
Citation: Wu, Z.; Fan, H.; Sun, Y.;

Peng, M. Efficient Multi-Objective

Optimization on Dynamic Flexible

Job Shop Scheduling Using Deep

Reinforcement Learning Approach.

Processes 2023, 11, 2018. https://

doi.org/10.3390/pr11072018

Academic Editors: Ming-Jong Tsai

and Ricky Min-Fan Lee

Received: 24 May 2023

Revised: 19 June 2023

Accepted: 26 June 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Efficient Multi-Objective Optimization on Dynamic Flexible
Job Shop Scheduling Using Deep Reinforcement
Learning Approach
Zufa Wu 1 , Hongbo Fan 1,2,*, Yimeng Sun 1 and Manyu Peng 1

1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming 650504, China; wuzufa0603@stu.kust.edu.cn (Z.W.); 15836501728@163.com (Y.S.);
20202204327@stu.kust.edu.cn (M.P.)

2 Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming 650500, China

* Correspondence: 20110258@kust.edu.cn

Abstract: Previous research focuses on approaches of deep reinforcement learning (DRL) to opti-
mize diverse types of the single-objective dynamic flexible job shop scheduling problem (DFJSP),
e.g., energy consumption, earliness and tardiness penalty and machine utilization rate, which gain
many improvements in terms of objective metrics in comparison with metaheuristic algorithms such
as GA (genetic algorithm) and dispatching rules such as MRT (most remaining time first). However,
single-objective optimization in the job shop floor cannot satisfy the requirements of modern smart
manufacturing systems, and the multiple-objective DFJSP has become mainstream and the core of
intelligent workshops. A complex production environment in a real-world factory causes scheduling
entities to have sophisticated characteristics, e.g., a job’s non-uniform processing time, uncertainty of
the operation number and restraint of the due time, avoidance of the single machine’s prolonged
slack time as well as overweight load, which make a method of the combination of dispatching rules
in DRL brought up to adapt to the manufacturing environment at different rescheduling points and
accumulate maximum rewards for a global optimum. In our work, we apply the structure of a dual
layer DDQN (DLDDQN) to solve the DFJSP in real time with new job arrivals, and two objectives
are optimized simultaneously, i.e., the minimization of the delay time sum and makespan. The
framework includes two layers (agents): the higher one is named as a goal selector, which utilizes
DDQN as a function approximator for selecting one reward form from six proposed ones that embody
the two optimization objectives, while the lower one, called an actuator, utilizes DDQN to decide
on an optimal rule that has a maximum Q value. The generated benchmark instances trained in
our framework converged perfectly, and the comparative experiments validated the superiority and
generality of the proposed DLDDQN.

Keywords: deep reinforcement learning; multi-objective optimization; delay time sum; makespan;
dual layer deep Q-network; global optimum; dynamic flexible job shop scheduling

1. Introduction

With the development of artificial intelligence (AI) technologies becoming increasingly
mature and data from industrial production growing substantially, production require-
ments in Industry 4.0 demand a higher level of task arrangement precision in job shop
scheduling. However, the demand is unable to be achieved if applied with the traditional
dispatching rules because the same rule is unchangeable during the whole production
process and makes the workshop unlikely to utilize as many machines as possible according
to the temporary scheduling situation, thus increasing the makespan and tardiness and
causing other adverse metrics [1]. In a modern manufacturing system, uncertainties and
complexities of factory shop floor production, for example, unexpected events such as

Processes 2023, 11, 2018. https://doi.org/10.3390/pr11072018 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11072018
https://doi.org/10.3390/pr11072018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0008-8532-2346
https://doi.org/10.3390/pr11072018
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11072018?type=check_update&version=1

Processes 2023, 11, 2018 2 of 27

random job arrivals, the modification or cancellation of jobs, the breakdown and recovery
of machines, and the inconsistent processing time of operations, boost the advancement of
intelligent dynamic scheduling schemes [2]. In order to develop a smart factory and make
real-time scheduling intelligent, it is crucial to propose feasible solutions to the dynamic
flexible job shop problem (DFJSP).

The DFJSP evolved from simpler scheduling management problems, i.e., the job shop
scheduling problem (JSP) and the flexible job shop scheduling problem (FJSP), to meet
the more complex and efficient productivity requirements of the contemporary shop floor.
Scheduling optimization is a control process for making an optimal current decision for a
global optimum with a limited resource allocation [3]. For variant production scenarios, it
is indispensable to independently propose the corresponding appropriate multi-objective
optimization schemes. In the JSP [4–7], the product processing of each operation can
only be appointed one machine, while the addition of the flexible characteristic in the
FJSP [8–11] can make it more conformed to a real-world production circumstance in which
all operations of a product can be processed using more than one available machine. The
dynamic JSP or FJSP emphasizes the adaptability of the trained model to handle interruptive
incidents and still obtain a complete scheduling solution that is approximately optimal.

The DFJSP is known as an NP-hard problem in the computer algorithm [12]. The
mainstream method used to obtain the best solution in recent years consists in applying
biology-based algorithms, i.e., meta-heuristic approaches, such as GA series, simulated
annealing algorithms, particle swarm optimization (PSO), ant colony optimization (ACO),
etc. [13]. However, even though biology-based algorithms perform better in globally
optimizing objectives than simple dispatching rules, they are not time-efficient, they do
not provide real-time responses to schedules encountered with random dynamic inci-
dents [14,15], and they are still unable to perform better than DRL-based methods. DRL
is a promising method used to automatically control objects to fulfill tasks in the most
intelligent way efficiently. For example, in order to resolve the optimal machine sequences,
DRL has been commonly used in combination with the optimization of traditional indus-
trial production. In a production system, DRL can be utilized in enormous manufacturing
scenarios, including process control, production scheduling and dispatching, logistics,
assembly, robotics, energy management, and so forth [16]. The prevalence of DRL-related
applications highlights the reliance of running algorithms on DRL’s intra-mechanism—self-
adaptability.

1.1. Related Works

From the methodology of the deep reinforcement learning concept, DRL can be
classified into two types, including value-based approaches such as SARSA or DQN
and policy-based approaches such as Actor-Critic [17] or Proximal Policy Optimization
(PPO) [18]. According to the application experiences of industrial manufacturing, there are
no specific judgments or reasonings about which one performs better than the other, and
both have weaknesses and advantages. For example, in a continuous control problem, the
PPO method can be more promising than DQN or improved DQN, while in combinatorial
optimization, most research prioritizes value-based methods instead of policy-based ones.
Policy methods are sensitive to the newest experiences and to strengthen the interaction
with the environment. Policy-based methods make decisions based on the probability
distribution of actions. In cases where there is a requirement of continuous action, there
are too many discrete actions and there is an environment with stochasticity, policy-based
methods are more advisable. Value-based methods rely on experience samples from replay
memory to learn the policy, and their work may increase the computation overhead.

Liu et al. (2020) [15] utilized actor-critic deep reinforcement learning to deal with the
job shop scheduling problem (JSSP). A parallel training method is proposed combining
an asynchronous update with the deep deterministic policy gradient (DDPG) in order to
train the model. Luo et al. (2021) [19] devised a framework of a two-hierarchy deep Q
network (THDQN) for the dynamic multi-objective flexible job shop scheduling problem

Processes 2023, 11, 2018 3 of 27

(DMOFJSP) with the high-level DQN to determine the temporary goal to guide the behavior
of low-level DQN and the low-level DQN acts to decide on the best dispatching rule that
achieves the given goal. Hu et al. (2020) [20] exploited an adaptive deep-reinforcement-
learning-based AGV real-time scheduling approach to the flexible job shop in which DQN
is used to achieve the optimal mixed rule policy, and suitable dispatching rules and AGVs
are selected to execute scheduling. Lei et al. (2022) [21] presented an end-to-end deep
reinforcement framework to learn a policy that solves the FJSP with the use of a graph
neural network in which multi-pointer graph networks (MPGNs) and a muti-PPO training
algorithm are developed to learn two sub-policies, i.e., an operation action policy and a
machine action policy. Abebaw et al. (2023) [22] considered the JSSP as an iterative decision-
making problem, and a DDQN is utilized for training the model and learning an optimal
policy in which six continuous state features are formulated to record the production
environment; an epsilon-greedy strategy is used on the action selection; furthermore, the
reward and the penalty of the evaluation metric are designed. Zhang et al. (2022) [23] used
the PPO algorithm in the DRL framework to tackle the dynamic scheduling problem in a job
shop manufacturing system with an unexpected event of the machine failure in which the
transport agent is required to dispatch jobs/orders to machines then to sinks from machines
after the task of jobs is completed. The proposed framework was validated based on the
real-world job shop manufacturing system. Liu et al. (2022) [24] worked out a hierarchical
and distributed scheduling framework to solve the DFJSP using the DDQN algorithm to
train the scheduling agents with the sequencing agent responsible for selecting a job from
the queue to be processed by the machine when the machine is idle or at least two jobs are
queuing, while the routing agent fulfills to decide on which machine’s queue in the work
center the job should join upon when arriving by the predetermined order. Zhang et al.
(2020) [25] developed an end-to-end deep reinforcement learning agent to automatically
learn priority dispatching rules (PDRs) for solving the real-world JSSP, and a graph-neural-
network-based scheme was proposed to embed the states encountered during solving with
the disjunctive graph representation of the JSSP. Luo et al. (2021) [26] applied a double loop
deep Q-network method with exploration and exploitation loops to solve the dynamic JSSP
in which the single-agent system integrates the global search ability of the exploration loop
and the local optimal convergence capability of the exploitation loop to facilitate DQN to
find a globally optimum solution. The action space in the proposed framework is directly
oriented to jobs instead of dispatching rules. Wang et al. (2021) [27] adopted the PPO
to find an optimal scheduling policy in the JSSP of smart manufacturing and deal with
dimension disaster existing in the state and action space when the problem scale becomes
especially large in industrial production. The proposed framework has been verified with
adaptability and generalizability to schedule dynamically encountered unexpected events.
Table 1 shows the latest articles discriminated through component classification with more
precise and superior solutions via DRL-based optimization algorithms.

Table 1. An overview of classifications of up-to-date scheduling literature from the process of DRL
solving problems.

Study Problem State Objective DRL Benchmark Network Random Event

Liu et al.
(2020) [15] JSP Discrete Makespan Actor-Critic OR-Library DNN

Machine
breakdown;

sudden
additional order

Luo et al.
(2021) [19] FJSP Continuous

Tardiness;
machine

utilization
rate

Hierarchy
DQN Generation DNN Random job

insertion

Processes 2023, 11, 2018 4 of 27

Table 1. Cont.

Study Problem State Objective DRL Benchmark Network Random Event

Hu et al.
(2020) [20] FJSP Continuous Delay ratio;

makespan DQN Generation DNN None

Lei et al.
(2022) [21] FJSP Discrete Makespan Multi-PPO,

MPGN

Generation;
instances of
other papers

GNN None

Abebaw et al.
(2023) [22] JSP Continuous Makespan DDQN OR-Library DNN

Machine
breakdown; job

rework

Zhang et al.
(2022) [23] JSP Continuous

Average
machine

utilization;
order wait

time

PPO Generation DNN Machine failure

Liu et al.
(2022) [24] FJSP Continuous Makespan DDQN Generation DNN Machine

breakdown

Zhang et al.
(2020) [25] JSP Discrete Makespan PPO

Generation;
instances of
other papers

GNN

Job arriving
on-the-fly;

random machine
breakdown

Luo et al.
(2021) [26] JSP Continuous Makespan Double Loop

DQN OR-Library DNN Random job
insertion

Wang et al.
(2021) [27] JSP Discrete Makespan PPO OR-Library;

generation DNN

Machine
breakdown;

processing time
change

This paper FJSP Continuous
Makespan;
delay time

sum

Dual Layer
DDQN Generation DNN Random job

incoming

Markov decision process is the core of self-adaptability in DRL. Markov formula
is defined as a five-element tuple, i.e., MDP = (St, A t, Rt, St+1, In f o) [28], in which
St denotes the problem’s state set; At is the action that the agent takes to resolve the
problem, such as dispatching rules used to schedule in the DFJSP; Rt is the reward that the
environment feeds back to the agent for the current result of the action At, and causes to a
dynamical readjustment to the deep neural network, a decision function approximator [29];
St+1 is the obtained next state after the environment is updated; In f o is the other auxiliary
fragments used to help training. The complex problem of the job shop scheduling can
be decomposed into a representation of the MDP by extracting critical features as a state
space, designing multiple dispatching rules as an action space that are available when the
agent is situated in all possible environments, and generating a reward function that aims
to direct the neural network to choose the proper action with consequent high results under
the current environment. One of the obvious characteristics of DRL is that all elements in
the MDP tuple should be formulated in order to optimize the objectives of the specified
application [30], such as minimizing energy consumption, the makespan or job delay rate,
and maximizing product processing profit in the workshop scheduling scene.

Tabular Q-learning is the earliest form of the value-based DRL method [31]. It requires
a table to map (St, A t) with the Q value calculated by Bellman approximation [32], through
which the action with the maximum Q value will be chosen to execute the task, and the
value will be updated by the same iterative approximation. The shortcomings of the
table-based Q-learning are evident. First, the value iteration method has to store all of the
(St, A t) pairs in the memory table and perform a complete loop on each item of pairs to

Processes 2023, 11, 2018 5 of 27

find the best action and execute updating, which will be a disaster if states at a large scale
in amount, demanding too high memory usage(usually >32 G) and causing redundant
iterations over unused (St, A t) pairs that are a waste of time. Second, the primitive method
is constrained to be used under the discreet state and action space, which will not be a
proper method to handle problems with a continuous state or action space.

Research spots of the DFJSP of the past are apt to the optimization of a single objec-
tive applied with only one agent of the different network architecture, and innovations
published about the multi-objective scheduling emerged in limited fashion. Therefore,
solving the DFJSP with several optimization objectives will advance the research pace of
workshop scheduling for realistic requirements to reduce the production cost of plants and
increase product profit. Moreover, the single DQN method orients itself with one neural
network in only one agent, which merely corresponds to one optimization objective instead
of several ones since different objectives have different reward functions and behavioral
strategies [19]. State-of-art studies have recently developed an HRL (hierarchical reinforce-
ment learning) framework to make a compromise between multiple objectives through
the cooperation of bi-layer agents [33,34]. Based on HRL, a dual-layer DDQN framework
is proposed in this paper: the higher layer, called the controller, takes responsibility for
learning policy to decide on the higher goal as the input of the lower neural network; the
lower layer, called the actuator, learns a policy to select an action that best suits the current
scheduling environment and gains the most rewards. Multi-objective optimization means
better adaptability to input states and more precise decisions to acquire more rewards,
which can be unsatisfied with only a single neural network. Thus, this work demands two
neural networks, with the higher one for a dynamic tune-up of the optimization goal and
the lower one for selecting a compositive dispatching rule under the guidance of the given
goal, which finally achieves a good compromise between objectives.

1.2. Contributions

As mentioned above, with drawbacks of heuristic rules (FIFO, first in first out; EDD,
earliest due date first; and LWT, the longest waiting time first) and metaheuristic algorithms
that are unable to schedule in real time and unfit to dynamic environments changes [20],
this article applies value-based DRL, i.e., a two-layer Double Deep Q Network, to tackle the
multi-objective DFJSP with a random dynamic incident of new job incomings. Experimental
results show that the proposed DRL framework performs better than other non-DRL-based
implementations, regardless of the generalization ability to output near-optimal results or
the solution quality [35]. Contributions of this work can be listed as follows.

(1) A framework of two layers of DDQN is proposed to optimize the DFJSP of multiple
objectives, corresponding to two connected agents with respective task divisions. The
goal selector that is the higher DDQN intends to output an optimization goal with a
five-element state vector as the feature input. The output of the higher network is one
specific reward form, which is applied as one input state of the lower DDQN, along
with the goal selector’s five input states. With six states input, the actuator (the lower
DDQN) outputs a specific dispatching rule maximizing reward scores.

(2) This work specifies optimization objectives, i.e., minimization of the job’s delay time
sum and the machine’s completion time (makespan). Seven compositive dispatching
rules and six continuous states are proposed to outline the DFJSP environment. The
six states are represented as formulas, and their correlations are erased. The reward
function is realized by the goal space with six reward forms, covering the higher
DDQN’s goal output.

(3) The simulation experiments are carried out to appear the production environment
and realize the dynamic scheduling of flexible workshops based on the proposed
mathematical model in Section 2 and DRL architecture in Section 3. A large number
of datasets of different production configurations considerably generalize the trained
DLDDQN model, enabling it to fit raw test examples and achieve expected objective
optimizations.

Processes 2023, 11, 2018 6 of 27

The remaining paper composition can be summarized as follows. Section 2 details
the establishment of the mathematical modeling of the DFJSP. Section 3 illustrates the
construction and realization of the DLDDQN architecture. Section 4 interprets the gener-
ation of numerical examples and undertakes experiments to testify to the generality and
superiority of the proposed DLDDQN on two optimization objectives through comparisons
with proposed dispatching and heuristic rules, meta-heuristic algorithms, and value-based
DRL methods. Finally, in Section 5, conclusions of the research and innovative directions
for future works are demonstrated.

2. Problem Formulation

The DFJSP is a typical multi-machine scheduling problem in which the proposed
DLDDQN framework is required to decide on a selected job and a machine to execute the
following operation at each rescheduling point t. Jobs of the DFJSP have a predetermined
sequence of operations, and the solution to the DFJSP is to allocate operations of each job
to the most suited machine’s waiting queue for objective optimizations. Several premises
of the commonsense level should be considered in the process of finding a solution in a
precision optimization as the followings:

(1) Only an operation of one job can be processed at the arranged machine at a time.
(2) The machine’s operation cannot be stopped without completing the running operation,

following the atomicity principle.
(3) Jobs are processed following the operation sequence without being skipped or ran-

domly chosen.
(4) The travel time between two consecutive operations and the machine startup time are

both negligible.
(5) A job’s unprocessed operations cannot be canceled, and the job processing quality

caters to standard requirements.
(6) The buffer size is assumed infinite.

Mathematical Representation

Ji: index of a job, i ∈ {1, 2, , n}, n = the total number of all jobs;
Mk: index of a machine, k ∈ {1, 2, , m}, m = the total number of all machines;
Oi,j: the jth operation of job Ji, j ∈ {1, 2, , ni}, ni = the total number of operations

of job Ji;
Si,j,k: equal to 1 if the kth machine is available to the Oi,j, otherwise equal to 0;
Ri,j,k: equal to 1 if the kth machine is allocated to run the Oi,j, otherwise equal to 0;
ti,j,k: the kth machine’s processing time of the Oi,j, ti,j,k ∈ {−1 or N∗}, in which

ti,j,k = −1 if the kth machine is not applicable to the Oi,j;

ti,j: the expected processing time of the Oi,j, ti,j =
∑m

k=1 ti,j,k×Si,j,k

∑m
k=1 Si,j,k

;

STi,j: the start time of the Oi,j;
PTi: the expected processing time of all operations of job Ji, PTi = ∑ni

j=0 ti,j;
Ci,j: the completion time of the Oi,j;
Ci: the completion time of job Ji;
Di: the due time of job Ji;
Ai: the arrival time of job Ji;
mi,j: the available machine set {m1, m2, mm} for the Oi,j.
In our proposed framework, we aim to realize multi-objective optimization, including

minimizing the delay time sum of all jobs and maximumly shortening the completion
time of the task problem Cmax by improving the machine uptime utilization. An objective
mathematical function that the DLDDQN is trained to achieve with the random affair of
new job arrivals at uncertain times is presented below.

The delay time of job Ji (DTi) is calculated as follows:

DTi = max(Ci − Di, 0)

Processes 2023, 11, 2018 7 of 27

Yi,j,u,v =

{
1 i f the Oi,j processed precede the Ou,v
0 i f the Oi,j runs behind the Ou,v

Makespan = min max
1≤i≤n

Ci,ni (1)

DTS =
n

∑
i=1

DTi (2)

STi1 ≥ 0, Ci,j > 0 i = 1 . . . n; j = 1, 2 . . . ni (3)

mi,j

∑
k=1

Si,j,kRi,j,k = 1 i = 1 . . . n; j = 1 . . . ni; k = 1 . . . m (4)

(STu,v − STi,j − ti,j,k)Si,j,kSu,v,kYi,j,u,v + (STi,j − STu,v − tu,v,k)Si,j,kSu,v,kYi,j,u,v
≥ 0 i, u = 1 . . . n; j, v = 1 . . . ni; k = 1 . . . m

(5)

Ci,j ≤ STi,j+1, Ai ≤ STi,j i = 1 . . . n; j = 1, . . . ni (6)

To optimize targeted objectives is to minimize Formulas (1) and (2). Equation (3)
represents that the start time of the first operation of each job should be a positive integer
or zero; Equation (4) symbolizes that one of the operations of a job can have more than one
available machines to process, but only one machine can be used among them; Equation (5)
indicates that the interval between two successive operations assigned on one machine
must be equal to or greater than zero, namely a machine can only process a job at a time;
and Equation (6) points out that an operation can be schedule, only when the closest front
operation has been completed or the first operation of the job has arrived.

3. Construction of DRL Components
3.1. DRL Preliminaries

According to the definition of Markov decision processes [36], a problem satisfied with
MDPs can be broken into a five-element tuple: state, action, reward, next state, and done.
In the standard DRL training, the agent first observes the environment state and applies
a tactic such as the epsilon-greedy strategy to select an action. Then, the environment
feedbacks a reward as a result of the execution of the (state, action) pair. Finally, the
environment enters a new situation and observes the next state again. Added together,
a five-element tuple is stored in the replay memory to be prepared to be sampled by the
neural network for parameter updating. Repeat the above procedures until iterations arrive
to stop, and then a deep neural network is trained well. The target of the two agents is to
accumulate maximum reward Rt = ∑∞

k=0 γkrt+k at time t with discount factor γ ∈ (0, 1].
The tabular learning algorithm has been proved a method for an action-value function to

converge to Q∗, the optimal value function proposed by Bellman. Q∗(s, a) = maxπQπ(s, a)
returns the maximum action value if selecting an action in state s and following policy π.
The optimal policy π∗(s) = argmax

a
Q∗(s, a) can be formed if the algorithm can obtain Q∗.

The Bellman optimality equation can be formularized as Equation (7), as follows:

Q∗(s, a) = Es′ [r + γmax
a

Q∗
(
s′, a′

)
|s, a] (7)

The tabular learning does not suit the presentation of the large-volume state space
due to the high memory size required to record state transition and the number and unit
size of state discretization that involve precise issues kept known. Therefore, using a
function approximator to represent the action-value function emerged, forming the typical
DRL-based methods, including deep Q-learning, DQN, and DDQN.

Processes 2023, 11, 2018 8 of 27

Deep Q-learning [37] uses a neural network to approximate the optimal action-value
function, Q∗(s, a) ≈ Q(s, a; θ), in which the parameter θ is updated iteratively by mini-
mizing the loss between the expected Q function value and the current Q function value.
The loss value for updating the parameter θ in the neural network can be calculated by the
following Equation (8) at step t.

Lt(θt) = E(r + γmaxQ
at+1

(st+1, at+1; θt−1)−Q(s, a; θt))
2 (8)

In Equation (8), st+1 and at+1 symbolize the state and action at the next step t + 1,
respectively.

A replay buffer is introduced into the DQN training to satisfy the requirement of SGD
optimization, which asks to get independent and identically distributed training data (i.i.d).
With a certain size of experiences stored in the replay buffer, independent data generated
by the recent policy will still be fresh enough to be sampled for training. To obliterate the
correlation between two consecutive transitions, make the training stable, and avoid chasing
one’s own tail, a copy of the online network (Q(θ)), called a target network (Q̂(θ−)), is
introduced into the DQN and is used for the calculation of the maximum Q(st+1, at+1) value
in the Bellman equation. The backup network’s parameter θ− is periodically synchronized
by the online network’s parameter θ, and the period is usually defined as a pretty large
hyperparameter (e.g., 1k or 10k training episodes) [38]. The target value yt at step t with
parameter θ− is calculated on the target network by Equation (9), as follows:

yt = rt + γmaxQ̂
a′

(
st+1, a′; θt

−) (9)

The DQN, in practical use, can have a poor performance in Q value estimation, which
tends to be high beyond the real value. The problem is caused by the same value used
to select and evaluate an action in the max operation. The DDQN solves the problem by
decoupling action evaluation from selection, which utilizes the target network to evaluate
the value function with the action obtained from the max operation on the online net-
work [30]. The DDQN’s target value yt calculated by target network Q̂(θ−) is formulized
as the following, Equation (10).

yt = rt + γQ̂
(

st+1, argmax
a′

Q(st+1, a′; θt); θt
−
)

(10)

3.2. Model Architecture

Both DDQNs of the framework use four sheets of the fully connected neural network
with 200 nodes and Relu as an activation function. The size of the input sheet of the higher
DDQN is set to five, corresponding to five elements of the state feature vector. The size
is six in the input sheet of the lower DDQN, in which one additional feature is from the
higher DDQN’s outcome as a reward form, and the other five ones are from the higher
DDQN. The output size of the DLDDQN is seven, each indicating the probability of the
symbolized rule being chosen. Two DDQNs take mse as the loss function and Adam of
learning rate of 0.000001 as the optimizer.

Figure 1 depicts the DLDDQN architecture of the experimental process. Figure 2 is
the realization of the higher DDQN module of the model architecture as Figure 1, and it
elaborates on interfaces that communicate with the environment and the lower DDQN.
Likewise, Figure 3 realizes the lower DDQN module of the model architecture as Figure 1,
and it elaborates interfaces that communicate with the environment and the higher DDQN.
Network structures of both agents in Figures 2 and 3 define the input and output vector
of the DDQN and the process of gradient descent to update the parameters of the online
network with the help of the target network to fix overestimation.

Processes 2023, 11, 2018 9 of 27Processes 2023, 11, x FOR PEER REVIEW 9 of 27

Figure 1. The architecture of the DLDDQN training process on solving the muti-objective DFJSP.

(Rt, Shigh(t+1))

 Replay Memory
D1 of the Higher

DDQN

 Replay Memory
D2 of the Lower

DDQN

......

Higher DDQN

......

Lower DDQN

(Shigh(t), g(t), Rt, Shigh(t+1))

The experience stored
on the replay memory
D1

Observe the new state vector
Shigh(t) = Shigh(t+1)

Sample experiences to
update parameters Ɵ of
the online higher
network

g(t)

Form the input
feature vector for
the lower DDQN
Slow(t)= (Shigh(t), g(t))The current

rescheduling
point is the
time t+1?

NO

Obtain g(t+1) when time=
t+1, and form Slow(t+1) =
(Shigh(t+1), g(t+1))

(Slow(t), a(t), Rt, Slow(t+1))

YES

The experience stored
on the replay memory
D2

(Slow(t), a(t))

a(t)

Follow the selected
compositive
dispatching rule

Sample experiences to
update parameters Ɵ of
the online lower network

...

The next operation of Job
Ji is assigned to machine

Mk. According to the
scheduling rule, the next

operation of Job

J1 machine M3

Update

 Schedule

Job Shop Environment Global Performance Metric Table at Time t

R
ew

ard

F
u

n
ctio

n

× O12 O13 O14 O15job1

O21 O22 O23job2

On1 On2 On3 On4jobn

machine1 O11 O33

queue1

machine2 O31 O42

queue2

machine3 O41

queue3

O12

machine4 O32 O43

queue4

... ...

machinem

...
queuem

Execute

Shigh(t+1)

 the completion time of Mk

 the completion time of Ji

 the machine utilization
rate
 the predicted average
delay time per operation
 the real average delay
time per operation
 the predicted total delay

time

argmax(QnS(t))
g(t)

ε-greedy goal
selection

A randomly
generated number

RN < the
probabilityε

YES

Randomly select a goal from
goal space{g1, g2, g3, g4, g5, g6}

Observe the new
state vector Shigh(t)
from the Job Shop
Environment

NO

Temporary
buffer1

Sample higher_buffer_size experiences
from the Replay Memory D1

For each item of experiences
((Shigh(t1), g(t1), R(t1), Shigh(t1+1)))

Q'(Shigh(t1+1), g'|Ɵ')

Calculate (high_yt1 - Q'(Shigh(t1+1),
g'|Ɵ'))2, and perform gradient
descent on all parameters Ɵ of
the online higher network

Get high_yt1

Update parameters
Ɵ of the online
higher network

Higher agent: goal selector

Training Road

Prediction Road

Q'1(S(t1))

Q'2(S(t1))

Q'3(S(t1))

Q'4(S(t1))

Q'5(S(t1))

Q'6(S(t1))

Shigh(t1+1)

CTkmax(t1)

CTimax(t1)

Q1(S(t))

Q2(S(t))

Q3(S(t))

Q4(S(t))

Q5(S(t))

Q6(S(t))

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

Output
layer

CTkmax(t)

CTimax(t)

To the lower DDQN

Get g' by

...

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

Output
layer

... ...

...

...

After training of C steps , the target higher
network s parameter weights Ɵ' is updated by
weights Ɵ of the online higher network

Figure 1. The architecture of the DLDDQN training process on solving the muti-objective DFJSP.

Processes 2023, 11, x FOR PEER REVIEW 9 of 27

Figure 1. The architecture of the DLDDQN training process on solving the muti-objective DFJSP.

(Rt, Shigh(t+1))

 Replay Memory
D1 of the Higher

DDQN

 Replay Memory
D2 of the Lower

DDQN

......

Higher DDQN

......

Lower DDQN

(Shigh(t), g(t), Rt, Shigh(t+1))

The experience stored
on the replay memory
D1

Observe the new state vector
Shigh(t) = Shigh(t+1)

Sample experiences to
update parameters Ɵ of
the online higher
network

g(t)

Form the input
feature vector for
the lower DDQN
Slow(t)= (Shigh(t), g(t))The current

rescheduling
point is the
time t+1?

NO

Obtain g(t+1) when time=
t+1, and form Slow(t+1) =
(Shigh(t+1), g(t+1))

(Slow(t), a(t), Rt, Slow(t+1))

YES

The experience stored
on the replay memory
D2

(Slow(t), a(t))

a(t)

Follow the selected
compositive
dispatching rule

Sample experiences to
update parameters Ɵ of
the online lower network

...

The next operation of Job
Ji is assigned to machine

Mk. According to the
scheduling rule, the next

operation of Job

J1 machine M3

Update

 Schedule

Job Shop Environment Global Performance Metric Table at Time t

R
ew

ard

F
u

n
ctio

n

× O12 O13 O14 O15job1

O21 O22 O23job2

On1 On2 On3 On4jobn

machine1 O11 O33

queue1

machine2 O31 O42

queue2

machine3 O41

queue3

O12

machine4 O32 O43

queue4

... ...

machinem

...
queuem

Execute

Shigh(t+1)

 the completion time of Mk

 the completion time of Ji

 the machine utilization
rate
 the predicted average
delay time per operation
 the real average delay
time per operation
 the predicted total delay

time

argmax(QnS(t))
g(t)

ε-greedy goal
selection

A randomly
generated number

RN < the
probabilityε

YES

Randomly select a goal from
goal space{g1, g2, g3, g4, g5, g6}

Observe the new
state vector Shigh(t)
from the Job Shop
Environment

NO

Temporary
buffer1

Sample higher_buffer_size experiences
from the Replay Memory D1

For each item of experiences
((Shigh(t1), g(t1), R(t1), Shigh(t1+1)))

Q'(Shigh(t1+1), g'|Ɵ')

Calculate (high_yt1 - Q'(Shigh(t1+1),
g'|Ɵ'))2, and perform gradient
descent on all parameters Ɵ of
the online higher network

Get high_yt1

Update parameters
Ɵ of the online
higher network

Higher agent: goal selector

Training Road

Prediction Road

Q'1(S(t1))

Q'2(S(t1))

Q'3(S(t1))

Q'4(S(t1))

Q'5(S(t1))

Q'6(S(t1))

Shigh(t1+1)

CTkmax(t1)

CTimax(t1)

Q1(S(t))

Q2(S(t))

Q3(S(t))

Q4(S(t))

Q5(S(t))

Q6(S(t))

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

Output
layer

CTkmax(t)

CTimax(t)

To the lower DDQN

Get g' by

...

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

Output
layer

... ...

...

...

After training of C steps , the target higher
network s parameter weights Ɵ' is updated by
weights Ɵ of the online higher network

Figure 2. The network structure of the Higher DDQN.

Processes 2023, 11, 2018 10 of 27

Processes 2023, 11, x FOR PEER REVIEW 10 of 27

Figure 2. The network structure of the Higher DDQN.

Figure 3. The network structure of the Lower DDQN.

The process of the DLDDQN’s cooperation of two agents to train networks for learn-

ing the optimal policy is as follows:

(1) A five-element state vector for the input of the higher DDQN is observed from the

environment (zero vector when the training is initial) as 𝑆ℎ𝑖𝑔ℎ(𝑡).

(2) The higher DDQN applies the 𝜀-𝑔𝑟𝑒𝑒𝑑𝑦 goal selection policy to obtain the goal 𝑔(𝑡),

as shown in Figure 1.

(3) Together with 𝑆ℎ𝑖𝑔ℎ(𝑡), 𝑔(𝑡) is included as the input of the lower DDQN to form

𝑆𝑙𝑜𝑤(𝑡) = (𝑆ℎ𝑖𝑔ℎ(𝑡), 𝑔(𝑡)).

(4) The lower DDQN applies the 𝜀-𝑔𝑟𝑒𝑒𝑑𝑦 action selection policy to obtain the action

𝑎(𝑡), as shown in Figure 2.

(5) The environment executes the selected compositive dispatching rule that corre-

sponds to the action 𝑎(𝑡), as shown in “○1 Execute” in Figure 1.

(6) The environment arranges the scheduled operation to its dispatched machine’s

queue and then updates the job shop situation, as shown in “○2 Schedule” and “○3

Update” in Figure 1, respectively.

(7) The environment feedbacks (𝑅𝑡 , 𝑆ℎ𝑖𝑔ℎ(𝑡 + 1)) to the higher DDQN. Together with

(𝑆ℎ𝑖𝑔ℎ(𝑡), 𝑔(𝑡)) to form an experience item (𝑆ℎ𝑖𝑔ℎ(𝑡), 𝑔(𝑡), 𝑅𝑡 , 𝑆ℎ𝑖𝑔ℎ(𝑡 + 1)), the higher

DDQN stores the item to the Replay Memory D1. Then, repeat procedures (1)–(3)

with the input of the higher DDQN as 𝑆ℎ𝑖𝑔ℎ(𝑡 + 1) to obtain 𝑔(𝑡 + 1) and form

𝑆𝑙𝑜𝑤(𝑡 + 1) = (𝑆ℎ𝑖𝑔ℎ(𝑡 + 1), 𝑔(𝑡 + 1)).

(8) Together with (𝑆𝑙𝑜𝑤(𝑡), 𝑎(𝑡)) to form an experience item (𝑆𝑙𝑜𝑤(𝑡), 𝑎(𝑡), 𝑅𝑡 , 𝑆𝑙𝑜𝑤(𝑡 + 1)),

the lower DDQN stores the item to the Replay Memory D2.

(9) 𝑆𝑙𝑜𝑤(𝑡) ← 𝑆𝑙𝑜𝑤(𝑡 + 1), repeat procedures (4)–(9) until operations of all jobs are com-

pletely allocated.

argmax(QnS(t))
a(t)

ε-greedy action
selection

A Randomly
generated

number RN < the
probability ε

YES

Form the input
feature vector
for the lower
DDQN with
g(t) from the
higher DDQN:
Slow(t)=(Shigh(t),
g(t))

After training of C steps, the target lower
network s parameter weights Ɵ' is updated by

weights Ɵ of the online lower network

NO

Temporary
buffer2

Sample lower_buffer_size experiences
from the Replay Memory D2

For each item of experiences
((Slow(t1), a(t1), R(t1), Slow(t1+1)))

Q'(Slow(t1+1), a'|Ɵ')

Calculate (low_yt1 - Q'(Slow(t1+1),
a'|Ɵ'))2, and perform gradient
descent on all parameters Ɵ of
the online lower network

Get low_yt1

Update parameters
Ɵ of the online
lower network

Lower agent: rule decider

Training Road

Prediction Road

Slow(t1+1)

Execute a(t)

Get a' by

CTkmax(t1)

CTimax(t1)

g(t1)

Output
layer

Q'1(S(t1))

Q'3(S(t1))

Q'4(S(t1))

Q'5(S(t1))

Q'6(S(t1))

Q'7(S(t1))

Q'2(S(t1))CTimax(t1)

Randomly select an action from the
action space{a1, a2, a3, a4, a5, a6, a7}

CTkmax(t)

CTimax(t)

g(t)

Q1(S(t))

Q2(S(t))

Q3(S(t))

Q4(S(t))

Q5(S(t))

Q6(S(t))

 Q7(S(t))

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

Output
layer

... ...

...

...

Input
layer

Hidden
layer(200

nodes)

Hidden
layer(200

nodes)
...

...

...

...

...

Figure 3. The network structure of the Lower DDQN.

The process of the DLDDQN’s cooperation of two agents to train networks for learning
the optimal policy is as follows:

(1) A five-element state vector for the input of the higher DDQN is observed from the
environment (zero vector when the training is initial) as Shigh(t)

(2) The higher DDQN applies the ε-greedy goal selection policy to obtain the goal g(t), as
shown in Figure 1.

(3) Together with Shigh(t), g(t) is included as the input of the lower DDQN to form
Slow(t) = (Shigh(t), g(t)).

(4) The lower DDQN applies the ε-greedy action selection policy to obtain the action a(t),
as shown in Figure 2.

(5) The environment executes the selected compositive dispatching rule that corresponds
to the action a(t) as shown in “¬ Execute” in Figure 1.

(6) The environment arranges the scheduled operation to its dispatched machine’s queue
and then updates the job shop situation, as shown in “ Schedule” and “® Update”
in Figure 1, respectively.

(7) The environment feedbacks (Rt, Shigh(t + 1)) to the higher DDQN. Together with
(Shigh(t), g(t)) to form an experience item (Shigh(t), g(t), Rt, Shigh(t + 1)), the higher
DDQN stores the item to the Replay Memory D1. Then, repeat procedures (1)–(3)
with the input of the higher DDQN as Shigh(t + 1) to obtain g(t + 1) and form
Slow(t + 1) = (Shigh(t + 1), g(t + 1)).

(8) Together with (Slow(t), a(t)) to form an experience item (Slow(t), a(t), Rt, Slow(t+ 1)),
the lower DDQN stores the item to the Replay Memory D2.

(9) Slow(t)← Slow(t + 1) , repeat procedures (4)–(9) until operations of all jobs are com-
pletely allocated.

(10) Repeat procedures (1)–(9) until the training epochs end and the trained model con-
verges.

Processes 2023, 11, 2018 11 of 27

3.3. State Feature Extraction

The state representation should reflect the real-world production environment and
satisfy the quantitative and qualitative requirements of the DDQN training. From the
quantitative perspective, the number of states should not be excessive or too scarce because
too many may increase the probability of the strong correlation between states, while too
few cannot outline enough information about the workshop environment to complete ideal
scheduling at each rescheduling point t. Thus, the more refined states are, the better the
DLDDQN training results can be. From the qualitative perspective, the refined states should
not have a drastic value change because it raises the likelihood of training volatility [25].
Generally speaking, the design of the state presentation should observe the following
criteria:

• All states should directly or indirectly relate to optimization objectives and the reward
function. Other redundant features can be excluded.

• Refined states should be quantitatively and qualitatively advantageous to the DDQN
training and the most considerable probable reflection of the global and local schedul-
ing environment.

• State features are numerical representations of the state vector on all dimensions and
should be easy to calculate when running on a high-performance CPU or GPU. If
necessary, state features are intended to be uniformly normalized to maintain training
stability and avoid other issues.

Considering all of the above factors, the following state representations are proposed
to characterize the status of the scheduling environment.

Some intervening variables should be specified first. CTk(t) is the completion time of
the last operation assigned on machine Mk at rescheduling point t. OPi(t) is the number of
job Ji’s operations assigned with a machine for execution at time t. CTi(t) is the completion

time of the last operation assigned on job Ji at rescheduling point t. Ukm(t) =

n
∑

i=1

OPi(t)
∑

j=1
ti,j,kSi,j,k

CTk(t)
is the utilization rate of machine Mk at rescheduling point t.

(1) The maximum completion time on the last operations of all assigned machines at
rescheduling point t, as defined in Equation (11):

CTkmax(t) = Max(CTk(t)) k = 1, 2 . . . m (11)

(2) The maximum completion time on the last operations of all assigned jobs at reschedul-
ing point t, as defined in Equation (12):

CTimax(t) = Max(CTi(t)) i = 1, 2 . . . n (12)

(3) The average utilization rate of all machines in the system, Ukm(t), can be formulized
in Equation (13):

Ukm(t) =
m

∑
k=1

Ukm(t)
m

(13)

(4) The predicted average delay rate DRP(t) over unfinished jobs in the system.

At rescheduling point t, some of a job’s operations have been completed. Therefore,
timely prediction by calculating the due-date runtime over the following operations of a
job can be critical to deciding whether the global reward should be added or deducted
after the environment executes a dispatching rule (or an action). DRP(t) is the ratio of all
delayed jobs’ total expected processing time since OPi(t) that Ci,j exceeds Di to the number
of timeout operations of all delayed jobs. The procedure to calculate DRP(t) can be written
as Algorithm 1.

Processes 2023, 11, 2018 12 of 27

Algorithm 1: Procedure to calculate the predicted average delay rate DRP(t)

input: OPi(t), Di
output: DRP(t)
1:Tdelay←0
2:NOu f←0
3:for i = 1 : n do
4: if OPi(t) < ni then
5: Tirear←0
6: f irst←0
7: if Ci,OPi(t) < Di
8: f irst←1
9: end if
10: for j = OPi(t) + 1 : ni do
11: Tirear←Tirear + ti,j
12: if Ci,OPi(t) + Tirear > Di
13: NOu f←NOu f + 1
14: if f irst = 1
15: Tdelay←Tdelay + Ci,OPi(t) + Tirear − Di
16: f irst←0
17: else
18: Tdelay←Tdelay + ti,j
19: end if
20: end if
21: end for
22: end if
23: end for
24: DRP(t)←

Tdelay
NOu f

25: return DRP(t)

(5) The real average delay rate DRr(t1) over unfinished jobs in the system.

The calculation of the real delay time is based on the last operation’s time point Ci,OPi(t)
of the current job Ji. If Ci,OPi(t) is greater than Di, then Ji is considered a real delayed job, in
which a delay duration is calculated by the equation: DD = Ci,OPi(t) − Di + ∑ni

j=OPi(t)+1 ti,j.

DRr(t) is defined as the ratio of DD of all delayed jobs to the number of delayed operations
of all delayed jobs in the system. The procedure to calculate DRr(t) can be written as
Algorithm 2.

Algorithm 2: Procedure to calculate the real average delay rate DRr(t)

Input: OPi(t), Di
Output: DRr(t)
1:Tdelay←0
2:NOu f←0
4:for i = 1 : n do
5: if OPi(t) < ni then
6: if Ci,OPi(t) > Di then
7: NOu f← NOu f + 1
8: Tdelay← Tdelay + Ci,OPi(t) − Di
9: for j = OPi(t) + 1 : ni do
10: NOu f ← NOu f + 1
11: Tdelay← Tdelay + ti,j
12: end for
13: end if
14: end if
15:end for
16: DRr(t)←

Tdelay
NOu f

17: return DRr(t)

Processes 2023, 11, 2018 13 of 27

3.4. Action Space

Actions in the multi-objective DFJSP should be varied and objective-precise in order to
adapt to various complicated scheduling situations with which the environment can be fed
with the locally optimal dispatching rule to achieve global optimality. For example, in such
a scene where there exist jobs with different expired durations and machines with different
loads, the better policy decision for the agent is to select the job with the nearest expired
duration and distribute the selected job to the machine with the lightest workloads. The
action of a policy can be further detailed into two parts: a job selection for the next operation
and a machine allocation to complete the selected job’s operation. The job selection also
can be encountered in two cases: the earlier stage when no delayed jobs exist and the
later period when delayed jobs exist partially. In order to shrink the system completion
time as small as possible and reduce most of the delay time sum, the seven compositive
dispatching rules are developed, given here as Algorithms 3–9.

3.4.1. Compositive Dispatching Rule 1

In this rule, the first task is to find out the set of delayed jobs Delayjob(t) and the set of
uncompleted jobs UCjob(t) at current time t. If there is no existence of delayed jobs, a job
selection is converted to UCjob(t), and the job with the minimum slack time (Di − Ci,OPi(t))
is selected. Otherwise, a job is selected from Delayjob(t), and the job Ji with the largest delay

time is selected (argmaxi∈Delayjob(t)
(Ci,OPi(t) + ∑ni

j=OPi(t)+1 ti,j − Di)). The selected job Ji’s

next operation is allocated to the earliest available machine
Mi = argmink∈Mi,j

{CTk(t), k = 1, 2, . . . , m}. Note that the start runtime of job Ji’s next op-

eration on machine Mi is not always CTMi(t), and it should be max
{

CTMi(t), CJi ,j−1, AJi

}
.

Algorithm 3: Pseudo code of compositive dispatching rule 1

1: Delayjob(t)←
{

i|OPi(t) < ni&&Ci,OPi(t) > Di

}
2: UCjob(t)← {i|OPi(t) < ni}
3: if Count(Delayjob(t)) = 0 then
4: Ji ← argmaxi∈UCjob(t)(Di − Ci,OPi(t))

5: else
6: Ji ← argmaxi∈Delayjob(t)

(Ci,OPi(t) + ∑ni
j=OPi(t)+1 ti,j − Di)

7: end if
8: j← OPJi (t) + 1
9: Mi ← argmink∈MJi ,j

{CTk(t)}

10: ST Ji j ← max
{

CTMi(t), CJi ,j−1, AJi

}
11: arrange OJi j of job Ji on Mi to execute a task

3.4.2. Compositive Dispatching Rule 2

In the second dispatching rule, Delayjob(t) and UCjob(t) at the current rescheduling
point t should be initialized first. Supposing Delayjob(t) is empty, the strategy to select a
job is the smallest sum of the remaining processing time of all its uncomplete operations
from UCjob(t). Otherwise, the top priority should be given to Delayjob(t), and the job Ji

with the largest delay time is selected (argmaxi∈Delayjob(t)
(Ci,OPi(t) + ∑ni

j=OPi(t)+1 ti,j − Di)).

The next operation of the selected job Ji is OPJi (t) + 1. The selected job’s next operation can
be allocated to every available machine with its unique processing time, but the machine
with the smallest product of tJi ,j,k × CTk(t) is selected.

Processes 2023, 11, 2018 14 of 27

Algorithm 4: Pseudo code of compositive dispatching rule 2

1: Delayjob(t)←
{

i|OPi(t) < ni&&Ci,OPi(t) > Di

}
2: UCjob(t)← {i|OPi(t) < ni}
3: if Count(Delayjob(t)) = 0 then

4: Ji ← argmini∈UCjob(t)(∑
ni
j=OPi(t)+1 ti,j)

5: else
6: Ji ← argmaxi∈Delayjob(t)

(Ci,OPi(t) + ∑ni
j=OPi(t)+1 ti,j − Di)

7: end if
8: j← OPJi (t) + 1

9: Mi ← argmink∈MJi ,j

{
tJi ,j,k × CTk(t)

}
10: ST Ji j ← max

{
CTMi(t), CJi ,j−1, AJi

}
11: arrange OJi j of job Ji on Mi to execute a task

3.4.3. Compositive Dispatching Rule 3

In the third dispatching rule, if Delayjob(t) is empty, select the job with the shortest
predicted average processing time of the imminent operation, calculated based on available
machines of the operation. Otherwise, the job with the longest overdue time should be
prioritized from Delayjob(t). The selected job’s next operation is allocated to the machine
with the lowest workload.

Algorithm 5: Pseudo code of compositive dispatching rule 3

1: Delayjob(t)←
{

i|OPi(t) < ni&&Ci,OPi(t) > Di

}
2: UCjob(t)← {i|OPi(t) < ni}
3: if Count(Delayjob(t)) = 0 then

4: Ji ← argmini∈UCjob(t)(
∑m

k=1 ti,OPi (t)+1,k×Si,j,k

∑m
k=1 Si,j,k

)

5: else
6: Ji ← argmaxi∈Delayjob(t)

(Ci,OPi(t) + ∑ni
j=OPi(t)+1 ti,j − Di)

7: end if
8: j← OPJi (t) + 1

9: Mi = argmink∈MJi ,j−1

{
∑n

i=1 ∑
OPi(t)
j=1 ti,j,kSi,j,k

}
10: ST Ji j ←max

{
CTMi(t), CJi ,j−1, AJi

}
11: arrange OJi j of job Ji on Mi to execute a task

3.4.4. Compositive Dispatching Rule 4

In the fourth dispatching rule, after all front OPi(t) operations are completed, among jobs
that are predicted to delay, calculate their predicted delay sum (Ci,OPi(t) + ∑ni

j=OPi(t)+1 ti,j −Di)
and the job with the largest value is selected, and jobs that do not delay by prediction
are ignored. If no jobs are predicted to delay, the job with the smallest predicted due
distance (Di − Ci,OPi(t) −∑ni

j=OPi(t)+1 ti,j) is selected. The next operation of the selected job
Ji, j = (OPJi (t) + 1) is allocated to the machine with the smallest product of tJi ,j,k × CTk(t).

Algorithm 6: Pseudo code of compositive dispatching rule 4

1: UCjob(t)← {i|OPi(t) < ni}
2: Ji ← argmaxi∈UCjob(t)(Ci,OPi(t) + ∑ni

j=OPi(t)+1 ti,j − Di)

3: j← OPJi (t) + 1

4: Mi ← argmink∈MJi ,j

{
tJi ,j,k × CTk(t)

}
5: ST Ji j ←max

{
CTMi(t), CJi ,j−1, AJi

}
6: arrange OJi j of job Ji on to execute a task

Processes 2023, 11, 2018 15 of 27

3.4.5. Compositive Dispatching Rule 5

In the fifth dispatching rule, the operation completion rate of job Ji should be consid-
ered. If no delayed jobs exist, the job with a low operation completion rate and short slack
time should be selected. Otherwise, the job with a low operation completion rate and large
delay time from Delayjob(t) should be selected. The operation j = (OPJi (t) + 1) of selected
job Ji is allocated to the machine with the smallest product of tJi ,j,k × CTk(t).

Algorithm 7: Pseudo code of compositive dispatching rule 5

1: Delayjob(t)←
{

i|OPi(t) < ni&&Ci,OPi(t) > Di

}
2: UCjob(t)← {i|OPi(t) < ni}
3: if Count(Delayjob(t)) = 0 then

4: Ji ← argmini∈UCjob(t)((Di − Ci,OPi(t))×
OPi(t)

ni
)

5: else
6: Ji ← argmaxi∈Delayjob(t)

((Ci,OPi(t) + ∑ni
j=OPi(t)+1 ti,j − Di)× ni

OPi(t)
)

7: end if
8: j← OPJi (t) + 1

9: Mi ← argmink∈MJi ,j

{
tJi ,j,k × CTk(t)

}
10: ST Ji j ←max

{
CTMi(t), CJi ,j−1, AJi

}
11: arrange OJi j of job Ji on Mi to execute a task

3.4.6. Compositive Dispatching Rule 6

The sixth dispatching rule considers the critical ratio of the slack time to the remaining
processing time. If no delayed jobs exist, a smaller cr is expected. Otherwise, the delayed
job Ji with a larger delay time and a shorter processing time of remaining operations is
selected. The next operation of the selected job Ji, j =

(
OPJi (t) + 1

)
, is allocated to the

machine with the smallest processing time argmin k∈MJi ,OPJi
(t)+1

{
tJi ,OPJi

(t)+1,k

}
.

Algorithm 8: Pseudo code of compositive dispatching rule 6

1: UCjob(t)← {i|OPi(t) < ni}

2: Ji ← argmini∈UCjob(t)(
(Di−Ci,OPi (t)

)

∑
ni
j=OPi (t)+1 ti,j

)

3: j← OPJi (t) + 1

4: Mi ← argmin k∈MJi ,j

{
tJi ,j,k

}
5: ST Ji j ←max

{
CTMi(t), CJi ,j−1, AJi

}
6: arrange OJi j of job Ji on Mi to execute a task

3.4.7. Compositive Dispatching Rule 7

In the last dispatching rule, if Delayjob(t) is empty, select the job with the earliest
due date. Otherwise, select the job with the largest expected delay time from Delayjob(t).
The next operation of the selected job Ji is allocated to the machine earliest to finish the
operation (OPJi (t) + 1).

Processes 2023, 11, 2018 16 of 27

Algorithm 9: Pseudo code of compositive dispatching rule 7

1: Delayjob(t)←
{

i|OPi(t) < ni&&Ci,OPi(t) > Di

}
2: UCjob(t)← {i|OPi(t) < ni}
3: if Count(Delayjob(t)) = 0 then
4: Ji ← argmini∈UCjob(t)(Di)

5: else
6: Ji ← argmaxi∈Delayjob(t)

(Ci,OPi(t) + ∑ni
j=OPi(t)+1 ti,j − Di)

7: end if
8: j← OPJi (t) + 1

9: Mi ← argmink∈MJi ,j

{
max

{
CTk(t), CJi ,j−1, AJi

}
+ tJi ,j,k

}
10: ST Ji j ←max

{
CTMi(t), CJi ,j−1, AJi

}
11: arrange OJi j of Ji on Mi to execute a task

3.5. Goal Formations and Reward Functions

Six different higher goals are developed to serve as directions for the DDQN to
optimize two objectives. Among the six higher goals, five of which sources are the state
presentations, while the last one is a brand-new notation PTDT(t) (predicted total delay
time) as defined in Algorithm 10. It is known that the more detailed and specific goals
are to describe the two optimization objectives, the more possible to direct the DDQN to
orientate objectives for optimization from various aspects.

Due to the impossibility of two-objective parallel optimization at a particular training
iteration, a higher DDQN is needed to decide on a preferred higher goal that corresponds to
one optimization objective (makespan or total delay time), and a lower DDQN is required
to decide on the preferred dispatching rule that suits the current scheduling situation with
the selected goal and other five states as input. Through the cooperation between the
two DDQNs, different goals adaptive to the current environment can take turns to direct
the two DDQNs to train with more rewards. To accumulate maximum rewards from the
current state St to the next state St+1, ways to evaluate whether the current chosen action
is effective with the guidance of the goal selected from the higher DDQN are shown in
Table 2.

Algorithm 10: Procedure to calculate the predicted total delay time PTDT(t)

input: OPi(t), Di, Ci,OPi(t)
output: PTDT(t)
1:PTDT(t)← 0
2:for i = 1 : n do
3: if OPi(t) < ni then

4: if Ci,OPi(t) + ∑ni
j=OPi(t)+1

∑m
k=1 Si,j,kti,j,k

m − Di > 0 then

5: PTDT(t)← PTDT(t) + Ci,OPi(t) + ∑ni
j=OPi(t)+1

∑m
k=1 Si,j,kti,j,k

m − Di

6: end if
7: end if
8:end for
9:return PTDT(t)

Table 2. Six ways to increase cumulative reward guided by a goal under its one special objective.

Number Goal Objective Property Way of Cumulative Reward

1 CTkmax(t) makespan CTkmax(t + 1) ≤ 1.1× CTkmax(t)
2 CTimax(t) makespan CTimax(t + 1) ≤ 1.1× CTimax(t)
3 Ukm(t) makespan Ukm(t + 1) > Ukm(t)
4 DRP(t) total delay time DRP(t + 1) < DRP(t)
5 DRr(t) total delay time DRr(t + 1) < DRr(t)
6 PTDT(t) total delay time PTDT(t + 1) < PTDT(t)

Processes 2023, 11, 2018 17 of 27

Six higher goals {1, 2, 3, 4, 5, 6} towards the two optimization objectives are set as the
goal space to calculate the reward, as presented in Table 2. An increment or decrement
of the current reward at rescheduling point t is through a comparison of values of the
selected goal at scheduling time t and scheduling time t + 1 after the environment follows
the chosen action that has the maximum Q value in the lower DDQN and executes the
dispatching rule. The reward implementation of Table 2 is shown in Algorithm 11.

Algorithm 11: Procedure to calculate the reward with the specified goal of higher DDQN in the
DLDDQN architecture

Input: The chosen goal’s value at rescheduling point t and t + 1, the total reward sum TRS(t)
Output: The total rewards after the action is executed at the current rescheduling point t
1:if goalt = 1 then
2: if CTkmax(t + 1) ≤ 1.1× CTkmax(t) then
3: TRS(t)← TRS(t) + 1
4: else if 1.1× CTkmax(t) < CTkmax(t + 1) ≤ 1.5× CTkmax(t) then
5: TRS(t)← TRS(t) + 0
6: else
7: TRS(t)← TRS(t)− 1
8: end if
9: else if goalt = 2 then
10: if CTimax(t + 1) ≤ CTimax(t) then
11: TRS(t)← TRS(t) + 1
12: else if 1.1× CTimax(t) < CTimax(t + 1) ≤ 1.5× CTimax(t) then
13: TRS(t)← TRS(t) + 0
14: else
15: TRS(t)← TRS(t)− 1
16: end if
17:else if goalt = 3 then
18: if Ukm(t + 1) > Ukm(t) then
19: TRS(t)← TRS(t) + 1
20: else if Ukm(t + 1) < Ukm(t) then
21: TRS(t)← TRS(t)− 1
22:else if goalt = 4 then
24: if DRP(t + 1) > DRP(t) then
25: TRS(t)← TRS(t)− 1
26: else if DRP(t + 1) < DRP(t)then
27: TRS(t)← TRS(t) + 1
28: end if
29:else if goalt = 5 then
30: if DRr(t + 1) > DRr(t) then
31: TRS(t)← TRS(t)− 1
32: else if DRr(t + 1) < DRr(t) then
33: TRS(t)← TRS(t) + 1
34: end if
35:else if goalt = 6 then
36: if PTDT(t + 1) > PTDT(t) then
37: TRS(t)← TRS(t)− 1
38: else if PTDT(t + 1) < PTDT(t) then
39: TRS(t)← TRS(t) + 1
40: end if
41:end if
42:return TRS(t)

4. Numerical Experiments

In this section, the first introduces the generation of random benchmark examples,
which specifies the time consumption on each available machine for operations of each
job. The second is the parameter tuning of the DLDDQN to perform the best result of

Processes 2023, 11, 2018 18 of 27

two optimization objectives. The third is a case study on one of the training iterations,
and the fourth is a trained model selection and the validation of the proposed framework.
The fifth is an experimental result comparison between the DLDDQN and proposed
compositive rules, and the last is a generality analysis of the DLDDQN with an experimental
result comparison among DLDDQN, other two DRL-based methods, heuristic rules, and a
metaheuristic algorithm (genetic algorithm).

4.1. Instance Generations

It is assumed that the number of initial jobs is already known beforehand and equal to
a particular value. The following jobs come to the job shop obeying a Poisson distribution:
an arriving interval between two jobs accords with the exponential distribution −λe−1/λ,
in which the parameter λ (> 0) corresponds to the average rate E_ave. The arrival time of
initial jobs is set to 0. The number of operations of each job, ni, is determined by a random
value of [1–20]. The value of integer k is generated within [1–(m− 2)], where m is the total
number of all machines. The available machine set mi,j for an operation of each job Oi,j is
built with k + 2 randomly chosen machine indexes, in each of which the program generates
the processing time ti,j,k. The due time of each job Di equals the sum of the arrival time Ai,
the product of the expected average processing time PTi, and a factor DDT.

The higher buffer size for storing experiences of the higher DDQN differs from the
lower buffer due to the update problem of the two networks [39]. Consistency between the
two-layer networks should be maintained, which requests to avoid a circumstance where
different transitions of the lower network have the same goal generated from the higher
network. Therefore, it is a must to control the higher layer to adapt to the changing of the
lower layer. The efficient way is to set the higher layer’s buffer size to the same amount as
the training sample size to discard timeout experiences.

The proposed framework’s training, testing, and validating are implemented in the
remote Linux ubuntu18.04 server platform with a configuration of 12 vCPU Intel(R) Xeon(R)
Platinum 8255C CPU @ 2.50 GHz, RTX 3080 (10 GB), RAM 40 GB, and tensorflow1.15.
Benchmark instances are generated according to the parameter setting of Table 3, in which
randxxx symbolizes that the instance generation randomly picks one of the values within
the given range. The DRL framework aims to learn an optimal policy that accumulates the
maximum long-term rewards during training epochs. Intelligent agents should have the
ability of generalization to adapt to the raw input and output near-optimal optimization
objectives [40]. The generalization is achieved through a new instance put into the model
training since an epoch restarts.

Table 3. The value range of parameters for the generation of different instances.

Number Parameter Value

1 Total number of machines (m) randint [10–30]
2 Arrival interval of new coming jobs λ (E_ave) randint [50–200]
3 Number of operations for each job (ni) randint [1–20]
4 Variable for available machines of each operation (k) randint [1–(m− 2)]
5 Processing time of Oi,j in machine k (ti,j,k) randint [1–50]
6 Due date tightness (DDT) randfloat [0.5–2]
7 Number of initial jobs (n_ij) randint [10–20]
8 Number of new arrival jobs (n_naj) randint [10–200]

4.2. Sensitivity of Hyperparameters That Influence Performance of the Proposed
Framework DLDDQN

The training performance of Deep Q-network can be affected by different value combi-
nations of hyperparameters. A possible way to configure the DLDDQN to maximize metric
performances is to search the value space of all hyperparameters for the best one or some.
Nevertheless, the method is infeasible because the search space of one hyperparameter is
vast, let alone a large number of hyperparameters, which causes intense computational

Processes 2023, 11, 2018 19 of 27

cost and training time for comparisons. By random search, enough limited trials, and
verifications [39], we found the approximately optimal value of hyperparameters for the
proposed framework. Production examples instantiated as Table 4 are used to test the
performance sensitivity of optimization objectives under different hyperparameter settings.

Table 4. Parameter specification of instance generations.

Number Parameter Value

1 Total number of machines (m) 10
2 Number of initial jobs (n_ij) 5
3 Number of new arrival jobs (n_naj) 10
4 Arrival interval of new jobs λ (E_ave) 50
5 Due date tightness (DDT) 0.5
6 Number of operations for each job (ni) randint (1–5)
7 Variable for available machines of each operation (k) randint (1–8)
8 Processing time in selected (k + 2) available machines randint (1–50)
9 Arrival time of new coming jobs (Ai) exponential (50)

10 Due date of jobs (Di) Ai +
ni

∑
j=1

ti,j × 0.5

Unlike JSP benchmark examples in which operations are specified on a fixed machine,
the generated ones with parameters initialized by Table 4 enable an operation of job Ji to be
processed by all available machines in the production shop.

Using numerical examples of benchmark tests from Table 4, we can find hyperparam-
eters’ superior combinatorial value for the proposed DLDDQN model by observing and
analyzing obtained convergent training curves.

From Figure 4, we can find that the bigger the batch size of the model, the faster the
training converges. Meanwhile, it should be noted that a much larger batch size means
a slower training speed due to larger sampled experiences to be learned by the model
and more time spent on each step. Therefore, considering the training time and the faster
convergence speed, the advisable batch size setting is 64 units.

Processes 2023, 11, x FOR PEER REVIEW 20 of 27

Figure 4. Convergence comparison of different batch sizes.

With analogous comparative experiments, the convergent speed, stability, and the

possibly achieved lowest convergent value of objectives are analyzed through experi-

mental result comparisons on different value settings of hyperparameters. One of the most

likely best hyperparameter combinations is found, which is used in all of the following

comparative experiments to train the desired model: (1) discount factor 𝛾 = 0.9; (2) fre-

quency of updating the target network on two DDQNs = 20 steps; (3) initial probability of

exploration in the action selection policy 𝜀-greedy = 0.95; (4) decrement each episode on

the probability of exploration in action selection policy 𝜀-greedy = 0.00001; (5) buffer size

of higher DDQN and lower DDQN is 64 and 1000, respectively; (6) batch size to sample

experiences = 64; and (7) training episodes = 7000.

4.3. Analysis of A Case Study

Our multi-objective optimization research is to achieve a compromise between the

job’s delay time and the machine’s makespan and to minimize the two objectives simul-

taneously with two DDQNs as function approximators. The training process contains

thousands of steps to converge on a near-optimal solution. Thus, to clarify the training

process of the proposed scheduling agents, an illustration of the episode’s training at an

intermediate stage of the entire training loop is exemplified in the benchmark numerical

examples of Table 4.

 It can be found from Table 4 that numerical examples need 10 machines to complete

15 jobs, each of which has a different number of operations, aggregated at least 15 opera-

tions. According to the settings of the 9th and 10th items in Table 4, the arrival time and

due date time in one of generated numerical examples can be seen in Tables 5 and 6.

Table 5. The arrival time of initial jobs and new coming jobs.

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrival time 0 0 0 0 0 22 11 5 58 32 1 38 31 98 178

Table 6. The due time of initial jobs and new coming jobs.

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

due time 56 68 33 57 65 60 51 44 126 53 12 83 71 103 247

A complete rule dispatching starts at rescheduling point 𝑡, when a five-element state

feature vector 𝑆ℎ𝑖𝑔ℎ(𝑡) = (𝐶𝑇𝑘𝑚𝑎𝑥(𝑡), 𝐶𝑇𝑖𝑚𝑎𝑥(𝑡), 𝑈𝑘𝑚
̅̅ ̅̅ ̅(𝑡), 𝐷𝑅𝑃

̅̅ ̅̅ ̅̅ (𝑡), 𝐷𝑅𝑟
̅̅ ̅̅ ̅̅ (𝑡)) is updated from

the execution of the last dispatched rule. Observing the current production environment

Figure 4. Convergence comparison of different batch sizes.

With analogous comparative experiments, the convergent speed, stability, and the
possibly achieved lowest convergent value of objectives are analyzed through experimental
result comparisons on different value settings of hyperparameters. One of the most likely
best hyperparameter combinations is found, which is used in all of the following compara-
tive experiments to train the desired model: (1) discount factor γ = 0.9; (2) frequency of
updating the target network on two DDQNs = 20 steps; (3) initial probability of exploration

Processes 2023, 11, 2018 20 of 27

in the action selection policy ε-greedy = 0.95; (4) decrement each episode on the probability
of exploration in action selection policy ε-greedy = 0.00001; (5) buffer size of higher DDQN
and lower DDQN is 64 and 1000, respectively; (6) batch size to sample experiences = 64;
and (7) training episodes = 7000.

4.3. Analysis of a Case Study

Our multi-objective optimization research is to achieve a compromise between the job’s
delay time and the machine’s makespan and to minimize the two objectives simultaneously
with two DDQNs as function approximators. The training process contains thousands of
steps to converge on a near-optimal solution. Thus, to clarify the training process of the
proposed scheduling agents, an illustration of the episode’s training at an intermediate
stage of the entire training loop is exemplified in the benchmark numerical examples of
Table 4.

It can be found from Table 4 that numerical examples need 10 machines to complete
15 jobs, each of which has a different number of operations, aggregated at least 15 operations.
According to the settings of the 9th and 10th items in Table 4, the arrival time and due date
time in one of generated numerical examples can be seen in Tables 5 and 6.

Table 5. The arrival time of initial jobs and new coming jobs.

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrival time 0 0 0 0 0 22 11 5 58 32 1 38 31 98 178

Table 6. The due time of initial jobs and new coming jobs.

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

due time 56 68 33 57 65 60 51 44 126 53 12 83 71 103 247

A complete rule dispatching starts at rescheduling point t, when a five-element state
feature vector Shigh(t) = (CTkmax(t), CTimax(t), Ukm(t), DRP(t), DRr(t)) is updated from
the execution of the last dispatched rule. Observing the current production environment
after several operations of each job have been assigned on machines, it can be found that
Shigh(t) = [4.604725, 3.9096076, 5.646244, 5.6403065, 4.417972, 5.2875075]. According to
the goal selection strategy, the parameter high_ε_greedy will gradually decrease to 0.1
with the increment of assigned operations. If a randomly generated number is smaller
than the current high_ε_greedy, a random goal will be generated to satisfy the exploration
requirement of the higher DDQN at the early stage of training; otherwise, it can turn to
the trained higher DDQN for Q value prediction of goals and the goal with the maximum
Q value will be selected. In the case where the randomly generated value is greater
than the compared parameter high_ε_greedy at the later training stage, the Q value vector
obtained from the higher online network can be presented as [4.604725, 3.9096076, 5.646244,
5.6403065, 4.417972, 5.2875075] and goal 2 with the maximum Q value of 5.646244 is
selected. After the specific reward form and the corresponding optimization objective are
confirmed, the lower DDQN’s input state vector Slow(t) = (CTkmax(t), CTimax(t), Ukm(t),
DRP(t), DRr(t), goal) can be assigned the value vector [4.604725, 3.9096076, 5.646244,
5.6403065, 4.417972, 5.2875075, 2]. According to the action selection policy, a bigger value of
low_ε_greedy at the early training stage will cause the selection of a random action (0–6) for
exploration in the lower DDQN. In the later training stage, the action is determined by the
lower online network from the predicted Q value vector [4.9402447, 5.679509, 4.9360456,
7.033271, 5.8471146, 7.110085, 5.3056755] and the policy 5 with the maximum Q value of
7.110085 is selected. Following the selected rule 6, the uncomplete job with the smallest
ratio of slack time to the expected time sum of successive operations is selected, and job 12
is the eligible one; the selected machine is the one on which the imminent operation of the

Processes 2023, 11, 2018 21 of 27

selected job has the shortest processing time, and machine 6 is the wanted one. Therefore,
the subsequent operation of job 12 is arranged for machine 6.

After 7000 training iterations of the all-operation allocation, the convergent curve of
total rewards can be depicted in Figure 5.

Processes 2023, 11, x FOR PEER REVIEW 21 of 27

after several operations of each job have been assigned on machines, it can be found that

𝑆ℎ𝑖𝑔ℎ(𝑡) = [4.604725, 3.9096076, 5.646244, 5.6403065, 4.417972, 5.2875075]. According to the

goal selection strategy, the parameter ℎ𝑖𝑔ℎ_𝜀_𝑔𝑟𝑒𝑒𝑑𝑦 will gradually decrease to 0.1 with

the increment of assigned operations. If a randomly generated number is smaller than the

current ℎ𝑖𝑔ℎ_𝜀_𝑔𝑟𝑒𝑒𝑑𝑦, a random goal will be generated to satisfy the exploration require-

ment of the higher DDQN at the early stage of training; otherwise, it can turn to the trained

higher DDQN for Q value prediction of goals and the goal with the maximum Q value

will be selected. In the case where the randomly generated value is greater than the com-

pared parameter ℎ𝑖𝑔ℎ_𝜀_𝑔𝑟𝑒𝑒𝑑𝑦 at the later training stage, the Q value vector obtained

from the higher online network can be presented as [4.604725, 3.9096076, 5.646244,

5.6403065, 4.417972, 5.2875075] and 𝑔𝑜𝑎𝑙 2 with the maximum Q value of 5.646244 is se-

lected. After the specific reward form and the corresponding optimization objective are

confirmed, the lower DDQN’s input state vector 𝑆𝑙𝑜𝑤(𝑡) = (𝐶𝑇𝑘𝑚𝑎𝑥(𝑡), 𝐶𝑇𝑖𝑚𝑎𝑥(𝑡), 𝑈𝑘𝑚
̅̅ ̅̅ ̅(𝑡),

𝐷𝑅𝑃
̅̅ ̅̅ ̅̅ (𝑡), 𝐷𝑅𝑟

̅̅ ̅̅ ̅̅ (𝑡), 𝑔𝑜𝑎𝑙) can be assigned the value vector [4.604725, 3.9096076, 5.646244,

5.6403065, 4.417972, 5.2875075, 2]. According to the action selection policy, a bigger value

of low_𝜀_greedy at the early training stage will cause the selection of a random action (0–

6) for exploration in the lower DDQN. In the later training stage, the action is determined

by the lower online network from the predicted Q value vector [4.9402447, 5.679509,

4.9360456, 7.033271, 5.8471146, 7.110085, 5.3056755] and the policy 5 with the maximum

Q value of 7.110085 is selected. Following the selected rule 6, the uncomplete job with the

smallest ratio of slack time to the expected time sum of successive operations is selected,

and job 12 is the eligible one; the selected machine is the one on which the imminent op-

eration of the selected job has the shortest processing time, and machine 6 is the wanted

one. Therefore, the subsequent operation of job 12 is arranged for machine 6.

After 7000 training iterations of the all-operation allocation, the convergent curve of

total rewards can be depicted in Figure 5.

Figure 5. Convergent training curve of total rewards.

4.4. Model Selection and Validation of the Proposed DLDDQN

The DLDDQN is trained under problem instances in Table 4. Training curves of two

objectives in Figure 6 illustrate that the training process changes to become steady and flat

within a small-variation range since 3100 steps and has no clues for decreasing to a smaller

objective value. In the later stage of training, objective curves do not converge to an exact

value for the sake of the action selection strategy and the neural network mechanism: there

still exists a low probability of exploration for learning even approaching the training end;

the framework of two neural networks is an approximator of the reward function with

stochasticity, which means that being in different environments with a distinct state fea-

ture vector, the agents can only output the objective value nearby an optimal solution.

Figure 5. Convergent training curve of total rewards.

4.4. Model Selection and Validation of the Proposed DLDDQN

The DLDDQN is trained under problem instances in Table 4. Training curves of two
objectives in Figure 6 illustrate that the training process changes to become steady and flat
within a small-variation range since 3100 steps and has no clues for decreasing to a smaller
objective value. In the later stage of training, objective curves do not converge to an exact
value for the sake of the action selection strategy and the neural network mechanism: there
still exists a low probability of exploration for learning even approaching the training end;
the framework of two neural networks is an approximator of the reward function with
stochasticity, which means that being in different environments with a distinct state feature
vector, the agents can only output the objective value nearby an optimal solution.

Processes 2023, 11, x FOR PEER REVIEW 22 of 27

(a) (b)

Figure 6. Training curve of the two optimization objectives: models from 3680 to 3733 are selected

for validation: (a) makespan; (b) delay time sum.

After each training step, the trained higher and lower online network are saved for

validation. The distribution scope and the lowest objective level in box plots should be as

small as possible in order to obtain a perfect convergent model with good generalization.

Therefore, 54 models from the 3680th to the 3733rd episode (the part between two black

dot lines in Figure 6a,b) are selected for validation on generated 30 problem instances from

the initialization of Table 4. It can be seen from Figure 7a,b that the model on episode 3693

has a shorter length in the box of a rectangle shape and smaller average objective values,

which indicates that the model can learn effective rules to adapt to a new job shop envi-

ronment at any time step t and obtain relatively more stable and smaller objective values

with validation of 30 instances on it. After that, the model trained in episode 3693 is se-

lected as the final standard DLDDQN model for the experimental tests of Section 4.5.

(a) (b)

Figure 7. Performance of 54 selected models on two objectives tested from generated 30 problem

instances. (a) makespan (b) delay time sum.

4.5. Comparison with Proposed Compositive Dispatching Rules

In order to verify that the proposed framework has better improvements on objec-

tives of makespan and delay time, seven proposed compositive dispatching rules and a

random rule, i.e., arbitrary selection of a designed compositive dispatching rule at each

rescheduling point, are compared with the trained DLDDQN model on tested objective

results. A total of 30 test instances are generated from production configuration set as 𝑚

Figure 6. Training curve of the two optimization objectives: models from 3680 to 3733 are selected for
validation: (a) makespan; (b) delay time sum.

After each training step, the trained higher and lower online network are saved for
validation. The distribution scope and the lowest objective level in box plots should be as
small as possible in order to obtain a perfect convergent model with good generalization.
Therefore, 54 models from the 3680th to the 3733rd episode (the part between two black
dot lines in Figure 6a,b) are selected for validation on generated 30 problem instances from
the initialization of Table 4. It can be seen from Figure 7a,b that the model on episode

Processes 2023, 11, 2018 22 of 27

3693 has a shorter length in the box of a rectangle shape and smaller average objective
values, which indicates that the model can learn effective rules to adapt to a new job shop
environment at any time step t and obtain relatively more stable and smaller objective
values with validation of 30 instances on it. After that, the model trained in episode 3693 is
selected as the final standard DLDDQN model for the experimental tests of Section 4.5.

Processes 2023, 11, x FOR PEER REVIEW 22 of 27

(a) (b)

Figure 6. Training curve of the two optimization objectives: models from 3680 to 3733 are selected

for validation: (a) makespan; (b) delay time sum.

After each training step, the trained higher and lower online network are saved for

validation. The distribution scope and the lowest objective level in box plots should be as

small as possible in order to obtain a perfect convergent model with good generalization.

Therefore, 54 models from the 3680th to the 3733rd episode (the part between two black

dot lines in Figure 6a,b) are selected for validation on generated 30 problem instances from

the initialization of Table 4. It can be seen from Figure 7a,b that the model on episode 3693

has a shorter length in the box of a rectangle shape and smaller average objective values,

which indicates that the model can learn effective rules to adapt to a new job shop envi-

ronment at any time step t and obtain relatively more stable and smaller objective values

with validation of 30 instances on it. After that, the model trained in episode 3693 is se-

lected as the final standard DLDDQN model for the experimental tests of Section 4.5.

(a) (b)

Figure 7. Performance of 54 selected models on two objectives tested from generated 30 problem

instances. (a) makespan (b) delay time sum.

4.5. Comparison with Proposed Compositive Dispatching Rules

In order to verify that the proposed framework has better improvements on objec-

tives of makespan and delay time, seven proposed compositive dispatching rules and a

random rule, i.e., arbitrary selection of a designed compositive dispatching rule at each

rescheduling point, are compared with the trained DLDDQN model on tested objective

results. A total of 30 test instances are generated from production configuration set as 𝑚

Figure 7. Performance of 54 selected models on two objectives tested from generated 30 problem
instances. (a) makespan (b) delay time sum.

4.5. Comparison with Proposed Compositive Dispatching Rules

In order to verify that the proposed framework has better improvements on objec-
tives of makespan and delay time, seven proposed compositive dispatching rules and a
random rule, i.e., arbitrary selection of a designed compositive dispatching rule at each
rescheduling point, are compared with the trained DLDDQN model on tested objective re-
sults. A total of 30 test instances are generated from production configuration set as m = 10,
n_naj = 10, E_ave = 50, DDT = 0.5. The random rule is run on benchmark instances 20 times,
and the mean value is obtained to compare results from other rules run only once. The
superior proportion is introduced as y−x

y , where y has the inferior performance with a
larger objective value, while x is the opposite [41]. Figure 8a,b show the superior proportion
(each compositive rule to the trained DLDDQN model) on objectives in box plots.

Processes 2023, 11, x FOR PEER REVIEW 23 of 27

= 10, 𝑛_𝑛𝑎𝑗 = 10, 𝐸_𝑎𝑣𝑒 = 50, 𝐷𝐷𝑇 = 0.5. The random rule is run on benchmark instances 20

times, and the mean value is obtained to compare results from other rules run only once.

The superior proportion is introduced as
𝑦−𝑥

𝑦
 , where 𝑦 has the inferior performance with

a larger objective value, while 𝑥 is the opposite [41]. Figure 8a,b show the superior pro-

portion (each compositive rule to the trained DLDDQN model) on objectives in box plots.

(a) (b)

Figure 8. The superior proportion of the DLDDQN’s performance to other proposed compositive

dispatching rules on two objectives tested on generated 30 problem instances: (a) makespan; (b)

delay time sum.

In Figure 8a, the compositive dispatching rule 2 and 4–7 have the lowest superior

proportion boundary near to 0, which illustrates that these compositive rules are well de-

signed to optimize makespan, enabling the objective value to shrink to the virtually iden-

tical low as the proposed DLDDQN in some instances. In contrast, rules 1 and 3 and the

random rule have a relatively higher superior proportion boundary, which reveals that

these applied to the DLDDQN’s action space can gain a better result. In Figure 8b, com-

positive dispatching rules and the random rule all have the highest superior proportion

boundary, which tells that proposed compositive rules applied to the action space earn a

better result. The comparison with compositive dispatching rules shows that the trained

DLDDQN model outperforms any handmade dispatching rules orientated to objective

optimization and proves the effectiveness and superiority of the proposed framework to

optimize objectives.

4.6. Comparison with Other Methods

To expand the generalization of the proposed framework, datasets whose instances

are generated with various sizes of hyperparameters (𝑚, 𝑛_𝑛𝑎𝑗, 𝐸_𝑎𝑣𝑒, 𝐷𝐷𝑇) in order to

adapt to the complex production environment are provided. A new instance is given to

create a novel training environment and train neural networks at each training step. Com-

parative methods include heuristic rules (FIFO, MRT), a metaheuristic rule (GA), and

DRL-based methods (DQN, DDQN). Throughout the whole process of the generalization

experiment, 𝑛_𝑛𝑎𝑗 is set at a constant 100. For DRL-based comparative methods, since

there is a lack of a decision neural network on reward forms, six reward form calculate

their own obtained reward 𝑟𝑖, and the final reward is the sum of the product of the average

weighted factor and the reward 𝑟𝑖. In running DRL-based methods, 20 times are repeated,

and the objective test result is the mean value of the 20 runs. Without decision random-

ness, heuristic rules are just run one time. The DQN and the DDQN use the same action

space (seven compositive dispatching rules) as the DLDDQN for comparative fairness.

In comparative method GA [42], firstly, jobs, machines, and other scheduling infor-

mation of the DFJSP are encoded into a chromosome structure, followed by a

Figure 8. The superior proportion of the DLDDQN’s performance to other proposed composi-
tive dispatching rules on two objectives tested on generated 30 problem instances: (a) makespan;
(b) delay time sum.

Processes 2023, 11, 2018 23 of 27

In Figure 8a, the compositive dispatching rule 2 and 4–7 have the lowest superior
proportion boundary near to 0, which illustrates that these compositive rules are well
designed to optimize makespan, enabling the objective value to shrink to the virtually
identical low as the proposed DLDDQN in some instances. In contrast, rules 1 and 3 and
the random rule have a relatively higher superior proportion boundary, which reveals
that these applied to the DLDDQN’s action space can gain a better result. In Figure 8b,
compositive dispatching rules and the random rule all have the highest superior proportion
boundary, which tells that proposed compositive rules applied to the action space earn a
better result. The comparison with compositive dispatching rules shows that the trained
DLDDQN model outperforms any handmade dispatching rules orientated to objective
optimization and proves the effectiveness and superiority of the proposed framework to
optimize objectives.

4.6. Comparison with Other Methods

To expand the generalization of the proposed framework, datasets whose instances are
generated with various sizes of hyperparameters (m, n_naj, E_ave, DDT) in order to adapt
to the complex production environment are provided. A new instance is given to create a
novel training environment and train neural networks at each training step. Comparative
methods include heuristic rules (FIFO, MRT), a metaheuristic rule (GA), and DRL-based
methods (DQN, DDQN). Throughout the whole process of the generalization experiment,
n_naj is set at a constant 100. For DRL-based comparative methods, since there is a lack of
a decision neural network on reward forms, six reward form calculate their own obtained
reward ri, and the final reward is the sum of the product of the average weighted factor and
the reward ri. In running DRL-based methods, 20 times are repeated, and the objective test
result is the mean value of the 20 runs. Without decision randomness, heuristic rules are
just run one time. The DQN and the DDQN use the same action space (seven compositive
dispatching rules) as the DLDDQN for comparative fairness.

In comparative method GA [42], firstly, jobs, machines, and other scheduling informa-
tion of the DFJSP are encoded into a chromosome structure, followed by a representation
of individuals and populations. Secondly, after initialization, considering the multiple
optimization objectives, i.e., makespan and delay time sum, defining a fitness function
for evaluation is required. Next, the algorithm employs a selection mechanism, i.e., the
roulette wheel strategy, to choose parents for reproduction. Then, genetic operators, in-
cluding crossover and mutation, are applied to create offspring solutions. Meanwhile,
local search techniques are incorporated to refine solutions and exploit the local neigh-
borhood. The dynamic update of the population realizes the dynamic adaptation to the
changing problem instances. Hyperparameters of GA are set as follows: population size
pop_size = 200; crossover probability p_c = 0.8; mutation probability p_m = 0.3; selection
of a way to crossover p_v = 0.5; selection of a way to mutation p_w = 0.99; and the number
of iterations max_i = 100.

From the comparative results of Table 7, it can be observed that for most test bench-
marks, the proposed framework outperforms any other scheduling methods regarding the
makespan objective. Although a part of the test benchmarks cannot derive the best metric
result on the objective, i.e., delay time sum, using the DLDDQN method, these results are
relatively lower than most of the comparative methods and near to the optimal solution of
the other comparative method, which can owe to a good compromise on the two objectives
that the proposed framework achieves. It also can be found that apart from the DLDDQN,
other methods that have the best comparative result (marked in bold) in test benchmarks
are optimal in one certain objective and tend to have the worst result in another, which
illustrates that these methods cannot realize a compromise between objectives and result in
sacrificing other objectives in order to promote one certain objective. Based on the analysis
above, it can be concluded that the DLDDQN has the predominant advantage in handling
multi-objective optimization over the other methods. In addition, the generalization ability

Processes 2023, 11, 2018 24 of 27

and practicality of the proposed framework are validated by comparing the metric results
of two objectives in various production configurations.

Table 7. Comparison of metric results on objectives between DLDDQN and other methods
(makespan/delay time). The bold highlights the best comparative result of two optimization objec-
tives in each row.

DDT m E_ave DLDDQN DQN DDQN FIFO MRT GA

0.5

10
50 443.7/22,579.45 507.85/22,819.38 482.29/22,967.39 907/34,367 842/30,217 523.25/29,486.96

100 388.6/17,008.4 438.24/18,645.23 428.51/18,022.21 690/21,203 755/23,733 459.63/20,330.54
200 518.7/15,851.8 538.63/17,160.44 533.27/16,155.25 860/20,374 919/26,907 555.39/20,330.54

20
50 240.75/2756.15 200.14/3458.58 196.88/3431.4 299/2937 319/8212 205.82/7067.16

100 154.5/1764.5 205.52/2423.27 204.15/2393.77 362/1831 362/4995 234.74/5278.68
200 150.6/133.1 183.26/470.16 172.3/394.66 297/22 269/1095 194.95/886.46

30
50 95.18/442 112.21/795.8 116.83/505.42 195/64 194/1964 113.63/2377.63

100 120.6/233.2 140.56/486.37 132.26/334.0 249/0 269/1581 143.94/908.44
200 103.24/37.85 137.41/102.59 138.31/134.42 215/0 268/1461 124.22/129.57

1

10
50 396.4/1527.95 497.04/4478.87 490.7/3349.26 883/20,094 893/33,496 531.87/30,495.17

100 343.78/9135.8 417.44/10,434.38 455.07/10,372.92 729/13,589 787/20,811 478.55/23,818.5
200 352.4/3386.2 448.13/9912.2 472.53/8401.61 768/4200 847/18,567 493.84/18,260.04

20
50 121.5/231.1 189.26/970 152.98/7291.1 354/128 358/5934 205.58/7144.79

100 183.76/76.75 199.03/870.99 192.69/208.49 452/87 408/4688 212.75/4589.49
200 194/585.25 235.06/992.59 222.03/539.58 440/0 439/2317 217.08/1794.76

30
50 101.22/278.55 109.08/364.37 104.39/285.82 323/2 258/3495 125.26/2201.4

100 112.83/449.55 125.63/559.36 127.53/484.35 271/0 212/1129 129.03/814.17
200 157.35/145.9 172.72/119.29 148.43/155.65 370/0 318/1118 165.5/265.33

2

10
50 325.78/18,573 382.14/20,218.93 363.33/20,840.85 764/33,589 699/30,139 464.71/25,763.73

100 343.11/12,541.6 385.74/14,875.95 370.25/13,807.0 788/30,588 738/28,654 490.46/23,826.31
200 351.54/9970.55 382.82/11884.94 419.46/11,155.08 663/16,114 682/18,230 501.84/15,119.49

20
50 154.4/5052 180.09/5569.82 178.96/5246.45 297/8110 321/7309 195.67/6984.51

100 174.98/2595.6 194.13/2263.94 184.15/2834.0 317/4289 344/7321 216.3/3615.23
200 164.8/833.45 199.35/797.08 188.45/790.41 311/1522 356/3366 205.79/1153.18

30
50 109.14/727.25 139.23/730.05 128.46/769.17 197/589 182/2286 143.08/3524.76

100 102.23/158.5 107.19/162.98 103.04/163.62 171/165 158/843 128.39/776.18
200 100.12/106.3 137.47/137.89 107.78/132.74 193/78 201/428 126.18/172.81

5. Conclusions and Future Research Potentials

Different from previous research on algorithms of single objective optimization, in
our work, we present a dual layer DDQN architecture to realize optimization of multiple
objectives on the DFJSP, among which the machine’s makespan on completing the system
task and the job’s total delay time sum are minimized simultaneously, performing better
on a large proportion of instances compared with other algorithms with only one objective
optimized under the same numerical example test. Through the structure of the two-agent
DLDDQN, five features as the higher DDQN’s state vector, reflecting the performance
of objectives, are extracted; six forms of rewarding an executed action corresponding to
a metric of two objectives are designed as the goal space, and one goal is selected from
the higher DDQN to be an input feature of lower DDQN along with other five higher
features; and seven high-quality dispatching rules as the action space are created. At each
rescheduling point, the lower DDQN determines an eligible rule to be executed, with
the most cumulated reward and the lowest metric results in optimizing objectives locally
and globally.

The training process of the DDQN can be carried out with an exact number of machines
and jobs, which is a simplified problem satisfying DRL. Although a simplified trained
model does not apply to scenarios with different sizes of machines and jobs, variations such

Processes 2023, 11, 2018 25 of 27

as the processing time, the number of a job’s operations, available machines of an operation,
and the randomness of job arrivals can be tolerant [22]. Another training way to generalize
a model with the two variables included is to generate datasets of all possible production
configurations and to use these benchmark examples during each training episode to train
a convergent model. Given a test example within the production configuration, the trained
model can feed back a near-optimal answer within its knowledge range. However, the
cost for the two types of training way can be matched. Since the simplified trained model
is limited to specified scenarios, users have to spend computational resources and time
again in order to create a new model adaptive to new scenarios. A complex model trained
with more datasets has a better generalization ability to handle diverse scenarios. However,
resources and time costs in advance to train the model can be many times that of the
simplified model, which can be a drawback. To sum up, both types are feasible, and they
should be chosen for application with the requirements of reality.

One of the limitations of this study is that it cannot always be ensured to obtain the
optimal solution on optimization objectives, even though it is enabled to reach approximal
optimum when given instances within its knowledge base, because our action space is
limited and it may have some other more excellent compositive dispatching rules that
are not included in our action space. Due to the problem of action space explosion, we
cannot embrace all possible dispatching rules. A feasible way to shrink action space is to
attempt comparative experiments on possible compositive dispatching rules for the best
several ones. Furthermore, with the increment of the problem size in instantiated examples,
the possible policies become exponentially large, and the time to train a model for the
optimal policy will be unacceptably long with invariant computational resources. Likewise,
as the dataset grows larger, the time cost to converge the model will be more prolonged
or unacceptable.

For future work, the dynamic mechanism can be intensified, making it possible
for the trained model to tolerate more disruptive events. When an incident occurs, the
trained model searches its knowledge base and finds if the new problem can be solved by
itself, during which a scheduling training restart for learning can be motivated if the new
problem is beyond its knowledge range. This way, trained model self-handling dynamic
events can be formed, and generality is further widened. Moreover, in factory production
scenes, optimization objectives can be vast and expansive; therefore, utilizing the proposed
framework to solve new production scenes of reality can be feasible. In addition, it must be
noted that if designed imperfectly, state space can be highly correlative, and it is a necessity
to develop algorithms to eliminate the correlation between state features. In the application
of reality, demand for schedule schemes can be urgent; if the DRL method cannot respond
in time, desirable approaches such as meta-heuristic algorithms are recommended to be
combined as backup scheduling methods. Finally, other policy-based DRL methods such as
Actor-Critic and PPO are worth undergoing experiments on objective result comparisons
for better solutions to solve the DFJSP with multiple optimization objectives.

Author Contributions: Conceptualization, Z.W. and H.F.; methodology, Z.W.; software, Y.S. and
M.P.; validation, Z.W. and Y.S.; formal analysis, Z.W. and H.F.; investigation, Y.S. and M.P.; resources,
Z.W.; data curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing,
Z.W., H.F. and Y.S.; visualization, Z.W. and M.P.; supervision, Z.W. and H.F.; project administra-
tion, Z.W.; funding acquisition, H.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data of experiments are all included in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2023, 11, 2018 26 of 27

References
1. Mohan, J.; Lanka, K.; Rao, A.N. A review of dynamic job shop scheduling techniques. Procedia Manuf. 2019, 30, 34–39. [CrossRef]
2. Xiong, H.; Shi, S.; Ren, D.; Hu, J. A survey of job shop scheduling problem: The types and models. Comput. Oper. Res. 2022,

142, 105731. [CrossRef]
3. Zhou, H.; Gu, B.; Jin, C. Reinforcement Learning Approach for Multi-Agent Flexible Scheduling Problems. arXiv 2022,

arXiv:2210.03674.
4. Zeng, Y.; Liao, Z.; Dai, Y.; Wang, R.; Li, X.; Yuan, B. Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement

learning and attention mechanism. arXiv 2022, arXiv:2201.00548.
5. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop

scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]
6. Monaci, M.; Agasucci, V.; Grani, G. An actor-critic algorithm with deep double recurrent agents to solve the job shop scheduling

problem. arXiv 2021, arXiv:2110.09076.
7. Ferreira, C.; Figueira, G.; Amorim, P. Effective and interpretable dispatching rules for dynamic job shops via guided empirical

learning. Omega 2022, 111, 102643. [CrossRef]
8. Inal, A.F.; Sel, Ç.; Aktepe, A.; Türker, A.K.; Ersöz, S. A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop

Scheduling Problem. Sustainability 2023, 15, 8262. [CrossRef]
9. Chang, J.; Yu, D.; Zhou, Z.; He, W.; Zhang, L. Hierarchical Reinforcement Learning for Multi-Objective Real-Time Flexible

Scheduling in a Smart Shop Floor. Machines 2022, 10, 1195. [CrossRef]
10. Ahmadi, E.; Zandieh, M.; Farrokh, M.; Emami, S.M. A multi objective optimization approach for flexible job shop scheduling

problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 2016, 73, 56–66. [CrossRef]
11. Zhu, J.; Wang, H.; Zhang, T. A Deep Reinforcement Learning Approach to the Flexible Flowshop Scheduling Problem with

Makespan Minimization. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS),
Liuzhou, China, 19–21 June 2020; pp. 1220–1225. [CrossRef]

12. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129.
[CrossRef]

13. Xie, J.; Gao, L.; Peng, K.; Li, X.; Li, H. Review on flexible job shop scheduling. IET Collab. Intell. Manuf. 2019, 1, 67–77. [CrossRef]
14. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,

91, 106208. [CrossRef]
15. Liu, C.-L.; Chang, C.-C.; Tseng, C.-J. Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems. IEEE

Access 2020, 8, 71752–71762. [CrossRef]
16. Panzer, M.; Bender, B. Deep reinforcement learning in production systems: A systematic literature review. Int. J. Prod. Res. 2022,

60, 4316–4341. [CrossRef]
17. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function Approxi-

mation. In Advances in Neural Information Processing Systems 12; MIT Press: Cambridge, MA, USA, 2000.
18. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
19. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.

Eng. 2021, 159, 107489. [CrossRef]
20. Hu, H.; Jia, X.; He, Q.; Fu, S.; Liu, K. Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible

shop floor in industry 4.0. Comput. Ind. Eng. 2020, 149, 106749. [CrossRef]
21. Lei, K.; Guo, P.; Zhao, W.; Wang, Y.; Qian, L.; Meng, X.; Tang, L. A multi-action deep reinforcement learning framework for

flexible Job-shop scheduling problem. Expert Syst. Appl. 2022, 205, 117796. [CrossRef]
22. Workneh, A.D.; Gmira, M. Learning to schedule (L2S): Adaptive job shop scheduling using double deep Q network. Smart Sci.

2023. [CrossRef]
23. Zhang, M.; Lu, Y.; Hu, Y.; Amaitik, N.; Xu, Y. Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep

Reinforcement Learning with Proximal Policy Optimization. Sustainability 2022, 14, 5177. [CrossRef]
24. Liu, R.; Piplani, R.; Toro, C. Deep reinforcement learning for dynamic scheduling of a flexible job shop. Int. J. Prod. Res. 2022, 60,

4049–4069. [CrossRef]
25. Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Xu, C. Learning to dispatch for job shop scheduling via deep reinforcement

learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), Vancouver,
BC, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, NY, USA, 2020; pp. 1621–1632.

26. Luo, B.; Wang, S.; Yang, B.; Yi, L. An improved deep reinforcement learning approach for the dynamic job shop scheduling
problem with random job arrivals. J. Phys. Conf. Ser. 2021, 1848, 012029. [CrossRef]

27. Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [CrossRef]

28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An introduction; MIT Press: Cambridge, MA, USA, 2018.
29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

https://doi.org/10.1016/j.promfg.2019.02.006
https://doi.org/10.1016/j.cor.2022.105731
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1016/j.omega.2022.102643
https://doi.org/10.3390/su15108262
https://doi.org/10.3390/machines10121195
https://doi.org/10.1016/j.cor.2016.03.009
https://doi.org/10.1109/DDCLS49620.2020.9275080
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1049/iet-cim.2018.0009
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1080/00207543.2021.1973138
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1016/j.cie.2020.106749
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1080/23080477.2023.2187528
https://doi.org/10.3390/su14095177
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.1088/1742-6596/1848/1/012029
https://doi.org/10.1016/j.comnet.2021.107969
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670

Processes 2023, 11, 2018 27 of 27

30. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

31. Lapan, M. Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with Deep Q-Networks, Value Iteration, Policy Gradients,
TRPO, AlphaGo Zero and More; Packt Publishing Ltd.: Birmingham, UK, 2018.

32. Dolcetta, I.C.; Ishii, H. Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim. 1984,
11, 161–181. [CrossRef]

33. Rafati, J.; Noelle, D.C. Learning representations in model-free Real-Time Flexible Scheduling. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27–28 January 2019; Volume 33, pp. 10009–10010.

34. Pateria, S.; Subagdja, B.; Tan, A.H.; Quek, C. Hierarchical reinforcement learning: A comprehensive survey. ACM Comput. Surv.
CSUR 2021, 54, 1–35. [CrossRef]

35. Chang, J.; Yu, D.; Hu, Y.; He, W.; Yu, H. Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random
Job Arrival. Processes 2022, 10, 760. [CrossRef]

36. Puterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam,
The Netherlands, 1990; Volume 2, pp. 331–434.

37. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. In Proceedings of the 2nd Conference on Learning for
Dynamics and Control, Berkeley, CA, USA, 11–12 June 2020.

38. Lv, P.; Wang, X.; Cheng, Y.; Duan, Z. Stochastic double deep Q-network. IEEE Access 2019, 7, 79446–79454. [CrossRef]
39. Nachum, O.; Gu, S.S.; Lee, H.; Levine, S. Data-efficient hierarchical reinforcement learning. In Advances in Neural Information

Processing Systems 31; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2018; pp. 3303–3313.

40. Han, B.-A.; Yang, J.-J. Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN. IEEE Access 2020, 8,
186474–186495. [CrossRef]

41. Li, Y.; Gu, W.; Yuan, M.; Tang, Y. Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation
resources using hybrid deep Q network. Robot. Comput. Integr. Manuf. 2022, 74, 102283. [CrossRef]

42. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BF01442176
https://doi.org/10.1145/3453160
https://doi.org/10.3390/pr10040760
https://doi.org/10.1109/ACCESS.2019.2922706
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.1016/j.rcim.2021.102283
https://doi.org/10.1007/s11042-020-10139-6
https://www.ncbi.nlm.nih.gov/pubmed/33162782

	Introduction
	Related Works
	Contributions

	Problem Formulation
	Construction of DRL Components
	DRL Preliminaries
	Model Architecture
	State Feature Extraction
	Action Space
	Compositive Dispatching Rule 1
	Compositive Dispatching Rule 2
	Compositive Dispatching Rule 3
	Compositive Dispatching Rule 4
	Compositive Dispatching Rule 5
	Compositive Dispatching Rule 6
	Compositive Dispatching Rule 7

	Goal Formations and Reward Functions

	Numerical Experiments
	Instance Generations
	Sensitivity of Hyperparameters That Influence Performance of the Proposed Framework DLDDQN
	Analysis of a Case Study
	Model Selection and Validation of the Proposed DLDDQN
	Comparison with Proposed Compositive Dispatching Rules
	Comparison with Other Methods

	Conclusions and Future Research Potentials
	References

