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Abstract: The proper understanding of reservoir properties is an important step prior to forecasting
fluid productions and deploying development strategies of a coalbed methane (CBM) reservoir.
The assisted history matching (AHM) technique is a powerful technique that can derive reservoir
properties based on production data, which however is usually rather time-consuming because
hundreds or even thousands of numerical simulation runs are required before reasonable results
can be obtained. This paper proposed the use of a newly developed algorithm, namely the Bayesian
adaptive direct searching (BADS) algorithm, for assisting history matching of fractured vertical CBM
wells to derive reservoir property values. The proposed method was applied on representative
fractured vertical wells in the low-permeable CBM reservoirs in the Qinshui Basin, China. Results
showed that the proposed method is capable of deriving reasonable estimates of key reservoir
properties within a number of 50 numerical simulation runs, which is far more efficient than existing
methods. The superiority of the BADS algorithm in terms of matching accuracy and robustness was
highlighted by comparing with two commonly used algorithms, namely particle swarm optimization
(PSO) and CMA-ES. The proposed method is a perspective in laboring manual efforts and accelerating
the matching process while ensuring reasonable interpretation results.

Keywords: coalbed methane; assisted history matching; numerical simulation; Bayesian adaptive
direct searching (BADS); fractured vertical well

1. Introduction

Coalbed methane (CBM) has been considered to be a hazardous gas for underground
coal mining activities that may potentially lead to serious disasters such as coal and/or
gas outburst and gas explosion [1,2]. The development and utilization of the CBM gas
is beneficial to improving underground mining safety, reduction of gas emission into the
atmosphere and adding to world’s energy supply [3]. To date, commercial development
of CBM has been active in the countries such as the United States, China, Australia, India
and Indonesia [4,5]. Although complex completion techniques such as multi-fractured
horizontal well, multi-lateral horizontal and cavity have been proposed to accelerate CBM
production, the hydraulic stimulated vertical wells are still the most viable option for
economic development of low-permeability CBM reservoirs.

Prior to the commercial extraction of a CBM reservoir, key formation properties exert-
ing profound effect of well productions should be reasonably estimated in order to evaluate
the economic feasibility and to deploy proper development strategies (e.g., optimization of
well type, placement and drainage schedule). Basically, laboratory measurements are one of
the important first steps for estimating the values of the reservoir properties [6]. However,
the experimental result may not fully represent the reservoir-scale characteristics due to the
strong heterogeneity nature of coal seams scale. Moreover, coal samples used for laboratory
experiments are typically retrieved using certain coring techniques (e.g., wireline coring
and pressure coring) [7,8] that are quite expensive, and thus the experimental data are
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usually available only for a very limited number of evaluation wells. Compared with the
laboratory experiment method, history matching of well production data is considered to
be the most economic method that gains in-depth understanding of the reservoir behavior
and gives estimation of reservoir parameters exerting critical effects on well productions.
A successful history match gives confidence about the estimated reservoir parameters
and their distribution during production and may indicate how the reservoir may behave
under different reservoir management conditions. The history matching method has been
extensively used to estimate coal seam properties. Karacan [6] integrated the single-well
production history matching with geostatistical proxy model to estimate the dynamic
properties including gas content, gas saturation and pressure in the Black Creek coal seam
of Black Warrior Basin. Feng et al. [9], Zhou [10] and Zhang et al. [11] demonstrated the use
of history matching to evaluate the formation properties based on production data from
vertical fractured, casing horizontal and multi-fractured horizontal wells, respectively.

Although history matching is an important and perhaps the most reliable method
to estimate the formation properties, it can be quite challenging due to the large number
of properties with strong uncertainties properties that lead to a wide range of reservoir
responses [12]. The impacts of coalbed parameters on methane production were extensively
investigated [13–15]. It was reported that coalbed parameters with the greatest impact on
simulation forecasts were adsorbed gas content, desorption isotherm, water saturation,
coalbed thickness, permeability, porosity, compressibility and relative permeability. These
parameters may exhibit strong variations both across the plane and the layers [11]. Thus,
history matching is usually quite time-consuming because a number of trials of numerical
simulations may be needed before successful matching is obtained.

The assisted history matching (AHM) method has been proposed and successfully
applied for estimating oil and/or gas reservoir properties [16]. The AHM method in
the petroleum engineering field was first proposed for conventional sandstone reservoirs
to deduce the formation properties that are difficult to measure directly from field-scale
historical production data [17]. During the past two decades, AHM has been extended
to solve various inverse problems such as (i) interpretation of relative permeability from
laboratory core flooding data, (ii) estimation of permeability and skin factor of multilayered
reservoir from injection-falloff test and (iii) characterization of hydraulic fractures in shale
reservoirs from seismic and/or production data [18–20]. These previous studies indicated
that the AHM is capable of deriving reasonable results with the proper experimental
design and the implementation of robust algorithms. To date, various algorithms have
been integrated with numerical simulation to assist history matching. Commonly used
algorithms can be classified into two types. The first type is referred to as evolutionary
optimization algorithms, such as the particle swarm optimization (PSO), genetic algorithm
(GA), harmony search optimization (HSO), etc. The second type is referred to as the
ensemble method, such as the ensemble Kalman filter (EnKF) and ensemble smoother with
multiple data assimilation (ES-MDA). These algorithms have been reported to be capable of
estimating the reservoir properties based on production data; however, hundreds or even
thousands of numerical simulation runs are usually needed in order to obtain reasonable
results [21,22]. Since numerical simulation runs regarding real well models are usually
quite time-consuming, the AHM method involving these algorithms shares a common
drawback of low efficiency.

To the best knowledge of the authors, the AHM method has not yet been applied
for estimating the CBM reservoir properties based on well production data. This paper
proposed the use of a newly developed high-efficiency algorithm, namely the Bayesian
adaptive direct search (BADS) [23], to assist matching fractured vertical CBM well produc-
tion in order to derive the reservoir properties. The applicability of the proposed method
was tested on real CBM wells, and the superiority over typical existing algorithms was
demonstrated.
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2. Methods
2.1. Basics of the AHM

The AHM generally requires three components, namely a numerical or analytical
simulator to simulate production behavior, an error function describing the mismatch
between the simulated and real observed data and a specific algorithm to minimize the
error function in order to obtain a “successful” matching.

In this study, all simulation runs were conducted using the numerical simulator GEM
developed by the Computer Modelling Group [24]. The GEM is a compositional simulator
that is capable of modeling CBM transport behavior including adsorption/desorption, gas
diffusion, multi-phase seepage and stress- and sorption-induced permeability dynamics.
The GEM simulator has been widely used to model fluid production behavior [25,26], to
optimize well placement [27] and to evaluate the enhanced CBM potential [28] in CBM
reservoirs.

The error function to be minimized was defined as the sum of the normalized squared
errors between the simulated and observed data. The error function is written as:

E =
∑N

i=1

(
yobs,g

i − ysim,g
i

)2

∑N
i=1

(
yobs,g

i − yavg,g
)2 +

∑N
i=1

(
yobs,w

i − ysim,w
i

)2

∑N
i=1

(
yobs,w

i − yavg,w
)2 (1)

where y is the variable to be matched; the superscripts “obs” and “sim” denote the observed
and simulated data, respectively; superscripts “g” and “w” denote the gas and water,
respectively; the superscript “avg” denotes the averaged value of the observed data; N is
the total number of data points.

As stated previously, although a wide range of algorithms have been proposed to assist
history matching, their efficiencies are questionable because a number of time-consuming
simulation runs are needed before reasonable results can be obtained. Thus, this study
proposed the usage of the BADS algorithm to accelerate the history matching process.

2.2. BADS Algorithm

The BADS algorithm is a fast, hybrid Bayesian optimization algorithm designed to
solve difficult optimization problems, in particular related to fitting computational models.
The BADS algorithm was first proposed by [23], which was then introduced by Zhang
et al. [29] to be used for estimating relative permeability of coal based on laboratory flooding
test data. The BADS is a hybridization of the Bayesian optimization (BO) [30] and mesh
adaptive direct search (MADS) [31] algorithms. The mathematical details of the BADS are
available in references [23,29]. For the completeness of this paper, the basics of the BADS
are briefly introduced as follows.

Given a Dn-dimension minimization problem, BADS iteratively updates the solution
variable vector (x) in a similar manner to MADS. In other words, BADS iteratively generates
and evaluates the candidate solutions in two separate steps, namely the search and poll
stages. In the search stage of the kth iteration, BADS generates candidate solutions by
performing local optimization of the acquisition function in the neighborhood of the
incumbent xk. Commonly used acquisition functions include the lower confidence bound
(LCB), upper confidence bound (UCB) and expected improvement (EI). In this study, we
used the LCB acquisition function. The polling directions Dk are then constructed by
scaling to the Gaussian process (GP) kernel length scales. In the polling stage, the solution
candidates xpoll can be updated according to the following equation

xpoll = {xk + ∆m
k υ : υ ∈ Dk} (2)

where ∆m
k is the mesh size at the kth iteration.
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If the poll succeeds in sufficiently improving the objective function within three
consecutive steps, the incumbent is updated, and BADS switches to a new iteration with
mesh and poll sizes multiplied by τ = 2; otherwise, the incumbent remains unchanged, and
BADS switches to a new iteration with the mesh and poll sizes divided by τ = 2. These
steps are repeated until a preset maximum number of iterations is met, the algorithm stalls
or the poll size becomes extremely small. During the iteration process, the accuracy of the
surrogate models based on the GP is updated every 2Dn to 5Dn function evaluations and
whenever the accuracy of the current GP is unreliable by refitting the hyperparameters
of GP.

2.3. Setup of Reservoir Model

Proper setup of the reservoir model is the first important step to ensure the success
of history matching. For the primary depletion of CBM reservoirs where no injector is
involved, the single-well history matching is considered to be comparable with multi-well
history matching in terms of matching accuracy provided that flowing boundary of each
single well is properly defined [6]. Also, a lower number of wells indicates a lower number
of parameters and reduced uncertainties, which can accelerate the convergence speed and
reduce the risk of being trapped in local optima during history matching. Moreover, the
single-well reservoir model has a far less number of grid blocks than multi-well models
does and thus runs significantly faster. Therefore, this paper is primarily concerned with
the single-well history matching process.

2.3.1. Construction of the Grid Model

Two types of well patterns are commonly used in CBM reservoirs, namely the five-spot
(or diamond) and rectangular patterns [27]. For either well pattern, a single-well can be
considered to be located in the center of its controlled area that is defined by the flowing
boundaries. In this study, 3D uniform Cartesian grid models were constructed for the well
to be history matched (Figure 1). Low-permeability coalbeds generally require relatively
small well spacings in order to accelerate reservoir pressure drawdown and thus improve
gas production [9,32,33]. For example, CBM wells are generally deployed at spacings in
the range of 200~300 m in low-permeability CBM reservoirs in the Eastern Ordos and
Southern Qinshui basins, China [34]. Zhang et al.’s optimization studies on well placement
showed that the optimal well spacing for coalbeds with permeability less than 1.3 mD is
approximately 250 m [27]. Considering the well spacing for low-permeability coalbeds,
the number of grid blocks was set to be 61 both along the x- and y-direction. The x- and
y-directions represent the face-cleat and butt-cleat directions, respectively. The dimension
of each grid block was calculated to be the real well spacing divided by 61 along the x- and
y-directions, respectively. For single-layered CBM reservoirs, the number of grid blocks
in the vertical direction is set be unity. For multi-layered CBM reservoirs, the number
of grid blocks in the vertical direction is set be the total number of coal seam layers and
impermeable interlayers.

For each grid model, the grid blocks are divided into two regions. The first region
represents the coalbed at the in situ condition that is not affected by hydraulic fracturing
stimulation. The second region represents the hydraulic stimulated area (SA) around the
well. The SA is simplified to be a rectangular area with the length and width in the face-and
butt-cleat directions, respectively.
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2.3.2. Parameters to Be Tuned

Previous studies [12,15] have concluded that key parameters influencing gas and
water productions in CBM reservoirs include coal seam thickness, sorption isotherm,
porosity, permeability and relative permeability. For a real CBM well, the values of coal
thickness, initial pressure and critical desorption pressure can be estimated with well
logging and production data information. The sorption isothermal for a specific coalbed
can be measured on cored samples in laboratory, which is a known parameter for the well
where sample was cored. However, the sorption isothermal may vary from well to well
due to differences in stress condition, water content, etc. Therefore, the sorption isothermal
was also set to be tunable by adjusting the Langmuir volume and pressure within the
common knowledge of the target coalbed. Porosity, permeability, permeability evolution
dynamics and relative permeability are parameters associated with strong heterogeneities,
which need to be tuned during history matching [11]. The permeability evolution dynamics
were represented with the Palmer–Mansoori (PM) model [35], with the compressibility
and sorption strain being the tunable parameters; other parameters in the PM model
such as Poisson ratio, Young’s Modulus and Langmuir pressure were fixed because these
parameters are generally less uncertain for a given formation. The relative permeability
was represented with a Corey-type model developed by Chen et al. [36] (Equation (3)).
The relative permeability is varied by tuning the coefficients including the connate water
saturation, endpoint water relative permeability and the exponents for the gas and water
curves.

krw = krw0Sλ
wn (3)

krg = (1− Swn)
β
(

1− Sη
wn

)
(4)

Swn =
Sw − Swc

1− Swc
(5)

where Swc and Swn are the connate and normalized water saturations, respectively; Sw
is water saturation; krw and krg are relative permeability for the water and gas phases,
respectively; krw0 is the endpoint water relative permeability; λ, β and η are exponential
coefficients that control the relative permeability curvature.

The hydraulic stimulation results in enhancement in flow capacity, which is repre-
sented by multiplying the permeability in the stimulated region by a factor in the range
of one thousand to ten thousand [37]. Moreover, the embedment of proppants within
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stimulated zones aids the retention of the fracture aperture [38]. Therefore, the coal de-
formation behavior and the consequent permeability dynamics due to reservoir pressure
drawdown in the stimulated zones should be different from that in the un-stimulated zones.
In this regard, two respective compressibility values were assigned in the stimulated and
un-stimulated zones in order to model different deformation behaviors.

As a short summary, a total number of 16 properties need to be tuned during the
history matching process, which include: (1) the length and width of the stimulated area;
(2) two respective permeability values in the stimulated and un-stimulated zones; (3) two
respective compressibility values in the stimulated and un-stimulated zones; (4) two re-
spective sorption strain values in the stimulated and un-stimulated zones; (5) porosity;
(6) sorption isotherm represented with Langmuir volume and Langmuir pressure; (7) rela-
tive permeability represented with five characteristic coefficients shown in Equations (3)–(5),
namely Swc, krw0, λ, β and η.

2.4. Workflow of the AHM

The workflow of AHM in this study includes the following 5 steps.
(1) Initializing the candidate solution vector x0 subject to boundary constraints of

physical meanings. For the BADS algorithm, the candidate solution is normalized within
the range of [0, 1]. The normalized vector x is transformed into the real space X according
to the following equation.

X = Xlb + (Xub − Xlb)·x (6)

where the subscripts “ub” and “lb” denote the upper and lower boundaries of the parameter
in the real space.

(2) Update the reservoir grid model data file and call the numerical simulator to run
the model. The well is simulated under the bottom-hole pressure constraint to derive gas
and water production.

(3) Calculate the matching error between the simulated and observed production data
using Equation (1).

(4) Update the solution candidate with BADS based on the candidate solution and the
corresponding error value at the previous iteration.

(5) Check the number of elapsed iterations. If the number of elapsed iterations does
not reach the preset tolerance of the number of iterations, go back to step 2; otherwise,
cease simulation and output the optimal solution that minimizes the matching error.

3. Case Study

The proposed method was applied on a number of representative CBM wells produc-
ing in the southern Qinshui Basin in order to demonstrate its applicability. The coals in the
study area are anthracite in rank, which is characterized with low porosity, low permeabil-
ity and high gas content. The coal formation is considered to be initially saturated with
water. The selected wells were produced from the 3# coal seam of the Shanxi Formation.
Wells were placed at an average spacing of 250 m, both in the face- and butt-cleat direc-
tions. All wells were hydraulically stimulated with silkwater following similar stimulation
parameters, e.g., pumping rate, total injected fracturing fluid and sand ratio.

A number of three representative wells (referred to as Well #1, #2 and #3) were selected
that are typical in terms of the gas production pattern. These wells are distributed within a
distance of 2 km in the same block. Well #1 showed the highest gas producibility among
the selected wells, with the maximum and average daily gas rates of 5730 and 1800 m3/d,
respectively. The daily gas rates of this well exhibit the “typical” trend of a CBM well: the
gas rates first climbed and then declined sharply with the production duration. The gas
production curve of Well #2 also exhibits a first increasing and then a decreasing trend.
However, the decline in gas productions was sharp within the initial 500 days and then
became gentle after the gas rate dropped to approximately below 1500 m3/d. The peak
and average gas rates were approximately 3000 and 1206 m3/d, respectively, which were
obviously lower than that of Well #1. Compared with the aforementioned two wells, Well
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#3 showed a distinctive gas production pattern: the well had been producing at a relatively
steady gas rate and did not show a sharp declining trend. The peak and average gas
rates of Well #3 were 3000 and 1240 m3/d, respectively. Wells were not considered that
had experienced frequent workovers and showed severe fluctuations in production rates
because these wells are associated with more uncertainties such as formation damage.

Since BADS is a stochastic algorithm in nature, uncertainties exist inevitably during
the iteration process, and thus the ultimate optimal solution may vary from run to run.
Therefore, the AHM was run five times for each well to evaluate the uncertainties asso-
ciated with the optimal solutions. For each independent run, the searching point was
randomly initialized, and the maximum number of function evaluations was set to be
120. Variables that have been addressed to exert minor effects on productions of initially
water-saturated CBM reservoirs were set to be fixed, including the sorption time (10 days)
and fracture spacing (0.5 cm). The well radius was set to be 0.06m according to the well
completion report. For each AHM run, the upper and lower boundaries for variables to
be estimated are given in Table 1. The boundary conditions of the sorption isothermals
were set according to laboratory tests, which suggest coals in the target area generally
have Langmuir volumes and pressures in the ranges of 24 to 40 m3/t and 1.0 to 6.0 MPa,
respectively. The boundary conditions for the in situ porosity, permeability and sorption
strain were set empirically according to previous studies [11]. Coefficient ranges of the
relative permeability model (Equation (3)) were adapted from Chen et al.’s summary on a
number of relative permeability data [39]. The microseismic data monitored during the
hydraulic fracturing process of CBM wells in the Qinshui basin suggest that the length
of the SA is approximately 30 to 130 m, whereas the width of the SA is on the order of
magnitude of tens of meters. In this study, the upper and lower boundaries were to be 50
to 100 for the length and 10 to 50 for the width of the SA. The permeability of the SA is
associated with strong uncertainties and thus was varied in a relatively wide range of 1 to
50 mD. The compressibility and sorption strain were varied between 0.001 and 0.1 MPa−1

and between 0.005 and 0.03, respectively, in order to cover the ranges of anthracite coals
according to laboratory tests.

Table 1. Boundary constraints of the variables to be estimated.

Variable Lower Boundary Upper Boundary

Porosity 0.001 0.05
In situ permeability, mD 0.01 1.0

In situ Compressibility, MPa−1 0.001 0.1
Sorption strain 0.001 0.03

Langmuir volume, m3/t 25 40
Langmuir pressure, MPa 1.0 6.0

Swc 0 0.9
krw0 0.1 1

λ 0.1 10
β 0 5
η 1 10

Length of SA, m 50 120
Width of SA, m 10 50

Permeability of SA, mD 1 50
Compressibility of SA, MPa−1 0.01 0.1

4. Results and Discussion
4.1. Performance of BADS

Figure 2 illustrates the objective function values during the iteration (minimization)
process. As can be seen, the objective function decreases dramatically during the initial stage
(within a number of 30 function evaluations) and then converges gradually to local optima.
This suggests an alternation in mode from global exploration to local exploitation [29].
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In the initial stage, BADS operated in a deterministic mode similar to the MADS
algorithm, and thus the objection function values overlap with one another for the five
independent runs. In the later stage (>30 iterations), BADS operated with stochasticity
because the Bayesian process was involved; thus, different independent runs resulted in
varied objection function values. However, very small differences were observed between
different independent runs, suggesting strong robustness of BADS. It should also be noted
that the number of function evaluations required for the BADS algorithm to achieve
relatively stable convergence is noticeably small, which were approximately in the range
of a number of 50 to 70 function evaluations. Since the numerical simulation run is
usually time-consuming for a real model scenario, one may always anticipate less function
evaluations in order to accelerate the AHM process. This highlights the high efficiency of
the BADS algorithm in assisting achieving “successful” history matching results.

Figure 3 depicts the matching results with the minimized function values for the
representative wells. As shown for each well, the independent AHM runs resulted in
simulated production curves with slight deviations from one another possibly due to
the stochastic nature of the BADS algorithm. Despite the distinct variation trends of the
production data, the simulated production curves from all AHM runs agree well with the
true ones for both gas and water phases. These observations suggested that the BADS is
capable of deriving satisfactory matching results regardless of the production variation
behaviors, which proved the adaptability of BADS for solving the AHM problems.

4.2. Comparison with Existing Algorithms

To demonstrate the superiority of BADS, the BADS algorithm was compared with
two commonly used algorithms, namely particle swarm optimization (PSO) [40] and the
covariance matrix adaptation evolution strategy (CMA-ES) [41] for history matching the
aforementioned three wells. PSO and CMA-ES are stochastic algorithms with significant
different underlying evolving mechanisms, which have been successfully applied for solv-
ing a variety of minimization problems including the AHM in the petroleum engineering
community [42,43]. PSO and CMA-ES were independently applied for assisting the match-
ing of the three wells. The maximum number of objective function evaluations was set
to be 120, which was identical with that of the BADS. The hyperparameters of the PSO
and CMA-ES were set to be default values as suggested by their original inventors. Each
algorithm was independently run five times in order to evaluate their uncertainties.
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Figure 3. Comparison between the BADS-assisted simulated and true productions. (a,c,e) are gas
productions of Well #1, #2 and #3, respectively; (b,d,f) are water productions of Well #1, #2 and #3,
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Table 2 summarizes the minimized error function values with BADS, PSO and CMA-
ES for the five independent runs, with the minimum, maximum and average values shown
in Figure 4 for clear visualization. It can be seen from Table 2 and Figure 4 that BADS
brought about smaller error function values to both the PSO and CMA-ES. The average
minimized objective function values obtained from BADS were 0.657, 1.083 and 1.186 for
Wells #1, #2 and #3, respectively. As a comparison, the CMA-ES resulted in obviously
larger averaged error function values, which are 0.838, 1.636 and 1.996 for Wells #1, #2
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and #3, respectively. The PSO performed better than the CMA-ES but worse than the
BADS in terms of matching errors for all wells investigated. As shown in Figures 5 and 6,
the resulting optimal solutions with PSO and the CMA-ES deviate severely from the true
production data. The matrices and the visual figures suggest that BADS outperforms the
remaining algorithms in terms of matching accuracy.

In addition to the average error, it is also important to evaluate the robustness of an
algorithm considering the multiplicity nature of the history matching problems. In this
study, we evaluated the robustness by comparing the deviations of the objective function
values over five independent runs. As can be seen from Figure 4, very minor deviations
exist with respect to the minimized errors over five independent runs with BADS. As a
comparison, the minimized errors using PSO and CMA-ES are associated with obvious
deviations over independent runs, especially for Wells #2 and #3 (Figure 4 and Table 2). The
deviations of the minimized errors with the PSO and CMA-ES are approximately one order
of magnitude of that with BADS. The large deviations among independent runs using the
PSO and the CMA-ES are consistent with the resulting optimal solutions in Figures 5 and 6.
As shown in Figures 5 and 6, the simulated production curves PSO and CMA-ES deviate
severely from run to run, especially for Wells #2 and #3.

Table 2. Summary of the minimized objective function values using different algorithms.

Well ID Algorithm
Minimized Objective Function Value

Run 1 Run 2 Run 3 Run 4 Run 5 Max. Min. Avg.

Well #1
BADS 0.729 0.626 0.644 0.661 0.624 0.729 0.624 0.657
PSO 0.759 0.621 0.634 0.731 0.856 0.856 0.621 0.720

CMA-ES 0.887 0.724 0.845 0.841 0.891 0.891 0.724 0.838

Well #2
BADS 1.081 1.132 1.038 1.140 1.022 1.140 1.022 1.083
PSO 1.161 1.099 1.367 1.025 1.256 1.367 1.025 1.182

CMA-ES 1.859 1.497 1.888 1.423 1.516 1.888 1.423 1.636

Well #3
BADS 1.102 1.041 1.128 1.396 1.265 1.396 1.041 1.186
PSO 1.468 1.267 1.264 1.553 1.844 1.844 1.264 1.479

CMA-ES 2.173 2.101 3.182 2.920 2.210 3.182 2.101 2.517
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Figure 5. Comparison between the PSO-assisted simulated and true productions. (a,c,e) are gas pro-
ductions of Well #1, #2 and #3, respectively; (b,d,f) are water productions of Well #1, #2 and #3, 
respectively. Open circles and blue lines represent the true and simulated productions, respectively. 

In addition to the average error, it is also important to evaluate the robustness of an 
algorithm considering the multiplicity nature of the history matching problems. In this 
study, we evaluated the robustness by comparing the deviations of the objective function 
values over five independent runs. As can be seen from Figure 4, very minor deviations 
exist with respect to the minimized errors over five independent runs with BADS. As a 
comparison, the minimized errors using PSO and CMA-ES are associated with obvious 
deviations over independent runs, especially for Wells #2 and #3 (Figure 4 and Table 2). 
The deviations of the minimized errors with the PSO and CMA-ES are approximately one 
order of magnitude of that with BADS. The large deviations among independent runs 
using the PSO and the CMA-ES are consistent with the resulting optimal solutions in Fig-
ures 5 and 6. As shown in Figures 5 and 6, the simulated production curves PSO and 
CMA-ES deviate severely from run to run, especially for Wells #2 and #3. 

Figure 5. Comparison between the PSO-assisted simulated and true productions. (a,c,e) are gas
productions of Well #1, #2 and #3, respectively; (b,d,f) are water productions of Well #1, #2 and #3,
respectively. Open circles and blue lines represent the true and simulated productions, respectively.
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Figure 7 depicts the evolution trends of the error function values using PSO and
CMA-ES as assisted algorithms. It can be seen that the error function values with the
CMA-ES exhibit similar trend with the BADS; i.e., the error function drops dramatically
within approximately a number of 50 function evaluations and then becomes relatively
steady as more function evaluations are made. Nonetheless, CMA-ES results in remarkedly
higher matching errors compared with BADS with a number of 120 function evaluations.
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The error function values with the PSO exhibit similar trends with CMA-ES for Wells #1
and #3. However, the averaged error function values for Well #2 do not show an obvious
convergence, which may indicate less efficiency of PSO.
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5. Conclusions

This paper proposed the use of the BADS algorithm to assist history matching of
fractured vertical CBM wells. The proposed method was applied on CBM wells with
representative production characteristics. The superiority of the BADS was highlighted by
comparison with conventional algorithms including PSO and CMA-ES. Conclusions were
summarized as follows.

(1) The BADS is capable of deriving reasonable results within a number of only 50–
70 function evaluations, suggesting the high convergence speed and efficiency of BADS
compared with existing methods. The resulting simulated gas and water productions agree
well with true data.

(2) The performance of BADS in terms of matching accuracy was compared with two
popular algorithms, namely PSO and CMA-ES. The resulting matching errors using BADS
were significantly smaller than both the PSO and the CMA-ES algorithms. Moreover, BADS
outperforms PSO and CMA-ES in terms of the robustness over repeated simulation runs.
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