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Abstract: Blends of bitumen, clay, and quartz in water are obtained from the surface mining of the
Athabasca Oil Sands. To facilitate its transportation through pipelines, this mixture is usually diluted
with locally produced naphtha. As a result of this, naphtha has to be recovered later, in a naphtha
recovery unit (NRU). The NRU process is a complex one and requires the knowledge of Vapour-Liquid-
Liquid Equilibrium (VLLE) thermodynamics. The present study uses experimental data, obtained in a
CREC-VL-Cell, and Artificial Intelligence (AI) for vapour-liquid-liquid equilibrium (VLLE) calculations.
The proposed Artificial Neural Networks (ANNs) do not require prior knowledge of the number of
vapour-liquid phases. These ANNs involve hyperparameters that are used to obtain the best ANN
model architecture. To accomplish this, this study considers (a) R2 Coefficients of Determination and
(b) ANN training requirements to avoid data underfitting and overfitting. Results demonstrate that
temperature has a major influence on ANN vapour pressure predictions, while the concentration of
octane, the naphtha surrogate having, in contrast, a lesser effect. Furthermore, the ANN data obtained
allows the calculation of octane-in-water and water-in-octane maximum solubilities.

Keywords: hydrocarbon/water blends; Artificial Neural Networks; vapour-liquid-liquid equilibrium;
Machine Learning

1. Introduction

Canada is the sixth largest oil producer in the world, significantly contributing to the
Athabasca oil, tar, and bituminous sands [1]. Northern Alberta holds one of the world’s
largest deposits of hydrocarbons, containing more than 175 billion barrels of bitumen [2].
Bitumen from the oil sands is produced by employing approximately 20% surface mining
and 80% in situ technologies. Surface mining yields a blend of bitumen, quartz, clay,
and water. This is composed of about 85% quartz/clay particles and 15% bitumen plus
water [3]. There are three classes of oil sands with different bituminous contents: low-grade
(6–8 wt% bitumen), medium-grade (8–10 wt% bitumen), and rich grade (>10 wt% bitumen)
oil sands [3]. Bitumen is composed of a complex mixture of hydrocarbons, with its elemental
composition including hydrogen, carbon, nitrogen, and metals such as vanadium and
nickel [3]. Bitumen can be blended with a solvent to remove water and solids. Usually,
this solvent is a locally produced naphtha [4]. Following this process, the naphtha can be
reclaimed in a Naphtha Recovery Unit (NRU). In this manner, one is able to reuse it, while
minimizing its environmental impact [4,5].

In the NRU feed, hydrocarbons are blended with water. Due to the low hydrocarbon
miscibility in water, and the lack of Vapour-Liquid-Liquid Equilibrium (VLLE) data avail-
able, our research group has shown that there is presently a lack of predictability of the
NRU recovery unit efficiency [5–8]. Thus, studies considering hydrocarbon/water blends,
and their vapour-liquid-liquid equilibrium (VLLE), as shown in Figure 1, are of major
significance to improve the design and the operation of these VLL separators.
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With the advancement of computational power, ANNs have attracted the attention 
of the scientific community, in order to solve VLLE and flash calculation problems. 
Schmitz et al. (2006) used ANNs to predict the number of phases in a ternary ethanol–
ethyl acetate–water blend [6]. A total of 58,828 experimental data points were used con-
currently with the NRTL model and the Antoine equations. This was conducted to evalu-
ate liquid–liquid equilibrium, vapor–liquid–liquid equilibrium, and vapor–liquid equilib-
rium, at temperatures ranging from 335.2 K to 373 K, at 760 mmHg [9]. Argatov and 
Kocherbitov (2019) proposed the generalization of Wilson and NRTL models by employ-
ing ANNs and acetic acid–n-propyl alcohol–water blends at 313.15 K [10]. Li et al. applied 
ANNs to binary blend flash calculations by using a set of 1300 data points [11]. Zhang et 
al. (2020) used ANNs with data generated from an iterative NVT flash calculation. They 
suggested that by model training reliability was questionable. Thus, as an alternative, they 
proposed a self-adaptive algorithm to accelerate the flash calculations. The critical prop-
erties of each component were considered as inputs to the neural network, with the output 
identifying the total number of phases at equilibrium and the molar compositions in each 
phase [12]. For ANN model training and testing, 90,601 data points obtained from an 8-
hydrocarbon blend were employed. A total of 90% of the data were used for training and 
a 10% was employed for ANN model validation [3]. 

In previous work, our research group [5] employed Machine Learning (ML) methods 
to calculate VLE and VLLE by using theoretical data from traditional thermodynamic 
models such as the NRTL [6,8]. It was extensively shown that flash and other ML calcula-
tions using theoretical data or data from simulations were not reliable [10]. In the present 
work, ANNs are used instead to calculate VLLE. N-octane in water blends in experiments 
conducted in a CREC-VL-Cell [5] are employed to train and validate the ANNs. Octane in 
water is used given that it is a good surrogate to represent naphtha in water blends [9]. 
The proposed ANNs circumvent convergence problems reported in [6], occurring when 
using classical VLLE thermodynamics equilibrium models and do not require one to 
know the number of VL or VLL phases prior to equilibrium calculations [6]. 
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With the advancement of computational power, ANNs have attracted the atten-
tion of the scientific community, in order to solve VLLE and flash calculation problems.
Schmitz et al. (2006) used ANNs to predict the number of phases in a ternary ethanol–ethyl
acetate–water blend [6]. A total of 58,828 experimental data points were used concurrently
with the NRTL model and the Antoine equations. This was conducted to evaluate liquid–
liquid equilibrium, vapor–liquid–liquid equilibrium, and vapor–liquid equilibrium, at
temperatures ranging from 335.2 K to 373 K, at 760 mmHg [9]. Argatov and Kocherbitov
(2019) proposed the generalization of Wilson and NRTL models by employing ANNs and
acetic acid–n-propyl alcohol–water blends at 313.15 K [10]. Li et al. applied ANNs to binary
blend flash calculations by using a set of 1300 data points [11]. Zhang et al. (2020) used
ANNs with data generated from an iterative NVT flash calculation. They suggested that
by model training reliability was questionable. Thus, as an alternative, they proposed a
self-adaptive algorithm to accelerate the flash calculations. The critical properties of each
component were considered as inputs to the neural network, with the output identifying
the total number of phases at equilibrium and the molar compositions in each phase [12].
For ANN model training and testing, 90,601 data points obtained from an 8-hydrocarbon
blend were employed. A total of 90% of the data were used for training and a 10% was
employed for ANN model validation [3].

In previous work, our research group [5] employed Machine Learning (ML) methods to
calculate VLE and VLLE by using theoretical data from traditional thermodynamic models
such as the NRTL [6,8]. It was extensively shown that flash and other ML calculations using
theoretical data or data from simulations were not reliable [10]. In the present work, ANNs
are used instead to calculate VLLE. N-octane in water blends in experiments conducted in
a CREC-VL-Cell [5] are employed to train and validate the ANNs. Octane in water is used
given that it is a good surrogate to represent naphtha in water blends [9]. The proposed
ANNs circumvent convergence problems reported in [6], occurring when using classical
VLLE thermodynamics equilibrium models and do not require one to know the number of
VL or VLL phases prior to equilibrium calculations [6].
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2. Materials and Methods

This section describes both octane and water solutions, the CREC-VL-Cell unit used
for VLE and VLLE experiments, vapour-liquid and vapour, the data recorded and the
Artificial Neural Networks of the present study.

2.1. Materials

Distilled water (18.02 g/mol) was used in all the experimental studies. n-Octane
(114.23 g/mol) with a 99.0% purity and a 0% water content was obtained from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. CREC-VL-Cell Unit

The Chemical Reactor Engineering Center (CREC, London, ON, Canada) developed
a CREC-VL-Cell unit that allows the VLL equilibrium thermodynamic measurements of
hydrocarbon–water blends (refer to Figure 2) [6]. The CREC-VL-Cell uses a marine type of
impeller (propeller) that ensures close to isothermal conditions and homogenous mixing
inside the cell. This special cell design, proposed by the CREC team, allows one to analyze
a hydrocarbon–water sample directly, without losses of light volatile components, due to
sample transfers [8].
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Figure 2. Schematic Representation of the CREC-VL-Cell Unit: (A) CREC VL Cell Unit, (B) Zoom
of mixing in the CREC VL Cell. Notes: (1) Stirring Head, (2) Isolation Shells, (3) Stirring Hot Plate,
(4) Aluminum Vessel, (5) VL-Cell, (6) Thermofield, and (7) Octane/water Blend [6].

This unit uses a “dynamic heating method” with the temperature of the cell increasing
progressively, using a thermal ramp of 1.22 ◦C/min. As a result, every run provides a large
amount of vapour-liquid equilibrium data (10 Hz), with the vapour pressure data being
recorded at various temperatures, every 0.01 s.

The proposed dynamic method, as reported in Figure 3, involves the simultaneous
recording of temperature and pressure, as the run time is progressing. Additional explana-
tions regarding the cell operation are reported in [5,8]. Data obtained from this dynamic
method were validated with static measurements [5,8].
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Figure 3. Schematic diagram of CREC-VL-Cell Dynamic Experimental Method. Notes: (1,2): stirring hot
plate and aluminum vessel, (3) water and octane, (4) CREC-VL Cell, (5) impeller and thermocouples [8].

2.3. Data Available and Data Cleansing

Experimental data were obtained in the CREC-VL-Cell of the present study by chang-
ing the temperature for a set initial n-octane concentration in water. One should note
that for every temperature and initial n-octane in water concentration, the total pressure
measured required a correction. To accomplish this, the air partial pressure was discounted
from the cell total pressure, as proposed in [5].

Sixty-one (61) runs were developed by using various n-octane/water blends and
temperatures. The obtained data were combined into one single file, leading to 4200 run
records that were employed to evaluate the proposed ANN models. Additional details
regarding the 61 runs developed were reported by our research team in [5].

2.4. Artificial Neural Networks (ANN)

ANN models emulate the human brain [13]. The human brain is able to remember
and use earlier experiences as a precedent for different future situations. ANNs include
basic elements designated as nodes (also called units) that represent brain neurons, as
well as layers that represent an ensemble of nodes [14]. Figure 4 describes an ANN
configuration with input and output layers. The input and output layers are connected
through hidden layers. The input layers provide the data provided to the ANN model,
while the hidden layers process the data, and finally, the output layers yield the ANN
model output variables [14–16].

Processes 2023, 11, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. Schematic diagram of CREC-VL-Cell Dynamic Experimental Method. Notes: (1,2): stir-
ring hot plate and aluminum vessel, (3) water and octane, (4) CREC-VL Cell, (5) impeller and ther-
mocouples [8]. 

2.3. Data Available and Data Cleansing 
Experimental data were obtained in the CREC-VL-Cell of the present study by chang-

ing the temperature for a set initial n-octane concentration in water. One should note that 
for every temperature and initial n-octane in water concentration, the total pressure meas-
ured required a correction. To accomplish this, the air partial pressure was discounted 
from the cell total pressure, as proposed in [5]. 

Sixty-one (61) runs were developed by using various n-octane/water blends and tem-
peratures. The obtained data were combined into one single file, leading to 4200 run rec-
ords that were employed to evaluate the proposed ANN models. Additional details re-
garding the 61 runs developed were reported by our research team in [5]. 

2.4. Artificial Neural Networks (ANN) 
ANN models emulate the human brain [13]. The human brain is able to remember 

and use earlier experiences as a precedent for different future situations. ANNs include 
basic elements designated as nodes (also called units) that represent brain neurons, as well 
as layers that represent an ensemble of nodes [14]. Figure 4 describes an ANN configura-
tion with input and output layers. The input and output layers are connected through 
hidden layers. The input layers provide the data provided to the ANN model, while the 
hidden layers process the data, and finally, the output layers yield the ANN model output 
variables [14–16]. 

 
Figure 4. Schematic Representation of an Artificial Neural Network Basic Configuration showing
Nodes and Layers and their Interactions. Note: The input and output layers are shown in “dark”
grey while the hidden layers are displayed in “light” grey.



Processes 2023, 11, 2026 5 of 16

Figure 5 further describes coexisting inner processes taking place in between “j” and
“j + 1” generic hidden layers. One can observe in Figure 5 that both “forward calculations”
and “backward calculations” take place. In the “forward calculation”, data are fed to the “j”
hidden layer, processed in this layer, and then moved from the “j” to the “j + 1” hidden
layer. In the “backward calculation”, data are fed and processed in the “j + 1” layer and
moved back in the opposite direction, from the “j + 1” layer to the “j” hidden layer.
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Thus, ANN modeling involves Steps A to D that describe the connection between
layers in the forward direction, and Steps F to H that explain the ANN connections in the
opposite backward direction, as follows:

• Step A: A random initial weight is assigned to all nodes in the multilayer ANN model
structure [17].

• Step B: An “x” parameter is defined for each layer connection as x = ∑m
i=0 aijwij + A,

with “x” being the sum of the aij input, wij representing the weights assigned in the
generic “j” hidden layer, “A” denoting a bias parameter, and “m” standing for the
layer number of nodes [18].

• Step C : An α(x) F(x) activation function is chosen to provide an adequate fitting for
the available data [19].

• Step D: The revised data calculated in Step C is transferred to the next “j + 1” hidden
layer. This process is repeated until the very last layer or output layer is reached [20].

• Step E: An output error is calculated, using an R2 Coefficient of Determination [17].
• Step F: A new set of weights is established by using a stochastic gradient, which is

calculated by employing an optimizer function as follows: WUpdated = −∇ ∗ C(w) +

WInitial [19].
• Step G: The revised weights are assigned to the various nodes and layers.
• Step H: The calculation process, as outlined from Steps B to G, is repeated until the

algorithm learning rate no longer improves results or the output layer data reaches
the acceptable tolerance range for each node [17,19,20].

3. ANN Modeling with Hyperparameters

While the ANN methodology is becoming popular in chemical engineering, there is
limited information in the open technical literature, regarding the theoretically based selection
of the best architectures for ANNs, in order to obtain VLL equilibrium thermodynamic data.
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Given the above, Python version 3.9.5 was used to develop the ANN models of the
present study. This coding software was selected given that it is an open-source tool,
with a rich library of built-in modules for ML and AI, as well as with a good capability
for result visualization. The main library modules used in this study include the follow-
ing: (a) Scikit-learn (sklearn 0.0), (b) Keras 2.6.0, (c) Pandas 1.1.3, (d) NumPy 1.19.2, and
(e) Matplotlib 3.3.2. Pandas and NumPy were used for data processing, Scikit-learn and
Keras were applied for ML and AI tasks, and Matplotlib was employed to construct all the
plots and graphs of this document.

Table 1 reports typical hyperparameters for the ANNs such as hidden layers, nodes,
activation functions, optimizer, cost function, Epochs, and Batch sizes. These parameters
are of importance as they provide the required accuracy for a wide range of possible
computations. Thus, the development of an adequate ANN model must include the proper
selection of the number of hidden layers, nodes, and activation functions [19]. On this basis,
the determination of a successful ANN model is achieved with a good balance between
accuracy and efficiency [12,18]. Table 1 also reports the advisable Epochs and Batch sizes,
with Epoch size referring to the number of times that the algorithm repeatedly learns from
the available training data [21], and Batch size referring to the number of mini-Epochs or
Batches required for a given dataset.

Table 1. ANN Hyperparameters and their dataset types.

Hyperparameter Dataset Type Usual Values

Hidden layer Integer 1, 2, 3

Units (Neurons) Integer 10, 50, 100

Activation Function Equation ReLu, Tanh, SoftMax

Optimizer Algorithm Adam, RMSP

Cost (or Loss) Function Equation MSE, MAE

Epoch Integer 50, 100, 200

Batch Size Integer 2, 4, 8, 16, 32

Furthermore, in the present study, in order to establish the most appropriate ANN
model, different hyperparameters were combined, creating at least six ANN models by
employing different activation functions, as reported in Table 2.

Table 2. Activation functions—formulas and recommended applications.

Activation
Function Equation Recommended Applications [21]

ReLU max(0, x) [22] General purposes

ELU
{

x , x ≥ 0
α(ex − 1) , x < 0 ; 0 < α < 1 [21] Classification

Sigmoid 1
1+e−x [12] Binary classification

Tanh Tanh(x) = ex−e−x

ex+e−x [20] Binary classification

SoftMax ex

∑k
j=1 ex [12] Multivariable classification

SoftPlus log (ex + 1) [22] Function approximation

The ELU, ReLU, Sigmoid, SoftMax, SoftPlus, and Tanh activation functions for the
ANNs were evaluated by using several numbers of hidden layers, ranging from one to
five and various numbers of nodes in every hidden layer, as follows: 5, 10, 50, 100, and
200. Regarding model configuration, the input layer involved two nodes and the output
layer encompassed one node. This was the case for all the models considered, where the
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temperature and hydrocarbon molar fraction were the input variables, and the pressure
was the model output variable. Furthermore, model training was developed by using an
8 GB RAM memory, and a RYZEN 5-4000 series processor, with this taking 3.7 h of total
computer time.

Table 3 describes various ANN hyperparameters adopted in the present study, used
to develop ANN calculations.

Table 3. ANN hyperparameters.

Hyperparameter Value

Optimizer Adam

Epochs 100

Batch Size 32

Cost (Loss) Function MSE

The Adam Optimizer hyperparameter from Table 3 was considered and evaluated by
using Momentum and Root Mean Square Propagation, in order to establish the optimized
descent gradients, which allow one to avoid the local minima and to calculate the global
minimum [23,24] The ANN models evaluated included Epochs and Batch size hyperpa-
rameters. Epochs were set to 50, 100, and 150. It was shown that Epochs exceeding 100 did
not improve the R2 Coefficient of Determination significantly, as shown in Figure A2 in Ap-
pendix B. Thus, Epochs set to 100 were considered for all ANNs calculations. Furthermore,
the Batch Size was set to 32. This is a typical batch size used to achieve training stability
that requires a low computation time [25,26].

4. Evaluation of Proposed ANN Models

Data from the 61 runs developed in the CREC-VL-Cell led to 4200 records of cells,
employed to evaluate the various ANN models considered, as described in Tables 2 and 3.
Runs included conditions with input and output variable ranges, as described in Table 4.

Table 4. Description of Input and Output Variable Ranges involved in the ANN’s Calculations of the
present study.

Data Inputs Data Outputs

• Temperature: 70–110 ◦C
• Hydrocarbon molar Fractions: 0 to 1

• Pressure: 100–400 KPa
• Phases: two or three
• Maximum Solubility for octane in water

from 0.00015 to −0.00079
• Maximum, solubility for water in octane

from: 0.012 to 0.015

In this respect, the R2 Coefficient of Determination helped to establish the ANN
model’s ability to provide adequate predictions. The R2 was computed by means of the
following equation:

Coefficient of Determination = R2 = 1− RSS
TSS

= 1− ∑i(yi − fi)
2

∑i(yi − y)2 , (1)

where RSS is the residual sum of squares, TSS is the total sum of squares, yi is the output
variable experimental data, fi is the output variable predicted data, and y is the predicted
data mean [25]. Note that an R2 Coefficient of Determination close to 1 is considered to be
a good correlation, while a 0 value means that there is a very poor data correlation.

Figure 6 reports a comparative analysis of various ANN models evaluated by using
various numbers of hidden layers and different activation functions. This graph shows
how the number of hidden layers affects the R2 Coefficient of Determination.
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It can be noted, as shown in Figure 6, that the ReLU activation function superseded
all the others, in most cases, in term of the maximum value of the R2 Coefficient of Deter-
mination, with this coefficient remaining within the 0.96–0.97 range, when the number of
hidden layers increased from 1 to 5, with three hidden layers providing best results.

Furthermore, as shown in Figure 7, training computational times were significantly
affected by the number of hidden layers. One interesting observation is that the ANNs with
the ReLU activation function were, in most cases, the ones consistently requiring lower
computational times.
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Figure 8 evaluates ANNs with various activation functions by varying the number of
nodes per hidden layer. It shows how this affects the R2 Coefficient of Determination. It
was observed that the best ANNs were the ones using 50 nodes per hidden layer, with no
significant improvement in the Coefficients of Determination when the number of nodes
surpassed 50.
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Figure 8. Change in the Coefficient of Determination (R2) with various numbers of nodes per hidden
layer, employing different activation functions. Selected Hyperparameters: (a) Optimizer: Adam,
(b) Epoch: 100, (c) Batch size: 32, and (d) Number of hidden layers: 3.

In the case of Figure 8, it can be noted that the ANN that used the ReLU activation
function displayed the best performance in terms of the R2 Coefficient of Determination
when compared to other ANN models using the other activation functions.

Finally, Figure 9 evaluates ANNs with various numbers of nodes per hidden layer, in
terms of required computational training time.
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using different activation functions. Selected Hyperparameters: (a) Optimizer: Adam, (b) Epoch:100,
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It can be observed, in Figure 9, that the ANN model with the ReLU activation function
consistently required the shortest computational training time, when compared to ANNs
with other activation functions.

Thus, on the basis of the above, it can be concluded that the best ANN, in the context
of the present study, includes 3 hidden layers, 50 node units per hidden layer, and the ReLU
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activation function. This conclusion was reached by observing the higher R2 Coefficients of
Determination obtained and the lower ANN computational training times required, when
using these parameters. In this case, the R2 Coefficient of Determination was very close
to 0.97, and the required computational time was close to 15 s. It is interesting to note
that the 0.97 R2 Coefficient of Determination superseded the previous R2 Coefficient of
Determination values obtained via Machine Applications by our research team [6].

Given all this, an ANN designated as 3HL-50N-ReLU ANN (3 hidden layers, 50 nodes,
and ReLU activation function) was selected to obtain the best system pressure predictions,
as reported in the upcoming sections of this article.

5. Results and Discussions

The present study shows the viability of the ANNs used to predict the system pressure
of highly diluted hydrocarbons in water. This is conducted without the need of defining
a priori the number of liquid and vapor phases, present in complex hydrocarbon/water
blends and found in naphtha recovery processes.

To train the ANN models, a system pressure dataset containing 4220 data points,
resulting from various experiments was used. These records were from experiments
conducted between 30 ◦C to 120 ◦C with octane in water concentrations ranging from 0 to
100 wt.% and with system pressures between 0 to 440 KPa.

To determine the accuracy of the ANN system pressure predictions at various tem-
peratures and octane in water concentrations, the ANN was trained 20 times, while using
a 70% randomly selected of the available experimental data. The remaining 30% of the
experimental data was employed for validation purposes.

By using this approach, it was found that the average R2 Coefficient of Determination
for 30% of the experimental data was over 0.98 and that the average computational training
time required for each model was 10.6 s. The lowest R2 Coefficient of Determination was
over 0.979 and the highest one was below 0.984, while the training times were in the range
of 10.1 s to 11.5 s, respectively.

Figure 10 compares the predicted and experimentally measured system pressures
when using the best-performing ReLU–ANN model, and 30% of the experimentally mea-
sured pressure values obtained with the CREC-VL-Cell. This figure displays an R2 of 0.982
(average) with 11.1 s of required computational time.
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accuracy of the proposed ReLU–ANN. Note: The experimental data reported corresponds to 30% of
the data available, with the 70% remaining being radomly selected data and used for model training.
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Thus, Figure 10 shows the excellent ability of the proposed ANN model to predict
system pressure values with reasonable accuracy and limited computer time.

Once the proposed ANN model was trained and validated, 90% of the available
experimental data was chosen randomly to create a restricted dataset. Then, the developed
ANN model was retrained with 70% of the points of this restricted dataset. The remaining
30% of the limited-size dataset was employed for ANN validation. It was observed that
under these conditions, the average R2 Coefficient of Determination remained at 0.9439,
with a minimum value of 0.9201 and a maximum value of 0.9583. Given, these good R2

Coefficients of Determination obtained with 90% of the available data, it was considered that
the original 4220 experimental data points were adequate for the ANN model development
of the present study.

Figure 11a–d illustrates the adequacy of the proposed ANN model for predictions,
with octane–water concentrations ranging from 0 to 100%, and temperatures ranging from
80 ◦C to 110 ◦C. Figure 11a–d report experimental data points [10], as well as pressure
predictions obtained from the ANN model developed.
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Figure 11. Changes of system pressure with temperature in the 80 ◦C to 110 ◦C range. Notes: (a) The
red line describes the two-phase fully immiscible model, (b) the blue line shows the ANN average
model predictions, (c,d) the blue band describes the data measured one standard deviations. Note:
all Pmix experimental and model derived points include the presence of air.

It can be observed that at all four thermal levels (80 ◦C, 90 ◦C, 100 ◦C, and 110 ◦C),
the ANN model predicted the total pressure closely, for the eighteen octane in water
concentrations ranging from 0 to 100%, with 7–9% standard deviations. One can thus
conclude that the proposed ANN is adequate, without having to know in advance, the
number of phases present, as required in our previous study [7].
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Table 5 reports the maximum solubility of chemical species, for both water highly
diluted in octane and in octane highly diluted in water, using the methodology proposed
by Lopez Zamora (2021) [7]. Thus, the maximum solubility is obtained at the intersection
point between the characteristic linear increasing pressure at very low and very high molar
fractions, and the constant pressure, at all other intermediate molar fractions, as described
in Figure 11a–d. It is speculated that at this intersection points, there is a change in the
multiphase blend state, which evolves from two LV phases (liquid–vapour) to three LLV
phases (liquid–liquid–vapour).

Table 5. Maximum Chemical Species Solubilities at Different Temperatures.

Temperature Maximum Water in
Octane Solubilities

Maximum Octane in
Water Solubilities

80 ◦C 0.012434 0.00015784

90 ◦C 0.012871 0.00039511

100 ◦C 0.014054 0.00039511

110 ◦C 0.015615 0.00079189

One should note that results reported in Table 4 are in agreement with Lopez Zamora [7],
who reported maximum solubilities for water highly diluted in octane and octane highly
diluted in water, in the 0.014–0.017 and 0.00015–0.00079 ranges, respectively. These maximum
solubilities are much higher (about 20 times) than the ones previously reported by others [27],
adding significant value to the ANN calculations and data, reported in the present study.

6. Conclusions

• ANN models can be used effectively to calculate equilibrium system pressures in
hydrocarbon–water blends.

• ANN models require the careful selection of ANN hyperparameters such as number
of hidden layers, number of nodes per hidden layers, and activation functions.

• Three hidden layers, fifity node units per hidden layer, and the ReLU activation
function are best parameters for the ANN model, yielding the highest R2 Coefficients
of Determination and requiring the shortest computational times.

• The implemented ReLU-ANN requires abundant VLL data for both training and
validation. This required data was obtained experimentally using a CREC-VL-Cell,
with octane–water concentrations, ranging from 0 to 100%, and temperatures ranging
from 30 ◦C to 110 ◦C.

• The ANN–ReLU model used 70% randomly selected data from experiments in the
CREC-VL-Cell for training, with the remaining 30% being available for ANN valida-
tion. This approach led to valuable ANN predictions, where an average R2 Coefficient
of Determination of 0.982 was obtained.

• The developed ANN-ReLu can be used to successfully predict both the system pres-
sures in the entire range of octane–water compositions, as well as the maximum
solubilities of octane highly diluted in water and water highly diluted in octane.
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Nomenclature

Notation
aij input variable in the “j” generic hidden layer
C(w) function involved in the stochastic gradient
fi output variable predicted data.
F(x) Activation function
j generic hidden layer
m Number of nodes
Pmix System pressure (KPa)
RSS Residual Sum of Squares
R2 Coefficient of Determination
TSS Total Sum of Squares
x Parameter is defined at each layer connection
wij Weights assigned in the generic “j” hidden layer
WInitial Stochastic gradient defined at the input of the hidden layer
WUpdated Stochastic gradient defined at the input of the hidden layer
yi Output variable experimental data
Greek Symbols
α(x) Activation function parameter
Acronyms
AI Artificial Intelligence
ANN Artificial Neural Network
ML Machine Learning
MSE Mean Squared Error
MAE Mean Absolute Error
VLE Vapour-Liquid Equilibrium
VLLE Vapour-Liquid-Liquid Equilibrium

Appendix A. Concentration and Temperature Level Data Required for ANN
Model Training

Appendix A.1. Concentration Effect

Figure A1 reports a comparison of the ANN–ReLu model predictions and the exper-
imental data obtained in the CREC-VL-Cell. The ANN model training was developed
using a restricted experimental dataset, with two octane–water concentrations being ran-
domly removed from the ANN calculations (0.001 and 0.8 water molar fractions). Again
here, the ANN–ReLu was trained with a randomly selected 70% of the 3621 experimental
data points, yielding a 0.982 average R2 Coefficient of Determination, with minimum
and maximum values of 0.993 and 0.97, respectively. One can thus conclude that even if
two hydrocarbon–water concentrations from the available data, are removed, the accuracy
of the ANN model is not affected, with R2 Coefficients of Determination remaining in a
very acceptable range.
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Figure A1. Comparison of the CREC-VL-Cell experimentally observed system pressures and the
ANN–ReLu calculated pressures. Note: In the ANN model analysis two random octane–water con-
centrations were removed from the original dataset. Note: 414 records were used in this comparison.

Appendix A.2. Temperature Effect

Temperature is one of the two ANN input variables to predict the system pressure.
In our study, the accuracy of the ANN–ReLu was evaluated by removing selectively data
obtained at various temperature levels. For instance, when removing the data obtained in
the 70 ◦C to 75 ◦C range and using an ANN–ReLu trained with 70% of all the experimental
data records, it was observed that the average R2 Coefficient of Determination was signifi-
cantly reduced to an average of 0.3. This emphasizes the value of having a properly trained
ANN that accounts for data, in the entire 30 ◦C to 120 ◦C range of interest.

Appendix B. Pressure Mean Absolute Error Changes with the Number of Epochs

The proposed ANN model was evaluated using different number of the epochs or the
equivalent number of iterations.
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Figure A2 reports the ANN model mean absolute error during training as well as
during model validation. It can be observed that mean absolute error decreases consistently
with the number of epochs providing after 100 epochs a stable 6 KPa pressure mean
absolute error. Thus, as result, to minimize the pressure mean absolute error 100 epochs
were adopted in all calculation.
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27. Maczyński, A.; Wiśniewska-Gocłowska, B.; Góral, M. Recommended Liquid-Liquid Equilibrium Data. Part 1. Binary Alkane-

Water Systems. J. Phys. Chem. Ref. Data 2004, 33, 549–577. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1804.07612
https://doi.org/10.48550/arXiv.1206.5533
https://doi.org/10.1063/1.1643922

	Introduction 
	Materials and Methods 
	Materials 
	CREC-VL-Cell Unit 
	Data Available and Data Cleansing 
	Artificial Neural Networks (ANN) 

	ANN Modeling with Hyperparameters 
	Evaluation of Proposed ANN Models 
	Results and Discussions 
	Conclusions 
	Appendix A
	Concentration Effect 
	Temperature Effect 

	Appendix B
	References

