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Abstract: Most studies of inventory consolidation effects assume time-independent random demand.
In this article, we consider time-dependence by incorporating an autoregressive moving average
structure to model the demand for products. With this modeling approach, we analyze the effect
of consolidation on inventory costs compared to a system without consolidation. We formulate an
inventory setting based on continuous-review using allocation rules for regular transshipment and
centralization, which establishes temporal structures of demand. Numerical simulations demonstrate
that, under time-dependence, the demand conditional variance, based on past data, is less than the
marginal variance. This finding favors dedicated locations for inventory replenishment. Additionally,
temporal structures reduce the costs of maintaining safety stocks through regular transshipments
when such temporal patterns exist. The obtained results are illustrated with an example using
real-world data. Our investigation provides information for managing supply chains in the presence
of time-patterned demands that can be of interest to decision-makers in the supply chain.

Keywords: allocation rules; ARMA models; copula method; dedicated facilities; mathematical
programming; R software; regular transshipment; statistical methods

1. Introduction

This section provides the introduction, state-of-the-art, contributions, objectives,
and plan of the sections used in this article.

1.1. Introduction and Bibliographical Review

In the supply chain, items are typically transferred from producers to distribution
centers and then sold to retailers [1]. To create an efficient network, companies aim to
minimize costs while maintaining a high level of service [2]. This can be achieved by
making decisions regarding the facility location, number of distribution centers serving
demand, and supply frequency [3].

One common approach is to set up a supply chain where each dedicated facility serves
the demand per unit of time (DPUT), resulting in an independent system (IS) [4,5]. Thus,
we define an IS as a framework where each decentralized location is served exclusively by
a single centralized location. However, when demand for each dedicated facility in an IS
exhibits high variability, costs associated with maintaining service levels, such as holding
costs, tend to increase [6]. In such cases, inventory pooling can be implemented through
centralized or regular supply using transshipment.
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A centralized inventory is given when all decentralized locations are served by a single
centralized location, while a regular transshipment (RT) occurs when all decentralized
locations are served by all centralized locations. This approach can significantly reduce
demand variability at individual points and often lead to cost savings compared to an
IS [6–8].

The study conducted in [7] examined inventory pooling defined as a setting in supply
chain to group goods minimizing the system’s cost in multiple locations. In [7], it was
also investigated the cost reductions associated with inventory pooling and its relationship
with demand variability assuming independent and identically distributed (IID) demand.
The research [7] concluded that centralization is necessary for improving system operation
when demand varies significantly across different areas. In a study given in [9], centralized
and decentralized supply chains with uncertain supply were compared. The centralized
network leveraged risk-pooling effects by combining demand variation from numerous
sites, resulting in lower inventory costs and expected total costs (TC). In [10], the authors
extended the concept of consolidated safety stock (SSc) to multiple storage points, while
in [11], it was conducted a similar analysis for consolidated cycle stock (CSc). Recent
techniques have explored cost reduction by identifying potential consolidation facilities
that combine shipments with improved service levels [12].

The selection of appropriate demand allocation rules is crucial for considering the
consolidation effect [6]. The Tyagi-Das (TD) rule is one of such approaches, where an equal
demand is distributed to decentralized sites from a specific centralized location [5]. When
using the TD rule and assuming IID DPUTs over time, the maximum consolidation impact
is determined by the lead time (LT) between sites [6]. Consolidation is most effective when
the consolidated TC (TCc) and inventory decrease. If the mean and standard deviation (SD)
of the LT are the same at both centralized locations, the demand provided to decentralized
sites should also be the same. Thus, when inventories are consolidated in a single place,
the maximum consolidation impact is achieved by employing distinct means/SDs for
LT and DPUT [6]. Another allocation approach is the Ballou-Burnetas (BB) rule, where
a portion of the demand is met by a main location and the remaining demand by other
secondary locations [4]. For IID DPUTs over time, RT is a suitable choice when DPUTs in
each centralized site are directly correlated. This approach balances small/large mean/SD
for LT and DPUT at various centralized locations and is particularly effective when the
holding cost (HC) is relatively small [6].

Inventory pooling primarily reduces costs by decreasing the inventory level required
to meet a given service level. Nonetheless, inventory centralization (IC) does not only
impact HC [6]. In general, the TCc and IS TC (TCi) in an inventory pooling system consist
of four costs associated with SS and average inventory, including the ordering cost (OC),
storage cost, and distribution cost (DC) over a given period [6,13]. For the TCc, the four
cost components are: (CC1) HC multiplied by SSc; (CC2) HC multiplied by CSc; (CC3)
consolidated DC (DCc); and (CC4) consolidated OC (OCc) [6]; also refer to Section 2.3.
The total SS under inventory pooling is crucially influenced by the randomness of DPUT
and the LT period [13].

To reduce the TCc, previous studies given in [6,11] used mathematical treatments of
the consolidation effect by assuming random DPUT and the following: (a) all locations
utilize a SS before and after consolidation, considering the uncertainty of LT demand (LTD);
(b) all locations employ the same safety factor for the desired service level; (c) each location
adopts a continuous-review model for lot size and reorder point in inventory control; (d) the
total average demand of the system remains constant after consolidation; and (e) DPUT
and LT are independent. Recent studies conducted in [14,15] extended these approaches
by considering an asymmetric distribution for the DPUT and various degrees of kurtosis.
These studies demonstrated that the TCc decreases under specific conditions, including the
level of correlation among DPUTs at different locations, mean/SD of DPUTs and LT, safety
factor for LTD, and costs associated with holding, ordering, and distribution [6].
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1.2. Contribution, Objectives, and Organization of the Article

The main findings from prior research are: (a) small TCc values generated by cen-
tralized locations are linked to indirect correlations between the DPUTs and high values
of DPUT SDs; (b) positive correlations between DPUTs and small values for DPUT SD
are associated with the use of an IS supply; and (c) distinct SDs for the LT are managed
in a better way by an RT due to the combination and balancing of the DPUTs that an
RT serves. In [14,16], the authors confirmed the previous conclusions for non-Gaussian
distributions. However, these works employed a continuous-review model with IID DPUT.
Recent research has considered the dependence on DPUT [17]. Copulas methods have been
the primary focus for modeling the joint DPUT distribution [11,18,19]. Nevertheless, it
should be noted that DPUTs often exhibit time-dependence, as highlighted in [20]. In this
dependence framework, an autoregressive moving average (ARMA) model can adequately
describe time-dependent DPUT [21]. In this context, in [22], it was warned of a gap in the
literature on inventory models between those that incorporate temporal dependence and
those that do not. Also, the consideration of ARMA models makes it possible to better
capture the behavior of customer demand in cases of temporal dependency. This depen-
dency improves the accuracy of the forecasts. Thus, inventory management, which can
be considered in customer relationship management (CRM) models to improve customer
demand, enables us to plan seasonal marketing with product delivery on time.

One of the few works on consolidation effects in inventories under time-dependent
DPUTs is attributed to [23]. These authors found the optimal SS by assuming homogeneity
in the DPUT variability and considering the temporal correlation. In [24], optimal policies
and approximations were proposed for inventories with temporally correlated demand in
a similar setting, although not on the consolidation impact.

Given that ARMA models are commonly used to model time-dependent demand [25],
its characteristic and how they can be incorporated into different allocation rules are of
interest. One unique characteristic of the ARMA models is that the variance of the random
variable (RV) of interest in a time-dependent framework is conditional on past data, and it
is less than the marginal variance in an independent framework. Since decreasing demand
variability results in cost savings under inventory pooling, this suggests that the precision
of the inventory model increases when analyzing such demand time series, leading to a
decrease in TCc through allocation rules. However, to the best of our knowledge, there is a
gap in the literature because no studies have analyzed how the temporal dependence of
demand affects the TCc of a pooled inventory for different allocation rules.

To address this gap, our investigation designs a procedure to analyze how the temporal
dependence described by an ARMA model impacts the TCc of a pooled inventory for
distinct allocation rules. Specifically, our study includes: (i) comparing the TC between a
system with inventory pooling and IS under time-dependence; and (ii) analyzing changes
in metrics of inventory TC, under the previously assumed scenarios but adding temporality.

The rest of the paper is as follows. Section 2 introduces our approach upon two pillars:
(a) modeling assuming an IID DPUT and modeling DPUT based on an ARMA model
for temporal dependence; and (b) the consolidation effects of inventory. In Section 3, we
perform simulations to analyze how time-dependence affects TCc of inventories for distinct
allocation rules. Section 4 analyzes an illustrative example with real data and guidelines
on the theme are established. Section 5 discusses our investigation and states concluding
remarks, limitations, and proposals to continue investigating the theme of the present study.

2. Proposed Methodology

Given the presence of correlated demand over time, we propose using the following
methodology to consolidate inventories. To carry out our study, we have followed the ap-
proach given in [6] which assumed IID demands. However, to derive a consolidation effect
on time-dependent demand, we relax the IID assumption by assuming an ARMA model for
DPUT. Next, this section states the new approach introduced in the present investigation.
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2.1. Modeling DPUT without Temporal Dependence

Suppose that an IID RV Z models the randomness of the DPUT with a normal distri-
bution. Then, Z has a probability density function (PDF) given by

fZ(z) =
1√

2πσ2
Z

exp

(
− (z− µZ)

2

2σ2
Z

)
, z ∈ R, µZ ∈ R, σZ > 0,

with µZ and σ2
Z denoting the statistical parameters related to the marginal mean and

variance of Z, respectively. In the usual regression model, µZ can be described by the values
of r explanatory variables (also called independent variables or covariates) summarized in
the (r + 1)× 1 vector of values x = (1, x1, . . . , xr)> by means of

µZ = E(Z) = x>β, (1)

where β = (β0, β1, . . . , βr)> is the coefficient vector related to each element of x.
Let Z1 and Z2 denote IID RVs which have a cumulative distribution function (CDF)

FZ1,Z2 . Hence, we get a relation given by

C(c, d; $) = FZ1,Z2(F−1
Z1

(c), F−1
Z2

(d)), c, d ∈ [0, 1], (2)

where

$ = $Z1,Z2 =
Cov(Z1, Z2)√

σ2
Z1

σ2
Z2

, (3)

with $ denoting a dependence parameter between Z1, Z2, and σ2
Z1

= V(Z1) and
σ2

Z2
= V(Z2). Hence, from the formula stated in (2) and in [16], we reach that the PDF

related to C(u, v, $) is established as

c(FZ2(z2), FZ1(z1), $Z1,Z2) =
∂2C

∂FZ2 ∂FZ1

,

where ∂ denotes the corresponding partial derivatives. For more details about the use of
copulas to model the correlated DPUTs in consolidated effects, see [11].

2.2. Modeling DPUT with Temporal Dependence

To describe the DPUT when it is time-dependent, we can employ an RV Zt measured
at time t with t ∈ {1, . . . , N}. For this purpose, we may consider the conditional nor-
mal distribution of Zt depending on a past data set Ht ≡ {x1, . . . , xt, z1, . . . , zt−1} by an
ARMA model of p (autoregressive) and q (moving average) orders, that is, ARMA(p, q),
with x1, . . . , xt and z1, . . . , zt−1 being the observed values of x and Z, respectively, at the
corresponding instants of time. Through this model, the mean of Zt can be formulated as

µZt = E(Zt) = x>t β +
p

∑
l=1

φl(zt−l − x>t−l β) +
q

∑
m=1

ϑm(zt−m − µt−m), (4)

with φl , ϑm being the l-th and m-th elements of an ARMA structure, respectively, of p, q
orders, and β is defined as in (1), but now related to r covariates depending over time, that
is, xt = (1, x1t, . . . , xrt)>.

If we define a martingale residual as Ut = Zt − µZt for the model error and state
Vt = Zt − x>t β, from (4), we can take the expression given by

Vt =
p

∑
h=1

φhvt−h +
q

∑
j=1

ϑjut−j + Ut. (5)
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Now, if we consider the lag operators presented as

Φ(M) = 1− φ1L(1) − · · · − φpL(p), (6)

ϑ(M) = 1 + ϑ1M(1) + · · ·+ ϑq M(q), (7)

then, we may rewrite the model defined in (5) as

Vt =
ϑ(M)

Φ(M)
Ut = Ψ(M)Ut,

with

Ψ(M) =
ϑ(M)

Φ(M)
= 1 + ψ1M(1) + ψ2M(2) + · · · , (8)

and Φ(M) being an invertible function. In [26], it was proved that, for the RV Z, its marginal
mean and variance are stated as

µZt = E(Zt) = E(x>t β + Vt) = E(x>t β) + E(Vt) = x>t β, ∀t,

σ2
Zt

= V(Zt) = V(Vt) = E(V2
t ) = Ψ(2)(M)V(Zt|Ht), ∀t, (9)

where Ψ(2)(M) = 1 + ψ2
1 L(1) + ψ2

2 L(2) + · · · , for stationary and invertible time series.

Remark 1. Note that Ψ(2)(M) ≥ 1. Thus, the variance conditional on past data is less than the
marginal variance, that is, when no temporal disposition of the data is considered. In the modeling,
consider the assumption that σ2

Zt
is invariant over time.

Now, if we define an RV T as the random LT, with T being independent of Zt, then
the random sum S of Zt for an item under inventory until reaching LT is expressed as
S = ∑T

t=1 Zt. We denote the PDF of S as fS, which is defined on [0, ∞] (non-negative
support), and its CDF is given by FS(r) =

∫ r
0 fS(x)dx, with its quantile function being

stated as F−1
S (x), for x ∈ [0, 1]. The conditional mean and variance of S on past data, Ht

namely, are defined, respectively, as

µSt = E(S|Ht) = µTE(Zt|Ht) = µTµZt , (10)

σ2
St

= V(S|Ht) = σ2
TE2(Zt|Ht) + µTV(Zt|Ht) = σ2

Tµ2
Zt
+ µTσ2

Zt
, (11)

where µT = E(T) and σ2
T = V(T). Note that for IID DPUTs, the expressions given in (10)

and (11) reduce to

µS = E(S) = E(T)E(Y) = µTµY,

σ2
S = V(S) = V(T)E2(Y) + E(T)V(Y) = σ2

Tµ2
Y + µTσ2

Y.

The data generated from a bivariate ARMA model conditional on past data are pre-
sented in [27]. Generalized volatile multivariate time series models by using the Cholesky
decomposition were presented in [28]. With this generalization, it is possible to parameter-
ize the variance-covariance matrix of a bivariate ARMA model for Z1t = µZ1t

+ U1t and
Z2t = µZ2t

+ U2t , which can be related by using the regression model given by

U2t = β u1t + ε2t , (12)

where β is a coefficient to be determined, for example, with the ordinary least squares
method; u1t is the value of the covariate U1t ; and ε2t is the model error with mean zero.
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For the model defined in (12), it is possible to prove that the corresponding condi-
tional variance over time is V(ε2t |Ht) = V(Z2t |Ht)(1− $2

Z2t ,Z1t |Ht
), where $Z2t ,Z1t |Ht

is the

correlation coefficient between both variables conditional on past data defined as

$Z2t ,Z1t |Ht
=

Cov(Z1t , Z2t |Ht)√
V(Z1t |Ht)V(Z2t |Ht)

, (13)

with Cov(Z1t , Z2t |Ht) = β̂ V(Z1t |Ht) being the conditional covariance on past data ob-
tained from the Cholesky decomposition. Based on (9), we have that

σ2
Z1t |Ht

= V(Z1t |Ht) = V(Z1t)/Ψ(2)
Z1t

(M), (14)

σ2
Z2t |Ht

= V(Z2t |Ht) = V(Z2t)/Ψ(2)
Z2t

(M) = V(ε2t)/((1− $2
Z2t ,Z1t |Ht

)Ψ(2)
Z2t

(M)),

where Ψ(2)
Zjt

(M), for j ∈ {1, 2}, are as given in (8), whereas the expressions stated in (14) are
the conditional variances on past data for Z1t and Z2t , which have a correlation coefficient

given by (13). Note that Ψ(2)
Z1t

(M) and Ψ(2)
Z2t

(M) are autoregressive parametric functions
(Φ), with moving average (ϑ), describing the temporal dependence of the DPUT. If there is
no temporal dependence (that is, Φ = 0 and ϑ = 0), the variances of Z1t and Z2t are the
marginal variances of each variable. Therefore, their conditional correlation on past data is
$Z2t ,Z1t |Ht

= 0 based on (3).

Remark 2. The results given in (14), in addition to Remark 1, are fundamental for improving the
precision of the estimation of conditional variances on past data and their respective correlations.
Note that these variances and correlations are involved in the inventory TC for both pooled and
supply IS. Thus, we should have more precision when comparing both systems if temporal dependence
is considered.

2.3. Consolidation Effect

The components that form the TCc are defined as

SSc = k
m

∑
f=1

√√√√(E

(
n

∑
j=1

ς j, f Zjt

))2

V(Tf ) + V

(
n

∑
j=1

ς j, f Zjt

)
E(Tf ), (15)

CSc =
1√

2HC

m

∑
f=1

√√√√OC f E

(
n

∑
j=1

ς j, f Zjt

)
, (16)

OCc =
1

2CSc

m

∑
f=1

OC f E

(
n

∑
j=1

ς j, f Zjt

)
, (17)

DCc =
m

∑
f=1

n

∑
j=1

DCT f ,j ς j, f Zjt , (18)

where OC f is the OC measured in $ per order for the centralized site/location f ; HC f = HC
denotes the HC (in $ per time unit); k f = k represents the safety factor; ς j, f is the part of the
DPUT mean from the site j, which is decentralized, linked to the site f , which is centralized;
E(Tf ) and V(Tf ) represent the LT mean and variance, respectively; and DCT f ,j denotes the
unit cost to move an article from site f to decentralized site j. Observe that ς j, f belongs to
[0, 1], for all j and f from 1 to n and m, respectively, ∑m

f=1 ς j, f = 1, where m, n stand for the
numbers of centralized/decentralized sites, respectively. Also note that Zjt is the DPUT at
decentralized site j over time t ∈ {1, . . . , N}; otherwise if it is independent over time, we
simply denote it by Zj.
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We compare the DPUT described by an ARMA model through the conditional DPUT
on past data (Ht) versus a DPUT assuming an IID framework. From Remark 2, note that
V(∑n

j=1 ς j, f Ztj)E(Tf ) given in (15) changes whether the DPUT has temporal dependence or
not, altering the optimal results for each allocation rule. Then, expressions given in (15)–(18)
have different functional forms according to the allocation employed for inventory pooling.

We show the case of m = n = 2 to provide a basis to compare performance. However, it
may be generalized to any m and n, where m ≤ n, following the works presented in [4–6,11].
If n = m = 2, the TD rule gives ς1, f = ς2, f = ς f , for 0 ≤ ς f ≤ 1, with ∑m

f=1 ς f = 1 and
ς2 = 1− ς1. Nonetheless, according to the BB rule, a centralized facility f provides equal
demand to its main decentralized site j (that is, ς1,1 = ς2,2 = ςr; ς1,2 = ς2,1 = 1− ςr), where
r is the site with the largest portion of the demand.

The optimal solution using the BB rule is not only different from the optimal solution
obtained with the TD rule, but it also leads to different combinations of inventories [6].
Under the BB rule, if the optimal solution of ςr is zero or one, the supply chain reduces
to an IS with both decentralized centers attended by a dedicated facility for each one.
Nevertheless, if ςr is between zero and one, RT occurs implying that all centralized sites
serve both dispersed places. Under the TD rule, if ς1 ∈ {0, 1}, decentralized sites have a
single facility serving all decentralized sites. Figure 1 exemplifies the aforementioned.

Figure 1. Linking allocation rules to inventory-pooling models. Adapted from [6].

When the optimal solution of ςr is zero or one (supply IS), both sites being decentral-
ized are attended by a facility under the BB rule. Nevertheless, if ς1 ∈ {0, 1}, decentralized
sites have a single facility employing the TD rule. Moreover, if the optimum value ςr
is between zero and one, RT occurs when the BB rule is utilized. This implies that all
centralized sites serve both places.

Under the TD rule, intermediate values of ς1 yield the same pattern, but they are
non-optimal solutions [11]. In what follows, we state how to compute CSc, SSc, OCc and
DCc, employing both allocation rules, considering the temporal dependence of the DPUTs.
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However, the same expressions are valid when facing IID DPUTs, but they must be adapted
to the marginal variance of the DPUTs, and, therefore, of the LTDs. Then, under the TD rule,
assuming the temporal dependence of Zjt on Hjt at decentralized site j, formulas defined
in (15)–(18) have structures stated as

SSc = k


√√√√ς2

1

(
2

∑
j=1

µjt

)2

V(T1) + ς2
1V

(
2

∑
j=1

Zjt |Ht

)
E(T1)

+

√√√√(1− ς1)2

(
2

∑
j=1

µjt

)2

V(T2) + (1− ς1)2V

(
2

∑
j=1

Zjt |Ht

)
E(T2)

, (19)

CSc =

√
∑2

j=1 µjt

2HC

(√
OC1ς1 +

√
OC2(1− ς1)

)
, (20)

OCc =
OC1ς1(µ1t + µ2t)

2CSc
+

OC2(1− ς1)(µ1t + µ2t)

2CSc
, (21)

DCc = DCT1,1 µ1t + DCT1,2 µ2t , (22)

with µ1t , µ2t being formulated as in (4), and

V(Z1t + Z2t |Ht) = V(Z1t |H1t) + V(Z2t |H2t) + 2$Z2t ,Z1t |Ht

√
V(Z1t |H1t)V(Z2t |H2t).

We assume that the inventory is consolidated at site 1 to compute DCc. Under the BB rule,
considering the temporal dependence of Zjt on Hjt at decentralized site j, (15)–(18) take,
respectively, the forms given by

SSc = k
(
((ςrµ1t + (1− ςr)µ2t)

2V(T1) + (ς2
rV(Z1t |H1t) + (1− ςr)

2V(Z2t |H2t)

+2$Z2t ,Z1t |Ht

√
V(Z1t |H1t)V(Z2t |H2t)ςr(1− ςr))E(T1))

)1/2
(23)

+k
(
(((1− ςr)µ1t + ςrµ2t)

2V(T1) + ((1− ςr)
2V(Z1t |H1t)

+ς2
rV(Z2t |H2t)2$Z2t ,Z1t |Ht

√
V(Z1t |H1t)V(Z2t |H2t)ςr(1− ςr))E(T2))

)1/2
,

CSc =
1√

2HC

(√
OC1(ςrµ1t + (1− ςr)µ2t) +

√
OC2((1− ςr)µ1t + ςrµ2t)

)
, (24)

OCc =
OC1

(
µ1t ςr − µ2t(ςr − 1)

)
2CSc

+
OC2

(
ςrµ2t − (ςr − 1)µ1t

)
2CSc

, (25)

DCc =
(

ςrDCT1,1 + (1− ςr)DCT2,1

)
µ1t +

(
ςrDCT2,2 + (1− ςr)DCT1,2

)
µ2t . (26)

From (24), we must assume that the largest parts ςr of µjt are provided with the
smallest DCT1,1 and DCT2,2 .

In the case of decentralized site j, considering a supply IS, OC, CS, DC, and SS are
expressed as

SSj = k
m

∑
f=1

√√√√E(Tf )V

(
n

∑
j=1

Zjt |Ht

)
+

n

∑
j=1

µ2
jt

V(Tf ), (27)

CSj =

√
OCj µjt

2HC
, OCj =

m

∑
f=1

OC f µjt
2CSj

, DCj = µjDCT f ,j . (28)
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As in the centralized case, formulas stated in (28) and (27) consider temporal depen-
dence for the DPUTs. Nevertheless, the same expressions are valid when facing IID DPUTs,
but they must be adapted to the marginal variance of the DPUTs, and therefore of the LTDs.

Thus, the objective function for a centralized system to be minimized is stated as

TCc = HC(CSc + SSc) + DCc + OCc, (29)

under the TD rule, that is, for an IC. In contrast, the objective function under a supply IS
for site j is given by

TCj = HC(CSj + SSj) + DCj + OCj, j ∈ {1, 2}, (30)

where the cost coefficients of a centralized system are given in (19)–(22) for the TD rule,
in (24)–(26) for the BB rule, and in (29) and (30) for decentralized site j. As the objective is
to determine which IC, IS or RT reduces the costs, the decision variables are related to the
proportion of demand to be assigned at each site, that is, to find the optimal values of ς j, f
in the TD rule, and the optimal values of ςr for the BB rule.

Following the approach given in [13], we state a consolidation effect metric associated
with “the percentage reduction in aggregate SS made possible by a consolidation effect
of inventory from multiple locations into one location”. This inventory metric for site j is
presented as

CMj = 1− CSc + SSc

CSj + SSj
, j ∈ {1, . . . , n}. (31)

Figure 2 shows a flow diagram of the methodology proposed in Section 2.

BEGIN

Collect DPUT data

Temporal dependence Fit an ARMA model for DPUT at
each location using the AIC criterionUse the Wanke-Saliby methodology

Evaluate the behavior of the model vary-
ing the cost parameters LT and SLT

Evaluate the TC under the
TD rule, the BB rule, and IS

END

TC less than an IS Consolidate the demandDo not consolidate the demand

ENDEND

YesNo

YesNo

Figure 2. Flow diagram of the proposed methodology.

3. Simulation and Analysis of Results

The new methodology stated in the current investigation is evaluated by employing
simulations. In this section, we detail our computational setting and different scenarios.
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3.1. Computational Setting and Simulation Framework

We use the R software to implement the proposed methodology (www.R-project.org,
accessed on 29 June 2020). For the employment of the R language in inventory structures,
see [14,29–31]. We employ the copula package of R to construct the joint distribution of the
DPUTs [32]. This package provides us with the most popular copulas like Archimedian,
elliptical, and Gaussian, permitting us to simulate correlated random numbers and fit a
copula by goodness-of-fit methods. A generator of bivariate time series described by an
ARMA model was programmed by the authors in R code and is available upon request.
In addition, the generation of random numbers from bivariate ARMA models also was
carried out with R codes, implemented by the authors, and available under request. We
use the nloptr package of R to optimize the inventory TC of pooling models. Again, we
simulate the scenario m = n = 2, which may be generalized to other values such as m ≤ n.

The simulation considers inventory policies related to allocation and supply; modeling
of the DPUT under independent and dependent cases; and optimization of costs using
mathematical programming [33–36]. First, for inventory policies, we utilize three types
of supply (IS/RT/IC) and two allocation rules (TD/BB). Second, the statistical models
consider IID DPUTs and temporal dependence by an ARMA structure. We assume several
ARMA temporal structures with bivariate normal distributions for the DPUT, whereas
the IID framework is studied under marginal normal distributions. In addition, diverse
simulated scenarios for mean, SDs, and correlations are considered to generate both types
of DPUTs (independent and dependent) in this statistical modeling. The parameters are
uniformly distributed into [a, b], denoted as U[a, b], which are chosen from values obtained
from the literature; see, for example, Table 2 and Appendix C of [11].

Following the analysis done in [6], we contrast IC and supply IS under the TD rule
based on the expressions given in (29) and (30), respectively, but assuming temporal
dependence for the DPUT, which we called Case A. Moreover, the simulation examines the
supply IS, IC, and RT as shown in [6], using the inventory TC defined as

TCc = HC(CSc + SSc) + DCc, (32)

under both the TD and BB rules. In this case, we consider the formula stated in (32) as
the objective function to be optimized in a mathematical program and compare it to the
optimization of the function defined in (30), which we name Case B.

Note that the TCc given in (29) is conformed by CC1 to CC4, whereas that the TCc
stated in (32) considers CC1, CC2, and CC3. Similarly for TCj formulated in (30), under both
IID DPUTs and temporal structure, the components of costs considered are the same. We
consider 10,000 random scenarios for m = n = 2 minimizing the corresponding TC. Then,
we obtain the optimal values of CC1 to CC4. The metrics of the simulation are detailed in
Table 1.

Remark 3. Similar metrics are used for the IID framework, but discarding the ARMA parameters
and past data. Also, σZ1t

, σZ2t
∼ U(3, 30), whose values were taken from [6,11].

3.2. Simulation Study I

We examine which supply system yields the smallest costs in the 10,000 scenarios
for Cases A and B, as well as independent and dependent frameworks of DPUT. The TC
defined in (29) and (32) for Cases A and B, respectively, are the smallest ones under an IC.
We obtain 8621 optimal scenarios recommended an IC, and 1379 scenarios with a supply IS
as the best solution for Case A under an IID DPUT. Also, we attain 8628 scenarios deciding
an IC as optimal supply, and 1372 scenarios with a supply IS for Case A with temporal
dependence on DPUT. In Case B with IID DPUT, we reach 8912, 444, and 644 optimal values
for IC, RT, and supply IS, respectively. Under temporal dependence on DPUT, the results
are 8889, 697, and 414, respectively.

http://www.r-project.org
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Table 1. Type of metric of the simulation study.

Statistical Parameters Costs

µZ1t
, µZ2t

∼ U(80, 120) DCT1,1 , DCT2,2 ∼ U(0.20, 0.25)
σZ1t |Ht

∼ U(3, 30) DCT1,2 , DCT2,1 ∼ U(0.25, 0.30)

σZ2t |Ht
∼ U(3, 30)× (1− $2

Z1t ,Z2t |Ht
)1/2 HC ∼ U(1, 1000)

$Z1t ,Z2t |Ht
∼ U(−1, 1) OC1 ∼ U(17, 67)

µT1 , µT2 ∼ U(1, 5) OC2 ∼ U(20, 140)
σT1 , σT2 ∼ U(0.5, 2)

ARMA parameters Safety factor

φ1, φ2, ϑ1, ϑ2 ∼ U(−1, 1) k ∼ U(1, 3)

For the 10,000 simulations performed, we compared the number of occasions in which
cost minimization was given by an IC, RT, or IS, both for the model under the assumption
of an IID DPUT and for the case where it is taken into account a time-dependent DPUT.
For this experiment, for each of the possible decision-making (IC, RT, IS), we applied the
χ2 test for the difference in proportions between the model considering IID DPUT and
DPUT with time-dependence. The results showed a slight difference only in the case of
the proportion of occasions in which the respective models opted for the choice of an IS.
For this particular analysis, we detected a difference with a statistical significance of 13%
(which can be considered non-significant). The above results indicate that the temporal
dependence of the DPUTs reduces the TC with the supply IS according to Case B. This
finding is explained by the fact that the variances of the DPUTs conditional on past data
are less than for IID DPUTs, as indicated in Remarks 1 and 2.

For the 10,000 scenarios under both IID and dependent frameworks, we statistically
compare the parts of CC1 to CC4 of the TC for IC, RT, and supply IS. As mentioned, note
that Case B analyses the four cost components CC1-CC4, while Case A only considers
CC1-CC3. To graphically compare these cost components between the combinations of IC,
RT or IS supply, and IID or ARMA DPUT, we show the distribution of the corresponding
cost values in Figure 3. From this figure, we can see that component CC1 has the largest
median cost. For the dependent framework, we analyzed the number of scenarios with CC1
as the higher cost than the other components, with 6347, 7721, and 8858 cases for RT, IC,
and supply IS in Case B. We found similar results under IID DPUTs. Furthermore, the cost
values of CC1-CC4 were again tested using a χ2 statistic for differences on proportions.
Significant differences were detected in favor of CC1 under IC, RT, and supply IS, for DPUTs
using both with or without time-dependence frameworks. Therefore, we detected CC1
as the crucial component of the TC. Similar results were found for cases A by comparing
CC1-CC3. Then, we used the Wilcoxon statistic to test the medians of the costs associated
with CC1 obtained by IC, RT, and supply IS for DPUTs considering frameworks with or
without time-dependence. We conclude that there are no statistically significant differences
at 10% between medians for components of TC under both frameworks.

As in [14], we used the Kruskal-Wallis (KW) statistic to test medians of metrics asso-
ciated with statistical parameters, costs, and safety factors regarding IC, RT, and supply
IS. This test is performed if a minimal TC is attained in Cases A (IC/supply IS) and B
(IC/RT/supply IS), verifying how these metrics change between DPUTs with and without
temporal structure. Tables 2 and 3 report this comparison for Cases A and B.

We observe that the medians of $Z1,Z2 , $Z1t ,Z2t |Ht
, σZ1 , σZ2 , σZ1t |Ht

and σZ2t |Ht
are related

to a decrease in the TC for Case B; see Table 3. Positive correlations and low variability
of the demand are linked to the supply IS, validating what was reported in [6], but now
with temporal dependence for DPUTs. However, as pointed out, this dependence causes
a decrease in the medians of correlations and variances of the DPUTs, when they are
conditional on past data.
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Tables 2 and 3 show that it is not possible to observe significant statistical associations
for medians of the ARMA parameters (φ, ϑ) in Cases A and B. As stated in Section 2,
such parameters affect the correlations and conditional variances of DPUTs on past data,
which are components of SSc and SSj. Table 4 reports the medians of some parameters
that favor supply IS, RT, and IC for CC1 = HC× SS. We think the temporal dependence
favors lower CC1 with RT systems concerning the TC stated under the expression stated
in (32), which better balances the conditional variances of the DPUTs. Note that $Z1t ,Z2t |Ht

cannot be highly negative for obtaining a low CC1 in IC. In addition, $Z1t ,Z2t |Ht
increases

to high positive values favoring a low CC1 in the supply IS, and slightly negative values
to reach lower CC1 in the RT. Slightly negative values of the AR parameter φ favor an IC,
moderately positive values favor a supply IS, and values close to zero favor the RT. The
MA coefficients ϑ close to zero favor an IC, moderately positive values favor a supply IS,
and slightly negative values favor an RT.

Figure 3. Boxplots of the indicated cost and type of dependence.

Table 2. Median and KW p-value for the mentioned model, metric, and supply, employing the TC in
Case A.

IID Model ARMA Model

Metric IC IS KW p-Value Metric IC IS KW p-Value

µZ1 99.61 102.69 <0.001 µZ1t
99.58 101.61 <0.001

µZ2 100.26 100.42 0.71 µZ2t
99.90 99.68 0.37

σZ1 16.41 16.09 0.44 σZ1t |Ht 16.44 16.31 0.64

σZ2 16.65 16.56 0.52 σZ2t |Ht 11.98 11.97 0.25

$Z1,Z2 −0.014 0.04 0.04 $Z1t ,Z2t |Ht −0.008 0.034 0.2381
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Table 2. Cont.

IID Model ARMA Model

Metric IC IS KW p-Value Metric IC IS KW p-Value

µT1 2.97 2.92 0.21 µT1 2.99 2.96 0.61

µT2 3.01 2.89 0.03 µT2 2.98 2.96 0.75

σT1 1.22 1.33 <0.001 σT1 1.23 1.33 <0.001

σT2 1.26 1.13 <0.001 σT2 1.27 1.17 <0.001

DCT1,1 0.125 0.123 0.02 DCT1,1 0.125 0.124 0.33

DCT2,2 0.125 0.124 0.86 DCT2,2 0.125 0.125 0.47

DCT1,2 0.375 0.376 0.13 DCT1,2 0.375 0.376 0.34

DCT2,1 0.375 0.376 0.02 DCT2,1 0.374 0.376 0.011

k 1.99 1.90 <0.001 k 2.01 1.89 <0.001

HC 0.38 0.048 <0.001 HC 0.38 0.05 <0.001

OC1 42.37 38.51 <0.001 OC1 42.76 38.47 <0.001

OC2 80.75 72.62 <0.001 OC2 80.87 71.54 <0.001

- - - - φ1 −0.004 −0.010 0.87

- - - - φ2 −0.0001 −0.0024 0.69

- - - - ϑ1 0.001 0.0191 0.55

- - - - ϑ2 −0.003 0.0005 0.92

Table 3. Median and KW p-value for the mentioned model, metric, and supply, employing the TC in
Case B.

IID Model ARMA Model
Metric IC IS RT KW p-Value Metric IC IS RT KW p-Value

µZ1 99.96 100.58 100.14 0.22 µZ1t
99.90 99.65 100.76 0.78

µZ2 100.08 101.62 102.08 0.06 µZ2t
99.55 103.45 101.42 <0.001

σZ1 16.69 12.01 16.61 <0.001 σZ1t |Ht 16.83 10.78 17.89 <0.001

σZ2 16.97 12.05 16.85 0.001 σZ2t |Ht 12.33 8.41 11.91 <0.001

$Z1,Z2 −0.05 0.53 0.06 <0.001 $Z1t ,Z2t |Ht −0.03 0.42 0.06 <0.001

µT1 2.98 2.81 2.88 0.034 µT1 3.01 2.74 2.87 <0.001

µT2 3.02 2.62 2.94 <0.001 µT2 3.01 2.64 3.03 <0.001

σT1 1.22 1.36 1.37 <0.001 σT1 1.23 1.41 1.30 <0.001

σT2 1.25 1.22 1.14 0.002 σT2 1.25 1.27 1.19 0.16

DCT1,1 0.124 0.124 0.123 0.86 DCT1,1 0.124 0.123 0.125 0.38

DCT2,2 0.124 0.124 0.124 0.99 DCT2,2 0.125 0.126 0.124 0.44

DCT1,2 0.375 0.376 0.376 0.63 DCT1,2 0.375 0.374 0.378 0.012

DCT2,1 0.375 0.374 0.377 0.11 DCT2,1 0.376 0.374 0.376 0.13

k 2.00 1.80 1.88 <0.001 k 2.01 1.80 1.81 <0.001

HC 0.37 0.07 0.04 <0.001 HC 0.37 0.07 0.044 <0.001

OC1 42.07 39.77 42.25 0.035 OC1 42.27 40.73 41.64 0.21

OC2 80.17 75.47 73.08 0.025 OC2 80.55 73.31 69.54 <0.001

- - - - - φ1 −0.008 0.003 0.007 0.36

- - - - - φ2 −0.00028−0.0098 0.024 0.95

- - - - - ϑ1 0.006 −0.021 −0.032 0.50

- - - - - ϑ2 0.0017 −0.02 −0.047 0.21
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Table 4. Median and KW p-value for the mentioned metric, and supply, employing an ARMA model
for DPUT based on CC1.

Metric IC IS RT KW p-Value

σZ1t |Ht 16.46 9.41 17.01 <0.001
σZ2t |Ht 11.97 8.17 13.39 <0.001

$Z1t ,Z2t |Ht −0.001 0.50 −0.058 <0.001

φ1 −0.007 −0.06 0.021 0.570
φ2 −0.005 0.21 0.090 0.007
ϑ1 0.002 0.31 −0.024 0.030
ϑ2 −0.001 0.01 −0.019 0.680

3.3. Simulation Study II

According to [6], the consolidated effect metric formulated in (31) may be a response
variable modeled by a linear function of R = V(T2)/V(T1). From the scatter-plots of
Figure 4 with (left) independent and (right) dependent frameworks for the DPUTs, note
that approximately linear forms are identified. Then, we consider a linear regression
model to analyze the behavior of the consolidated effect metric. The estimated regression
coefficients, standard errors, and t-test p-value, with temporal dependence for both R > 1
and R < 1, related to the consolidation effect, are reported in Table 5.

Comparing the regressions obtained with R > 1 and R < 1 in Table 5, note that both
coefficients of the intercept, µ2t , OC2 and σT2 decrease and maintain their significance, while
the coefficients of µ1t , OC1 and σT1 increase keeping their significance. First, the regression
coefficients of σZ1t |Ht

and µT2 decrease in magnitude and significance, when R > 1 and
R < 1 are compared, whereas an opposite result occurs with σZ2t |Ht

and µT1 . Second,
the regression coefficients of the distribution costs (DCT1,1 DCT2,2 , DCT1,2 , DCT2,1), as well
as the AR (φ1, φ2) and MA (ϑ1, ϑ2) coefficients, are not significant in all cases. Third,
the coefficient of $Z1t ,Z2t |Ht

maintains its magnitude and significance with R > 1 and
R < 1, whereas its R-squared coefficients are similar. An analogous analysis without
time-dependence can be consulted in Table 7 of [6].

Figure 4. Scatter-plot of consolidated effect versus R = V(T2)/V(T1) for IID (left) and serial (right)
DPUTs.
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Table 5. Indicators of the t-test for the listed covariate parameter on the consolidated effect with an
ARMA model utilizing DPUT and the mentioned R.

R > 1 R <1
Covariate

Estimate Standard Error p-Value Estimate Standard Error p-Value

Constant 3.256× 10−1 1.333× 10−2 <0.001 1.998× 10−1 1.423× 10−2 <0.001
µZ1t −6.482× 10−4 2.876× 10−5 <0.001 3.449× 10−4 2.995× 10−5 <0.001
µZ2t 4.408× 10−4 2.878× 10−5 <0.001 −4.365× 10−4 2.983× 10−5 <0.001

σZ1t |Ht 3.127× 10−4 4.209× 10−5 <0.001 7.747× 10−5 4.424× 10−5 0.080
σZ2t |Ht 8.543× 10−5 4.222× 10−5 0.0431 3.036× 10−4 4.451× 10−5 <0.001

$Z1t ,Z2t |Ht −7.013× 10−3 5.685× 10−4 <0.001 −6.852× 10−3 5.915× 10−4 <0.001
µT1 −6.603× 10−4 2.842× 10−4 <0.001 2.576× 10−3 3.006× 10−4 <0.001
µT1 1.570× 10−3 2.859× 10−4 <0.001 −1.249× 10−3 3.034× 10−4 <0.001
σT1 −3.185× 10−1 1.267× 10−3 <0.001 2.091× 10−1 1.123× 10−3 <0.001
σT2 2.009× 10−1 1.161× 10−3 <0.001 −2.981× 10−1 1.284× 10−3 <0.001

DCT1,1 4.184× 10−2 2.341× 10−2 <0.001 6.839× 10−3 2.403× 10−2 0.776
DCT2,2 6.057× 10−3 3.189× 10−2 0.8494 4.562× 10−3 2.397× 10−2 0.849
DCT1,2 2.424× 10−2 2.331× 10−2 0.2985 4.596× 10−4 2.425× 10−2 0.985
DCT2,1 2.810× 10−2 2.322× 10−2 0.2263 −1.952× 10−3 2.385× 10−2 0.935

k −2.020× 10−2 6.098× 10−4 <0.001 −8.566× 10−5 6.119× 10−4 0.889
HC −7.082× 10−2 1.907× 10−3 <0.001 2.374× 10−3 1.831× 10−3 0.195
OC1 −1.015× 10−3 2.345× 10−5 <0.001 1.151× 10−3 2.346× 10−5 <0.001
OC2 8.449× 10−4 9.813× 10−6 <0.001 −6.272× 10−4 1.054× 10−5 <0.001
φ1 −4.756× 10−4 5.899× 10−4 <0.001 −5.691× 10−5 6.008× 10−4 0.925
φ2 −3.858× 10−4 5.592× 10−4 <0.001 −2.969× 10−4 5.989× 10−4 0.620
ϑ1 −4.507× 10−4 5.770× 10−4 <0.001 −4.469× 10−4 5.926× 10−4 0.451
ϑ2 2.567× 10−4 5.945× 10−4 <0.001 4.247× 10−4 5.972× 10−4 0.477

4. Empirical Application and Implications

This section applies our methodology to real data and provides management implica-
tions in decision making.

4.1. Illustrative Example

To illustrate our methodology, we apply it to real data taken from kaggle.com/c/com
petitive-data-science-predict-future-sales (accessed on 29 June 2020).

The data correspond to sales of one of the biggest software firms in Russia named 1C
Company. This data set is free to utilize for any purpose, including commercial use. We
employed the total monthly sales over 24 months for the product with the highest demand
in Moscow. The identifier of this product is ID 20949.

We considered the two demand points that contain sufficient history to fit an ARMA
model: the demand points #27 and #31. We call these demand points the decentralized
stores. The data considered are shown in Table 6 and graphically represented in Figure 5.
Descriptive statistics for both demand points are detailed in Table 7. From this table,
graphically supported by Figure 5, note that demand point #31 has demand mean and SD
greater than stock point #27. Plots of the autocorrelation function (ACF) and partial ACF
(PACF) are simple techniques to find temporal DPUT patterns. The reader is suggested to
see [28] for an explanation of these graphical plots. To check the temporal dependence of
sales, we used the ACF and PACF for both demand points #27 and #31. Their graphical
plots are shown in Figure 6, which suggest time-dependence in both time series. Given this
result, we utilized the forecast library of the R software with its auto.arima function to fit
an ARMA model and estimate its order as well as its parameters. Also, we used the Akaike
information criteria (AIC) to select the better model, where a less value of AIC indicates a
better fit of the model. The results coincide with the recommendation provided in Figure 6,
since the fitted ARMA models are AR(φ = 0.59) and MA(ϑ = 0.69) for demand points #27
and #31, respectively. Furthermore, the estimated SDs conditioned on past data are 118.88
and 211.12 units, respectively.

kaggle.com/c/competitive-data-science-predict-future-sales
kaggle.com/c/competitive-data-science-predict-future-sales
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Table 6. Data set corresponding to sales of the 1C Company for the indicated month and year.

Month
Store #27 Store #31

2013 2014 2015 2013 2014 2015

January N/A 557 552 N/A 899 743
February N/A 337 300 N/A 941 180
March N/A 360 237 N/A 776 481
April N/A 218 280 N/A 597 460
May N/A 272 197 N/A 602 434
June N/A 300 126 N/A 625 482
July 271 268 N/A 799 528 N/A
August 270 348 N/A 820 591 N/A
September 260 335 N/A 950 639 N/A
October 283 312 N/A 978 634 N/A
November 348 426 N/A 989 772 N/A
December 598 792 N/A 1305 1209 N/A

Where N/A is not applicable, not available, not assessed, or no answer.

Table 7. Descriptive statistics for the data set corresponding to sales of the 1C Company for the
indicated store.

Store Minimum Q1 Median/Q2 Q3 Maximum Mean SD

#27 128.00 269.50 300.00 351.00 792.00 343.71 147.16
#31 180.00 575.25 691.00 909.50 1305.00 726.42 258.42

Where Q1, Q2, and Q3 are the first, second, and third quartiles, respectively.
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Figure 5. Time series plot of data set corresponding to sales of the 1C Company.

To evaluate the behavior of our model, we considered low, medium, and high val-
ues for the cost parameters of the proposed model, employing the metrics detailed in
Section 3.1. Following [6], we stated the safety factor parameter: k ∈ {1, 2, 3}; OC:
OC1 ∈ {20, 40, 60} and OC2 ∈ {20, 80, 140}; mean LTs: LT1 = LT2 ∈ {1, 3, 5}; and
SDs: SLT1 = SLT2 ∈ {0.5, 1, 2}. The proposed model was implemented for all possible
combinations. The TCs were evaluated under the TD and BB rules and compared with
TC under an IS. In this experiment, overall, 56.06% of the occasions have lower TC under
the TD rule, while in 43.9% of the cases, the best decision was the BB rule. There are no
lower TC under the IS. One of the most interesting findings resides in the choice of k. It is
expected that, as k increases, the TC increases as well, regardless of the evaluated system.
However, when k = 1, most decisions minimizing costs were made under the BB rule.
In other cases, when k ∈ {2, 3}, the TD rule minimized the costs in 59.12% and 69% of the
cases, respectively. These results are shown in Figure 7.
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Figure 6. ACFs (left) and PACFs (right) for demand points 27 (top) and 31 (bottom).

Figure 7. Distribution of selected allocation rules which minimize the TC by all combinations of the
presented experiment.

Without loss of generality, when the choice is to centralize, the inventories are consol-
idated in location 1. Unsurprisingly, such a choice tends to be made when OCs for that
centralized location are lower, while OCs for the second centralized location are high. No
significant differences were observed concerning the average LT.
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Nevertheless, it is possible to notice that, when the variability of the LT in centralized
location 1 is low compared to the variability of the LT of location 2, the best decision
also tends to make centralization in one location. Then, we applied a decision tree using
the R software to detect deep patterns in the decision framework. Figure 8 shows the
corresponding results. From this plot, we can observe that most decisions are related to LT
and variability of the SS. Furthermore, we can observe a particular case when the OC1 is
high with low OC2. Then, the decision is to apply a centralization under the TD rule. This
is expected because this allocation rule centralizes the inventories mainly in one dedicated
facility. In this specific case, the solution is centralized in the facility with lower OC, that
is, location 1, except for the presence of a high LT variance for facility 1 and lower LT
variance for facility 2. In the case of the IID framework, the results are very similar. Note
that examination of Figures 8 and 9 shows that the safety factor is more critical. We can
notice that there are no different patterns.

Figure 8. Tree of decision for the empirical application under a time-dependent framework.
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Figure 9. Tree of decision for the empirical application under a time IID framework.

4.2. Implications in Management

Following the analysis done in [14], we explain the consequences of the obtained find-
ings for logistics management when decision making. First, when inventory consolidation
is desired, it is critical to understand the temporal patterns that DPUT data might have. We
conclude from our results that these temporal patterns directly affect the metrics associated
with the correlation and variance of the demand when historical data are included. These
metrics directly influence component CC1 of the inventory TCs, which is the essential
component in all pooled inventory and supply IS strategies; see Figure 3. Next, some of the
main implications are provided:

• When facing DPUTs with a temporal structure, the supply IS is favored as it is related
to decreasing variances and correlations conditioned on past data.

• IID DPUTs favor IC systems with an increase of the HC of CS.
• Temporal dependence favors lower CC1 with RT systems.
• The metrics with a high effect on percentual consolidate effect for R > 1 are ordered

as: σ2
T > HC > k > $Z1t ,Z2t |Ht

> OC f > µZt > µT > V(Zt|Ht).

• The metrics with a high effect on the percentual consolidate effect for R < 1 are:
σ2

T > $Z1t ,Z2t |Ht
> OC f > µT > µZt > HC > V(Zt|Ht) > k.
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As explained at the end of Section 3.2, one of our findings is that the medians of
$Z1t ,Z2t |Ht

associated with IC and supply IS is less than $Z1,Z2 . This finding can be ex-
plained because $Z1t ,Z2t |Ht

should be regulated by the temporal structure described by the
parameters φ and ϑ. Then, we propose regressions, for R > 1 and R < 1, between the
response variable related to the consolidate effect and $Z1t ,Z2t |Ht

, as well as with other
covariates conditional on given values of Φ = φ and ϑ = ϑ, to establish when this regu-
lation is greater or less. These results are shown qualitatively for better comprehension
in Table 8, in which the regulation effect of the temporal structures is given in intervals
for parameters Φ and ϑ, indicating that this effect goes from more to less according to
the notation +++ > ++ > + > −. Recall that the IC is associated with $Z1t ,Z2t |Ht

< 0,
and its regulations are considered more significant to favor the IC, while the corresponding
regression coefficient is more negative.

Table 8. Regulation effect of $Z1t ,Z2t |Ht
given the temporal structure values of Φ and ϑ on the

consolidate effect.

R > 1 Φ [−1.0− 0.5] [−0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

ϑ [−1,−0.5] − + − +
[−0.5, 0.0] + − − ++
[0.0, 0.5] ++ ++ − +++
[0.5, 1.0] + ++ +++ − −

R < 1 Φ [−1.0,−0.5] [−0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

ϑ [−1.0,−0.5] + ++ +++ +++ −
[−0.5, 0.0] ++ ++ ++ −
[0.0, 0.5] + + + −
[0.5, 1.0] − − − −

The regulation effect goes from more to less according to the notation +++ > ++ > + > −.

From the analysis provided in Table 4, it is essential to highlight some differences that
occur when comparing the medians of the ARMA metrics. These metrics are associated
with the different supply systems that decrease CC1. There, models with pure positive AR
coefficients (without considering the MA part) or positive coefficients of pure MA (without
considering the AR part) would be more associated with an IS supply. This generates
visible “wave” patterns, which would be related to the IS supply. In addition, coefficients
of positive MA are related to upward trends of the time series, which would be associated
with an IS supply as well. In the case of positive AR models, the consecutive residuals
share similar values and signs, showing large areas of overestimation and underestimation.

5. Discussion, Concluding Remarks, Limitations, and Further Work

In this section, we discuss our investigation and provide conclusions, limitations,
and ideas for further research.

5.1. Discussion

Our findings suggest new decision-making patterns to be considered in comparison
with previous works. We model the temporal disposition of demand data, due to its effect
on the variance conditional on past data. This effect suggests that the rule with the best
behavior is a pooled inventory in the safety stock that was consolidated, which is obtained
by multiplying with the holding cost and then by the total cost.

Specifically, given that safety stocks increase as the variance is greater, the existence
of temporary structures for demand data under an ARMA model implies lower levels
of safety stocks, due to the conditional demand overtime on the data is less than the
marginal variances typically assumed under an approach of independent and identically
distributed random variables. Regarding the total cost, we suggest selecting dedicated
facilities for supply. Regular transshipment outperformed the independent supply system
statistically for the component associated with the safety stock that was consolidated, which
is multiplied by the holding cost.
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We detect that when the demand per unit of time of different decentralized sites has
low variance and positive correlation among them, an independent system is usually the
best option to consider in the supply chain. This result is consistent with the conclusions
given in [6] for an independent and identically distributed random demand, but now
studied in a time-dependent framework.

5.2. Conclusions

In this study, we have analyzed the effect of consolidation on inventory costs compared
to a system without consolidation. We have formulated an inventory structure based on
continuous-review using allocation rules for regular transshipment and centralization,
which has established temporal structures of demand. Our methodology proposed in this
work was implemented in R language developed by the authors, which is available to the
readers upon request. This allowed us to conduct simulations employing synthetic data
with and without autoregressive moving average structures and to prove our model under
a real-world data scenario. Numerical simulations have demonstrated that, under time-
dependence, the conditional demand variance, based on past data, is less than the marginal
variance. Our finding favors dedicated locations for inventory replenishment. In addition,
temporal structures have reduced the costs of maintaining safety stocks through regular
transshipments when such temporal patterns exist. These results have been also illustrated
in an example employing real-world data.

In summary, in the previous research [11,14,16–19,21] to our study, such as was
warned in [22], there was a gap on inventory models under consolidation effects between
those that incorporate temporal dependence and those that do not. In this context, one of
the few works on consolidation effects in inventory models is [23], while in [24], optimal
policies were proposed for inventories with temporally correlated demand in a similar
setting, although not on the consolidation impact. In the present study, we have covered
such a gap. Our investigation has provided essential information for managing supply
chains in the presence of time-patterned demands. These findings are of interest to decision-
makers in the supply chain.

5.3. Limitations and Future Research

Although this work considers a critical aspect, such as the time-dependence on the
demand, one of its limitations is the assumption of a Gaussian distribution, which is usually
violated in practice. To address this problem, this work may be expandable to more general
models, for example, to the largely known generalized linear modeling. This type of
model is widely flexible, permitting functional forms that may be linear and non-linear [37].
Furthermore, probability distributions different from the Gaussian or normal model can be
considered this kind of statistical model assumed for the demand, enabling other shapes of
the demand statistical distribution to be assumed [31]. Moreover, multivariate distributions
may also be considered [38]. It is essential to state these new statistical methods when
studying a cost reduction through the use of locations for facilities of consolidation, which
combine diverse shipments enhancing the service level [12]. These ideas are being explored
by the authors and their findings will be documented in new publications. Other directions
and applications on our proposal are presented in [39–43].
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