models, which are defined as follows

MAE =
1
n

n

∑
i=0
|ŷi

t − yi
t| (23)

RMSE =

√√√√ 1
n

(
n

∑
i=0

(
ŷi

t − yi
t
)2
)

(24)

R2 = 1−

n
∑

i=0

(
ŷi

t − yi
t
)2

n
∑

i=0

(
yi − yi

t

)2 (25)

where yi
t represents the i-th node’s ground truth at time step t-th, ŷi

t represents the i-th
node’s forecasted value at time step t-th, yi is the average of the i-th node and n represents
the number of samples. The smaller the RMSE and MAE data values, the better the effect
of the model. We briefly explain the three evaluation indicators:

1. RMSE reflects the degree of deviation between the ground truth and the forecasted
value. The smaller its value, the better the quality of the model and the more accurate
the prediction.

2. MAE evaluates the degree of deviation between the ground truth and the forecasted
value, that is, the actual size of the prediction error. The smaller the value, the better
the model quality and the more accurate the prediction.

3. R2 explains the variance score of the regression model, and its value takes the range
of [0, 1]. The closer to 1 indicates the better the quality of the model and the more
accurate the prediction, and the smaller the value, the worse the effect.
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5.3. Results and Analysis

In order to verify the advantages of the proposed model, we show the comparison
results of the actual and predicted values of STP-GLN in five types of data. The experimen-
tal results are shown in Figures 9–11. We also selected six time series prediction models
to compare with our proposed models, namely HA, LR, GCN, LSTM, STDensenNet [18],
and STGCN [25], among which HA has only one evaluation index in all communities. The
experimental results are shown in Tables 3–5.

Figure 9. Prediction results on the SMS dataset of a random selected cell.

In the selection of cells, we mainly choose two types of cells. The first one is all the
cells in the test set, that is, the 264 moments of the true value of 400 cells compared with
the predicted value. The second is the test set of the smallest error between the real value
and the predicted value of one cell, that is, the 264 moments of the real value of one cell
and the predicted value are compared, and the best cell predicted by the different models
is not the same. Among which, HA is compared with other models only on the type of all
cells. The experimental results are shown in Tables 3–5.

The GCN and LSTM of the “Model” in Tables 3–5 are the spatial model and the
temporal module of the STP-GLN’s model, respectively. In order to clarify the role of each
part of the STP-GLN model, we use three evaluation metrics to compare the correlation
and importance of each module with the whole. As can be seen from Tables 3 and 4, the
spatial module plays a greater role than the temporal module in the SMS dataset and the
Call dataset. From Table 5, it can be seen that in the Internet dataset, the temporal module
plays a greater role than the spatial model. Moreover, as a whole, the prediction effect of
STP-GLN is better than that of each module individually, which indicates that our model
adopts the method of spatiotemporal parallel structure correctly and adopts two correct
deep learning methods to learn spatiotemporal features separately.

Tables 3–5 represent the results of comparing our model and other models using the
evaluation metrics in the five categories of data, respectively. The valid data in Tables 3–5
represent the results of comparing our model with other models. Meanwhile, because of
the different order of magnitude of the five types of data, the usage of Internet is much
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larger than the usage of SMS and the usage of calls, and the usage of SMS is slightly larger
than the usage of Call. Therefore, the prediction error in the Internet dataset is much larger
than the prediction in the SMS dataset and the Call dataset, and the prediction error in the
SMS dataset is larger than the prediction error in the Call dataset. This also explains why
the valid numbers in Table 5 are greater than those in Tables 3 and 4, and the valid numbers
in Table 3 are greater than those in Table 4. Therefore, the effective numbers of the three
tables can only be related to the datasets they use and not to the datasets in the other tables.

Figure 10. Error results on the SMS dataset of a random selected cell.

Figure 11. Prediction results on the Call dataset of a random selected cell.
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Table 3. RMSE, MAE, and R2 of each model on the SMS dataset.

Model
SMS-in (One Cell/All Cells) SMS-out (One Cell/All Cells)

RMSE MAE R2 RMSE MAE R2

HA 60.428 44.431 −0.266 25.772 19.040 0.275
LR 15.323/77.853 10.845/48.367 0.935/0.492 13.85/49.893 8.434/28.706 0.82/0.219

GCN 4.888/26.050 3.301/14.80 0.991/0.975 5.397/26.747 3.705/13.173 0.975/0.908
LSTM 5.843/37.415 4.362/18.498 0.989/0.948 5.593/32.347 3.971/16.170 0.985/0.869

STDenseNet [18] 6.255/59.920 3.768/33.839 0.930/0.640 7.003/41.326 5.812/21.514 0.813/0.025
STGCN [25] 5.254/46.297 4.297/21.172 0.92/0.792 6.866/35.659 5.811/16.562 0.906/0.622

STP-GLN 2.773/27.359 2.038/14.726 0.992/0.973 2.535/23.5 1.56/12.312 0.984/0.932

Table 4. RMSE, MAE, and R2 of each model on the Call dataset.

Model
Call-in (One Cell/All Cells) Call-out (One Cell/All Cells)

RMSE MAE R2 RMSE MAE R2

HA 41.065 32.875 −0.786 50.613 40.354 −0.816
LR 8.355/32.78 5.682/21.403 0.94/0.780 7.901/40.25 5.291/25.147 0.953/0.796

GCN 1.678/17.515 1.184/9.058 0.991/0.977 2.004/16.989 1.499/9.353 0.990/0.982
LSTM 2.412/17.854 1.784/9.806 0.991/0.976 2.962/20.258 2.076/11.153 0.988/0.974

STDenseNet [18] 3.590/35.870 1.999/22.764 0.917/0.719 3.871/40.831 2.212/25.156 0.922/0.736
STGCN [25] 4.188/22.398 2.61/11.487 0.951/0.901 5.427/25.837 3.253/12.766 0.962/0.908

STP-GLN 1.802/14.314 1.216/7.906 0.996/0.985 1.802/16.202 1.708/9.108 0.995/0.984

Table 5. RMSE, MAE, and R2 of each model on the Internet dataset.

Model
Internet (One Cell/All Cells)

RMSE MAE R2

HA 727.021 476.142 −0.126
LR 169.3/514.304 127.405/329.302 0.964/0.769

GCN 113.274/314.835 80.15/182.044 0.990/0.968
LSTM 78.02/290.841 54.331/173.889 0.994/0.973

STDenseNet [18] 186.298/385.376 139.712/276.109 0.974/0.857
STGCN [25] 147.189/267.267 108.549/174.334 0.974/0.910

STP-GLN 27.003/256.442 18.82/152.24 0.995/0.979

Figure 9 shows the comparison of prediction results for SMS dataset over 7 days in
one cell. The above figure shows the comparison of prediction results of the receiving
SMS (SMS-in) dataset in the test set, and the following figure shows the comparison of
prediction results of sending SMS (SMS-out) dataset in the test set.

Figure 10 shows the absolute value of the error between the true and predicted values
over a period of 14 h in one cell. The smaller the absolute value of the error in Figure 10,
the better the prediction effect of the model. The above graph shows the prediction error
for SMS-in dataset over a period of 14 h, the absolute error is at least 0.1 in this dataset,
that is, the difference between the real value and the predicted value is 0.1, indicating
that our model can well fit the future trend of the data. The following graph shows the
prediction error for SMS-out dataset. The absolute error is at least 0.09, which indicates
that the prediction effect is better.

The comparison of the experimental results of HA, LR, GCN, LSTM, STDensenNet [18],
and STGCN [25] can be seen in Table 3. On the SMS dataset, our model is better than
other models in the evaluation of three evaluation indicators. For example, compared to
the state-of-the-art STGCN model in the model, RMSE improved the effect of the SMS-in
dataset by 47.2% in one cell and 40.9% in all cells. MAE improved the effect by 52.6% in one
cell and 30.5% in all cells. This indicates that the prediction error of our model is less than
that of the other models, and R2 improved the effect by 7.8% in one cell and 22.9% in all
cells, which indicates that the quality of our model is higher than that of the other models.
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Figure 11 shows the comparison of the prediction results for Call dataset over 7 days in
one cell. The above figure shows the comparison of prediction results of the incoming Call
(Call-in) dataset in the test set, and the following figure shows the comparison of prediction
results of outgoing Call (Call-out) dataset in the test set.

Figure 12 shows the absolute value of the error between the true and predicted values
over a period of 14 h in one cell. The above graph shows the prediction error for Call-in
dataset over a period of 14 h, and the following graph shows the prediction error for
Call-out dataset. In the two subgraphs in Figure 12, the smallest absolute error is 0.01,
which indicates that our model shows an accurate prediction in the Call dataset.
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Table 4 compares the experimental results of HA, LR, GCN, LSTM, STDensenNet [18],
and STGCN [25]. On the Call dataset, our model outperforms the other models in all three
evaluation metrics measures. For example, compared to the state-of-the-art model STGCN,
RMSE improved the effect of the Call-in dataset by 57.0% in one cell and 36.1% in all cells.
MAE improved the effect by 53.4% in one cell and 31.2% in all cells. This indicates that the
prediction error of our model is less than that of the other models, and R2 improved the
effect by 4.7% in one cell and 9.3% in all cells, which indicates that the quality of our model
is higher than the other models.

Figure 13 shows the comparison of prediction results for Internet dataset over 7 days
in one cell. The figure shows the comparison of the prediction results of the Internet dataset
in the test set.

Figure 13. Prediction results of the Internet dataset of a random selected cell.
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Figure 14 shows the absolute value of the error between the true and predicted values
over a period of 14 h in one cell for internet dataset. The true value is measured in hundreds
or thousands in this dataset, and our prediction error is controlled to within 30, which has
little impact on the overall data.

Figure 14. Error results of the Internet dataset of a random selected cell.

Table 5 shows a comparison of the experimental results of HA, LR, GCN, LSTM,
STDensenNet [18], and STGCN [25]. On the Internet dataset, our model outperforms the
other models in all three evaluation metrics measures. For example, compared to the
state-of-the-art model STGCN, RMSE improved the effect by 81.7% in one cell and 4.1% in
all cells. MAE improved the effect by 82.7% in one cell and 12.7% in all cells. This indicates
that the prediction error of our model is less than that of the other models, and R2 improved
the effect by 2.2% in one cell and 7.6% in all cells, which indicates that the quality of our
model is higher than that of the other models.

Figure 9, Figure 10, Figure 11 show the comparison of the prediction results of five
types of data in one cell. These figures show the comparison of prediction results of
short message service in the test set. The change trend of five types of data in Figure 9,
Figure 10, Figure 11 is similar to that of the short message service under the spatial-temporal
characteristics analysis in Section 3. The change trend of the predicted value is the same
as that of the real value. Our model can well capture the peak value of the short message
service. In general, the dynamic change curves of the two are basically consistent.

To verify the stability, novelty, and transferability of our model, we compared it with
the STGCN model on the CIKM21-MPGAT dataset [37] in Table 6. From the comparison
results, it can be seen that the prediction accuracy of our model is better than that of the
STGCN model on the CIKM21-MPGAT dataset, which indicates that our model is not
only accurate on the Milan dataset, but also has a good effect on other datasets, with good
stability and novelty, and is transferable.

Table 6. RMSE, MAE, and R2 of each model on the CIKM21-MPGAT dataset.

Model
CIKM21-MPGAT Dataset

RMSE MAE R2

STGCN [25] 11.782/15.088 4.491/5.571 0.522/0.577
STP-GLN 3.857/5.273 1.28/1.662 0.967/0.995

The results show that the proposed model has better prediction effect than the com-
parison model in the five types of data. The proposed model performs better in a single
cell and in all the evaluation indicators of cells than the comparison model. We can also see
that the forecasting results of traditional time series analysis methods are not ideal, which
proves that the ability of these methods to process complex spatiotemporal data is limited.
In contrast, deep learning-based methods generally obtain better forecasting results than
traditional time series analysis methods. Among the single deep learning methods, the
LSTM method and GCN method selected in this paper are the temporal module and the
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spatial module in the STP-GLN model, and the results show that the prediction method, us-
ing a deep-learning algorithm that only analyzes the temporal characteristics or the spatial
characteristics, is better than the traditional method, but the prediction effect is less accurate
than that of the model STP-GLN which also considers the spatiotemporal characteristics.
It is shown that considering the spatiotemporal correlation of cellular networks is useful
for data prediction in practice. In the deep learning method, the STDensNet model, the
STGCN model, and the proposed model STP-GLN all take into account the spatiotemporal
correlation, and it can be seen from the comparison results that the prediction effect of our
model is better than the two comparison models.

6. Conclusions

In this paper, we propose a model STP-GLN based on two deep-learning algorithms
to predict cellular network traffic. Cellular network traffic data for all cells in the city of
Milan is constructed as graph-structured data and three time-series data. In constructing
the adjacency matrix for the spatial module, we considered the spatial distance between
nodes and the calculation of the Pearson correlation coefficient between all nodes at the
same time t. Both of these methods, which can represent spatial correlation, are fused and
together form the adjacency matrix. In constructing the temporal data, we arrange the data
of all cells into hourly sequences, daily sequences, and weekly sequences according to the
principles of nearest neighbors and periodicity, respectively. The dynamic spatiotemporal
characteristics of the constructed spatial graph data and the temporal axis data are captured
simultaneously using a graph convolutional neural network module and a long and short-
term memory network module, respectively. Both our model and the comparison model
are validated on a real dataset from the city of Milan, and the experimental results show
that our model has improved prediction results for all five types of cellular network data
compared to the state-of-the-art model in the comparison model. At the same time, our
model is transferable, which can be used not only in the cellular data set mentioned in this
paper but also in other cellular datasets; in addition, it can also be used in traffic volume
forecasting, housing price forecasting, and other aspects.
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