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Abstract: The growing importance of the membrane-based air separation processes results in an
increasing demand for suitable polymeric membrane structures. This has spurred the interest in
designing polymer structures for O2/N2 separation by employing a systematic approach. In this
work, a computer-aided molecular design (CAMD)-based framework was developed to identify
promising structures of polymers that can be used for air separation. To incorporate constraints
in CAMD, the rough set-based machine learning (RSML) method was implemented to establish
predictive models for the physical and transport properties of polymer owing to its interpretability.
The deterministic rules generated from RSML would be interpreted scientifically reflecting the
structure–property relationship to ensure that the molecules generated were feasible according to
a scientific point of view. The most prominent rules selected were then integrated as constraints in
CAMD. The relevant properties in this framework comprised of glass transition temperature (Tg),
molar volume (Vm), cohesive energy (Ecoh), O2 permeability and O2/N2 selectivity. The solutions
from CAMD optimisation were demonstrated in case studies. Results indicated the capability of a
novel approach in identifying potential polymeric membrane candidates for air separation application
that meet the permeability and selectivity requirements.

Keywords: polymer membrane; air separation; topological indices; rough set-based machine learning;
computer-aided molecular design

1. Introduction

Polymeric membrane separation has been transitioning from a laboratory curiosity
to a commercial reality for the separation of common gases, which is gaining popularity
over the commercial process accomplished by adsorption, cryogenic distillation and amine
absorption. The global gas separation membrane market size has expanded from USD
1.88 billion in 2022 to USD 2.09 billion in 2023 at a compound annual growth rate (CAGR)
of 11.3% [1]. The market size is forecasted to further grow to USD 3.01 billion in 2027
with a CAGR of 9.5% [2]. This is because the membrane offers simplicity in operation,
lower energy costs, a smaller footprint and viable economics as compared to distillation
and adsorption; thus, it is extensively used in petrochemical industries, ammonia plants,
natural gas processing units and air separation fields [2].

One of the main focuses for membrane-based application is the air separation process
which is of great significance to the chemical industry to produce enriched oxygen and
nitrogen. Air separation by membranes makes up approximately USD 155 million of the
overall membrane gas separation business [3]. Membrane performance greatly depends on
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its properties including tensile strength, selectivity and permeability. Therefore, efforts and
developments are made to synthesise novel polymers with better separation properties
and to understand the optimum properties for a polymeric membrane that functions to
separate oxygen and nitrogen in the air. Ideally, commercially viable membranes shall
possess superior selectivity and permeability in addition to mechanical stability for long
operating life. However, there are still yet feasible membranes with such features to be
applied in large-scale industrial air separation processes [4].

The design and screening of suitable polymeric membrane material is a resource-
intensive process and depends heavily on the available polymer property databases in the
market. Moreover, there are limited complete databases reported on structural properties,
membrane permeability and selectivity towards O2/N2. Traditional methods of developing
a new polymeric membrane structure consume a vast number of chemical compound
assessments prior to the final selection, which increases the possibility of overlooking
potential polymer structure. To resolve such challenges, a reverse formulation approach
known as computer-aided molecular design (CAMD) was employed in this study. It is
an effective tool for the design and screening of molecules by forecasting the molecular
structure using a set of chemical, physical and structural properties. The pre-requisite
for initiation of CAMD modelling is to develop property predictive models including
topological, structural, physiochemical and electronic descriptors which are closely related
to polymer molecules. Prediction models were therefore developed using machine learning
algorithms to relate polymer properties, represented by topological indices with their
molecular structures.

1.1. Rough Set Machine Learning (RSML)

Machine Learning (ML) is a discipline of artificial intelligence (AI) focusing on the
use of computational algorithms that are designed to emulate human intelligence through
exploring patterns in a series of data for future prediction [5]. Nevertheless, most of the
modelling which employs ANN, support vector machine (SVM) and Gaussian process
regression (GPR) methods require large datasets. In the case where these modelling
methods are used even if lack of large data amount, it will lead to unreliable ML algorithms
for designing polymers [6]. Furthermore, both ANN and SVM algorithms are black-box
treatments by nature, making the learning of principles behind the models challenging.
It is necessary to interpret the influence of a specific property on the prediction approach
for a plausible gas permeability prediction [7]. Among the ML techniques, rough set ML
(RSML) is reported to have the benefit of interpretability to support decisions based on
scientific reasoning [8]. Therefore, RSML introduced by Pawlak in the early 1980s, was
chosen to be applied in this study owing to its ability to deal with vagueness, inconsistency
and uncertainty [9]. The main advantage of rough set theory is that none of the preliminary
information about the data is required such as statistical probability distribution, grade of
membership or fuzzy set possibility value.

Rough set theory is proven to be useful in real-life applications and it is applicable
for the case when the data are limited. It has compelling applications in multiple fields
such as medicine, engineering design, business, pharmacology, decision analysis, banking
and others. It works in the form of rules which are induced by learning from training
examples [9]. RSML produces a set of decision rules from the specified attributes covering
all the training data examples with the derived certainty, strength and coverage. RSML
has been implemented to determine secure geological reservoirs for the minimisation of
CO2 emissions by analysing data from storage sites. Predictive models generated from
RSML showed similar results with site selection rules which were established according
to proficient knowledge [10]. One of the recent works employed RSML for the prediction
of energy consumption within a building, where it was used to eliminate redundant
influencing factors prior to the identification of crucial component contributing to the
energy consumption [11]. RSML was also used to develop models to predict the fragrance
of molecules based on their chemical structure [12]. In another contribution, RSML has
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been successfully used to identify the optimal operating conditions to produce bio-oil from
biomass through fast pyrolysis [13].

Generally, RSML is useful to establish the concealed order in a dataset for the genera-
tion of decision algorithms, classification of data and discovering cause–effect relationships
of the attributes and decision rules [9]. The concept of indiscernibility relation, which is
correlated with a set of attributes, applies to RSML. The variables will be classified into
conditional attributes (inputs) and decision attributes or objects (outputs). Suppose U is
a finite set of objects, also called the universe, and A is a finite set of attributes. For each
attribute a ∈ A, the value set is associated with Va [14]. Every attribute a establishes a
function as shown in Equation (1). With each subset of attributes B of A, the indiscernibility
relation on U is defined and denoted as I(B) in Equation (2).

fa: U→ Va (1)

I(B) = {(x, y) ∈ U ×U : fa(x) = fa(y), ∀a ∈ B} (2)

RSML can also be used for approximation concepts in the case of any vague or
indefinite concept. It is categorised into lower and upper approximations where the
former comprises all objects that surely belong to the concept while the latter contains all
objects that are less certain to belong to the concept. Approximation ideas are presented in
Equations (3) and (4), where U is the universe, X is a subset or concept of the universe and
B is a subset of A.

B∗(X) = {x ∈ U : B(x) ⊆ X} (3)

B∗(X) = {x ∈ U : B(x) ∩ X 6= } (4)

where B∗(X) is B-lower approximation and B∗(X) is B-upper approximation of X.
For B-boundary region of X-BNB(X), referring to the difference between upper and

lower approximations, it is defined in Equation (5).

BNB(X) = B∗(X)− B∗(X) (5)

The accuracy of the approximation is characterised numerically by coefficient αB,
in Equation (6).

αB(X) =
|B∗(X)|
|B∗(X)| (6)

Rough membership is another concept in RSML that considers the uncertainty of the
elements in the universe, i.e., a vague concept with boundary line situations. Therefore,
the uncertainty is coupled with the membership of a set of elements to form a rough
membership function as described in Equations (7) and (8). µx(x) is the membership
function depicted as a conditional probability, also interpreted as the degree of uncertainty
to which x belongs to X [14].

µB
x (x) =

| X ∩ B(x)|
|B(x)| (7)

µB
x (x) ∈ [0, 1] (8)

In terms of approximation cases, rough membership function is shown in Equations (9)–(11).
It is evident from the equations that a strict relation is present between uncertainty and
vagueness in RSML. Vagueness is thus associated with sets while uncertainty is associated
with the elements of sets.

B∗(X) =
{

x ∈ U : µB
x (x) = 1

}
(9)

B∗(X) =
{

x ∈ U : µB
x (x) > 0

}
(10)
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BNB(X) =
{

x ∈ U : 0 < µB
x (x) < 1

}
(11)

Reduct generation is introduced in RSML, which means a minimal subset of attributes
are generated that allows same categorisation of elements in the universe as the entire set
of attributes and preserves the indiscernibility relation in the system. Another significant
property is the core, which represents the key attribute of all reducts, i.e., it is the intersection
of every reduct and will be included in all reducts. None of the core elements can be
removed without influencing the attributes classification [14]. Since there might be more
than one reduct generated in a single dataset, further evaluation shall be conducted to
select the appropriate reducts that fulfil certain requirements.

To further analyse the decisions and rules generated by RSML, certainty (cerx), strength
(σx) and coverage (covx) are computed. Certainty, which is equivalent to precision, means
the frequency of objects having a decision, D fulfilling the conditions, C in a set of elements.
High certainty deduces a more confident chance for a molecule or element to be classed
in the right decision class. Strength indicates the percentage of the total number of data
classified under certain rules out of the entire dataset. Coverage, which is also known as
recall, defines the objects’ frequency having conditions, C in the decision class, D. Both
are evaluated as the generalisation power of a rule. The overall accuracy of the models,
which is the number of correct predictions over the total number of predictions, was also
estimated. These parameters will be implemented in this work to select the most eminent
rules quantitatively [15]. Ideally, decision rules with both high certainty and coverage are
desired to be utilised as predictive models [15].

1.2. Computer-Aided Molecular Design (CAMD)

CAMD is a reverse engineering methodology that is capable of predicting, estimating
and designing molecules that match a predetermined set of target properties [16]. In CAMD,
predetermined target properties and feasibility conditions are expressed as constraints
in the problem formulation. An optimization model is then used to generate the best
possible molecular structure, based on an objective function that seeks to either maximise
or minimise some of the desired properties [17]. Usually, most CAMD approaches rely
on property prediction models, such as group contribution (GC) methods to predict a
molecule’s properties, which are then used to assess how well the molecule meets the
desired set of properties [18]. Other property prediction models employed in CAMD
involve using topological indices (TIs) as molecular descriptors that rely on quantitative
structure–property relationship (QSPR) for property estimation [19].

Numerous systematic frameworks, procedures, and algorithms based on the CAMD
approach have been developed extensively in recent years. For instance, Wang and Cheng
introduced a CAMD framework to identify a suitable bio-compatible solvent for the ex-
tractive fermentation and separation process [20]. This CAMD problem was formulated as
a multi-objective optimisation (MOO) problem whereby the goal was to simultaneously
optimise several targets, which included maximising the production rate, extraction ef-
ficiency, and limiting solvent usage. A MOO approach using CAMD had been used to
identify effective solvents to extract palm oil from palm-pressed fibre [21]. The method
optimized multiple targets such as performance targets, safety, health and environmen-
tal objectives using Fuzzy Analytic Hierarchy Process. A COSMO-CAMD framework
was developed [22] to design solvents for liquid–liquid extraction processes of phenol
and hydroxymethylfurfural from water. This framework includes quantum mechanical
information incorporated into CAMD, which predicts properties more accurately and
independently of experimental data.

Aside from the vast application of CAMD in solvent design, it is also widely applied
in various chemical product design applications. Yee et al. created a systematic framework
for designing personal care products that integrate safety, health, and performance con-
siderations into the CAMD formulation [23]. By placing limitations on safety and health
risks during CAMD, they were able to generate molecules that were less toxic while still



Processes 2023, 11, 2004 5 of 30

exhibiting outstanding product performance. CAMD approaches have also been used in the
design of polymeric membranes based on group contribution methods [24] and molecular
dynamics [25]. In these approaches, a set of desirable properties of the polymer has been tar-
geted and the polymeric structures that meet those properties have been generated. There
were a few recent studies in CAMD that focused on the development of fragrance products.
For instance, a recent methodology involved the use of a series of MINLP models for
screening and designing fragrances in shampoo using CAMD, which eliminated molecules
that did not meet specific constraints and fragrance design properties [26]. In another study,
an enhanced hyperbox ML approach was integrated with CAMD to generate rules that
were used to create fragrance property prediction models [27]. Similarly, a CAMD frame-
work was developed to facilitate the design of fragrance molecules using a rough set-based
machine learning (RSML) model to generate constraints for the prediction of odour proper-
ties [28]. The hybrid CAMD-ML approach resulted in a diverse array of feasible compounds
that met structural and physical property requirements. Both studies demonstrated the
effectiveness of CAMD in generating potential fragrant molecules for consumer products.
For more comprehensive information on the latest developments in this area, readers can
refer to review articles by Chemmangattuvalappil et al. [29] and Zhang et al. [30].

One of the most important prerequisites for developing a polymeric membrane is
the identification of structures that possess the desirable attributes needed to be used for
this application. Although the CAMD-based polymer design methodology can effectively
determine the polymer structures with desirable properties, there was a need to develop
predictive modes for various polymer-based products to cater for wider applications [24].
Rough set machine learning (RSML) was employed to develop reliable predictive models
for polymer properties, comprising of topological indices in this work. Since there are
no existing models relating TIs with the O2/N2 membrane separation characteristics,
they are used as structural descriptors for property correlations in predicting polymer
properties for air separation. The prominent rules will then be integrated into CAMD as
property constraints after screening the rules generated from RSML. Classification models
were established for physical properties including glass transition temperature (Tg), molar
volume (Vm), cohesive energy (Ecoh) and transport properties such as permeability and
selectivity in view of their impacts towards polymeric membrane functionality and O2/N2
separation feasibility. The polymeric membrane design using CAMD was formulated to
optimise the high tensile strength of the polymeric membrane molecule structure.

2. Methodology

Figure 1 illustrates the methodology developed to design air separation polymeric
membrane molecules by employing RSML and CAMD tools. The entire work is sepa-
rated into 4 main steps, starting with the identification of significant attributes impacting
polymeric membranes, followed by establishment of property prediction models and imple-
mentation of CAMD model for the membrane design and lastly design model verification.

Step 1: Polymer attributes/properties identification

For air separation applications, the role of polymeric membranes is to ensure effective
separation between oxygen and nitrogen. Technical requirements for the polymer attributes
were separated into physical and transport properties. The essential physical properties to
be fulfilled are the fundamental polymer properties to function at normal operating condi-
tions which are glass transition temperature, molar volume and cohesive energies. Glass
transition temperature (Tg) indicates the temperature region where polymer changes from
rigid “glassy” state to flexible “rubbery” state which is undesired in this case since change
in polymer physical state will affect polymer chain flexibility and separation efficiency.
Glassy state membrane generally has higher permeabilities to gases as compared to rubbery
polymer with higher permeabilities for organic solvents [31]. On the other hand, molar
volume (Vm) is related to the fractional free volume of a polymeric membrane representing
the free space and accessible volume in membrane model affecting transport behaviour
of small gas molecules, i.e., membrane diffusivity–separation properties [32]. Cohesive
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energy (Ecoh) is the energy required to break all intermolecular physical links per mole of
polymer which also indicates dispersion, polar and hydrogen bonding interactions [33]. For
transport properties, permeability and selectivity are important factors in the selection of
polymeric membrane structures. Permeability defines the speed at which the gas molecules
transport across the membrane whilst selectivity indicates the separation degree of the
target gas molecules from other molecules [32].
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Step 2: Development of property prediction models for estimating properties

RSML was utilised to develop predictive models for physical and transport properties
using topological indices. Though there are existing models for the physical properties, it
has been reported that the accuracy for Tg and Ecoh models is relatively low [34]. Moreover,
complete polymer data available for both the properties and their respective topological
indices are not abundant, making RSML suitable to be applied in addition to its inter-
pretability. Furthermore, the classification predictive model for each property is more
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relevant in this case as it determines the class to which a polymer’s property belongs,
thereby determining its suitability for air separation applications.

Step 2.1: Database and properties classification

A polymer database was required to develop ML models for data training. Database
established by Van Krevelen and Te Nijenhuis [35] and Bicerano [33] containing polymer
physical properties information were used in this work. Gas permeability and selectivity
information were obtained from Jia and Xu [36] with approximately 60 entries. All the
properties are quantitative and were directly input to build up the information system.
Each physical and transport property was categorised into 2 classes in view of the data
range and availability. Low boundary of Tg was set at 300 K, since from the original dataset,
approximately 67% of the Tg falls above 300 K which is the typical temperature region
to fulfil normal operating conditions. Based on a similar concept, boundary for Vm was
set at 100 cm3/mol whereas Ecoh was 35,000 J/mol. It was desired to have polymer with
Tg higher than 300 K, Vm more than 100 cm3/mol and Ecoh lower than 35,000 J/mol as
higher cohesive energy increases the chain’s density making it harder to allow molecule
permeation [37].

Oxygen separation membranes are attractive if membrane’s selectivity ranges from
4 to 6 while oxygen permeability is more than 10 Barrers [38]. In order to achieve more
extensive penetration and obtain higher product purity, higher membrane selectivity and
permeability values are desired. Therefore, the lower boundary for membrane permeability
was set at 10 Barrers whilst O2/N2 selectivity was set at 4.

Step 2.2: Representation of monomer molecules using topological indices

Topological indices (TIs) used in this study were zeroth and first-order connectivity
indices including its valency, electro-topological state (E-state) index and shape indices in-
cluding Kappa Order 1 to 3 (1κ, 2κ, 3κ) as well as Kappa Alpha Order 1 to 3 (1κα,2κα, 3κα)and
Kappa Flexibility Index. They were utilised to represent numerically the monomer’s physi-
cal properties in terms of structural aspects such as cross-linking, bond types, branching,
electronic information, etc. The connectivity indices were incorporated since they provide
information about the number of non-hydrogen atoms and bonding type of the poly-
mer molecules that will influence polymer physical properties such as Tg, where more
non-hydrogen atoms result in higher Tg.

Kier and Hall’s electro-topological state (E-state) index incorporates both electronic
information and molecular topology to describe the chemical structure at atomic level
which is useful in this case. It is the sum of intrinsic state of atom and perturbation factor
depicting the influence of the remaining atoms in the molecule [39]. On the other hand,
Kappa shape indices characterise molecular structure quantitatively and take into account
spatial density. Kappa shape index also encodes information about size, degree of cyclicity
and degree of separation in branching [40]. By incorporating the shape indices, it provides
insights into polymer cross-linking, degree of branching and molecule sizes, which will
affect the polymer permeability and selectivity. First order Kappa shape index, 1κ, is defined
by one bond fragment counts, 1P where only linear graph is considered. Second order
shape index, 2κ, is described by two-bond paths, 2Pi, with two shape extremes of 2Pmax
and 2Pmin [41]. Likewise, count of paths of three adjacent bonds, 3Pi, configures the basis
for the quantification of third order shape index, 3κ. Inclusion of alpha in shape indices
demonstrates the influence of covalent radius on molecular shape, giving more information
about the polymer structure. Lastly, incorporation of flexibility index is based on the role
of molecular size, cycles, branching and heteroatom content. The flexibility index is made
equivalent to the product of first and second Kappa order, normalised to the number of
atoms in the graph [41].

All the topological indices information was extracted from Toxicity Estimation Soft-
ware Tool (TEST). The software estimates the toxicity as well as topological indices of
chemical structure using QSAR methods. Moreover, the tool eases information collection
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where the toxicity values and other relevant molecular information will be presented once
user inputs the respective molecular structure [42].

Step 2.3: Construction of predictive models using RSML

The identified physical properties and tabulated data for the respective properties
accomplished in the previous steps were defined as the decision attributes. For topolog-
ical indices which are the structural descriptors, they were determined as the condition
attributes. The polymers were selected from the available database with completed TIs
information, for instance, 194 polymers were utilised for generating Tg predictive model. A
total of 70% of the entire dataset were used for training, while 15% was used for validation
and testing, respectively. Out of the 194 polymers, 65 of them have Tg less than 300 K which
were classified as Class 1 while the remaining 129 polymers were equal and more than
300 K, classified as Class 2. However, the completed dataset collected for permeability and
selectivity was much lesser with only 62 and 53 data, respectively. Due to the limited data
availability for permeability and selectivity, 70% of the data were used for training and
the remaining 30% were for validation. There was insufficient data available for testing
permeability and selectivity; therefore, only validation was performed. As mentioned
above, polymers with permeability below 10 Barrers were classed as Class 1 and those
above 10 Barrers were classed as Class 2. A similar approach was used for selectivity cate-
gorisation, with O2/N2 less than 4 classified as Class 1, and equal or more than 4 classified
as Class 2. Likewise, the other physical properties—Vm and Ecoh were also classified into
2 classes with the boundaries as stated in Step 2.1.

All the conditional attributes are composed of topological indices which are continuous
attributes whereas decision attributes consisted of all the physical properties that have
been classified into classes; hence, decision attributes are integer attributes. There were
5 information tables constructed since 5 physical properties predictive models were aimed
to be developed. Table 1 tabulates the layout of a simplified information table where C1,
C2 and C3 are continuous attributes.

Table 1. Simplified polymer information system.

Polymer
Conditional Attributes Decision Attribute

C1 C2 C3 D1

P1 5.9 6.5 3.1 1
P2 5.2 0 0 1
P3 7.7 7.2 4.9 2
P4 9.2 8.9 5.6 2
P5 5.5 5.3 3.4 1

Once the information system was input with complete data, reduction of attributes
was executed to remove redundant attributes. As shown in Table 1, U = {P1, P2, . . . P5} is
the finite non-empty set whilst R = {C1, C2, C3} represents attribute set. Indiscernibility
(I) indicates the polymers that have the same conditional attribute sets. Indiscernibility
for the simplified table of complete relation R, C1&C2, C1&C3 and C2&C3 are shown in
Equations (12)–(15). From Equations (13) and (15), removal of either C1, C2 or C3 attributes
from relation R shows no effect on the table where it still results in the same classification
as original information table. Therefore, C1, C2 and C3 each are indispensable in this case.

(R) = {P1}, {P2}, {P3}, {P4}, {P5} (12)

I(R− {C3}) = I(R) (13)

I(R− {C2}) = I(R) (14)

I(R− {C1}) = I(R) (15)
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In this context, classification generated by all the 3 conditional attributes C1, C2 and
C3 is identical to the classification of C1&C2, C1&C3 and C2&C3. In order to determine
the reducts of R, pairs of attributes C1&C2, C1&C3 and C2&C3 are to be checked if they
are independent. Since I(C1&C2) 6= I(C1) and I(C1&C2) 6= I(C2), pairs of C1&C2
are independent. Likewise, C1&C3 and C2&C3 are also determined to be independent.
Therefore, the reducts of R are found to be {C1}, {C2} and {C3}. The core is not present in
this example since there is no attribute which is the intersection of all reduct sets. Moreover,
there are no superfluous attributes which can be omitted in this example since each attribute
is a standalone reduct, i.e., each reduct is capable of determining the classification of the
system. Subsequently, each reduct was applied to derive a set of rules. For example,
attributes C2 and C3 were omitted during rules generation for reduct {C1}. Similar approach
was implemented for the other reducts. Three rules were generated in this example:

1. Rule 1: (C1 < 6.8)→ (D1 = 1)
2. Rule 2: (C2 ≥ 6.85)→ (D1 = 2)
3. Rule 3: (C2 ≥ 4.15)→ (D1 = 2)

In this work, there were 12 conditional attributes in the completed information table
and 2 classes in each decision attribute to distinguish between normal or robust and
unusual or less desired physical properties. A section of the permeability information table
is attached in Appendix A—Table A1. Similar steps were employed to generate decision
rules by deriving reducts from training data. Reducts and rules were generated using
the software Rough Set Data Explorer-ROSE2 [43]. Rules generated were then validated
using validation dataset by evaluating certainty (cerx), strength (σx) and coverage (covx).
These parameters are defined in Equations (16)–(18), by letting S = (U,C,D). The final rules
selected were after evaluation of testing dataset. The testing data were sourced from other
references to avoid bias issues. Generally, the benchmark for coverage and certainty was set
to be higher than 70% to select high coverage and certainty rules. Finalised rules were to be
used as property constraints in CAMD. Results of ROSE2 and variation of rules selection
are discussed in Section 3.1.2.

σx (C, D) =
suppx(C, D)

card(U)
(16)

cerx(C, D) =
card(C(x) ∩ D(x))

card(C(x))
=

suppx(C, D)

card(C(x))
=

σx(C, D)

π(C(x))
(17)

covx(C, D) =
card(C(x) ∩ D(x))

card(D(x))
=

suppx(C, D)

card(D(x))
=

σx(C, D)

π(D(x))
(18)

where π(C(x)) = card(C(x))
card(U)

and π(D(x)) = card(D(x))
card(U)

.

Step 3: Design of air separation polymeric membrane molecules using CAMD model

In the optimisation model, the objective function was to maximise tensile strength
of the polymer. High tensile strength is essential so that polymeric membrane is able to
withstand mechanical stresses during operation and maintain their integrity to allow for
appropriate gas flux across the membrane [44]. Property constraints were included in
CAMD model which was derived from RSML algorithms decision rules.

Step 3.1: Formulation of structural constraints

In order to generate a feasible molecular structure, structural constraints were included
in CAMD model so that molecules do not violate basic feasibility criteria such as octet
rule. The molecules should not contain any free bonds or have any unattached sites or
multiple bonds attached to the same site. First, suitable first-order molecular groups were
selected that may potentially form the building blocks for a monomer molecule design. The
first-order molecular groups determined were as stated in Appendix B—Table A2. Linear
structural constraints were developed using integer variables based on the algorithms
developed by Churi and Achenie [16]. Let m be the number of structural groups, vk be
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the valence of the kth group while smax indicates the maximum valence of all the groups
in the basis set. Moreover, n is the number of groups in the designed structure and nmax
is the maximum number of groups allowed in a molecule. m structural groups having
vk with maximal valency, smax, were specified at a reasonable nmax. Lower limit of nmax is
2 as it is the minimum group to form a molecule. The actual number of groups, n, will
then be obtained from the mathematical programming model. Therefore, in this study, the
parameters were

m = 12

vk = [1 1 1 1 3 3 1 1 3 2 2 2 ]

smax = max {vk} = 3

nmax = 14

The entire structural constraints consist of three binary and discrete variables—u, z
and w, defined with indices i, j, k and p. Indices i and p define structural group’s position
in a designed molecule. Index k specifies the type of functional group while j implies the
site of which ith group is attached to pth group. As shown in Equation (19), uik defines if
ith position is occupied by kth group in the molecule and it restricts each position i with
only one group k. Octet rule is defined in Equation (20) to ensure the number of bonds
connected to a group that corresponds to its valency. zijp indicates if ith group is attached
to pth group via jth site.

nmax

∑
i=1

m

∑
k=1

uik ≤ nmax (19)

nmax

∑
p=1

smax

∑
j=1

zijp =
m

∑
k=1

uikvk ; i = 1 . . . nmax (20)

Equation (21) constrains the ith group to be attached to one of the groups before it,
defined by (i− 1). w in the equation is also a binary vector which signifies valence site; thus,
the first and second terms are zero since they will be occupied. The presence of first term is
emphasised in Equation (23) and (i + 1)th group is only present if ith group is present to
assure that only one molecule is formed, which is defined in Equation (24).

i−1

∑
p=1

smax

∑
j=1

zijp ≥ −wi ; i = 2 . . . nmax (21)

nmax

∑
i=1

m

∑
k=1

uik +
nmax

∑
i=1

wi = nmax (22)

wi = 0 (23)

wi ≤ wi+1 ; i = 1 . . . (nmax − 1) (24)

To account for various group valences, Equation (25) is introduced in linear form,
stating that for kth kind of ith group, the group should not have any attachments for its
sites (vk + 1) to smax which are non-existent. M is a significantly larger number than all other
terms in the equation, specified as 50 in this model. Furthermore, Equation (26) denotes the
symmetry constraints, for instance, the first group attached to second group is equivalent
to the second group connected to first one. Since a group cannot be attached to itself, p is
set to start from 2.

smax

∑
j=vk

nmax

∑
p=1

zijp −
nmax

∑
p=1

zivk p + Muik ≤ M ; i = 1 . . . nmax, k = 1 . . . m (25)
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smax

∑
j=1

zijp =
smax

∑
j=1

zpji ; i = 1 . . . (nmax − 1), p = (i + 1) . . . nmax (26)

Equation (27) ensures that a group’s site can only be attached at most once to another
group. Lastly, for any existence of ith group, (i − 1)th group should also be present, as
defined in Equation (28). Structural constraints from Equations (19)–(28) are all linear,
forming a convex hull.

nmax

∑
p=1

zijp ≤ 1 ; i = 1 . . . nmax, j = 1 . . . smax (27)

m

∑
k=1

uik −
m

∑
k=1

ui−1,k ≤ 0 ; i = 2 . . . nmax (28)

In addition, the prevention of free bonds number formed in generated molecule is
described in Equation (29).

vk

nmax

∑
i=1

uik − 2(nmax − 1) = 0 ; k = 1 . . . m (29)

Step 3.2: Modelling of Air Separation Polymeric Membrane Molecule

After formulating all the structural criteria, the objective function (Equation (30))
was encoded, where the predictive model for tensile strength, σ, was extracted from
Eslick et al. [45]. The 1x in the predictive model means first order connectivity index
whereas 1xV is the first order valence connectivity index. CD indicates crosslink density
that is computed in Equation (31) where DC is degree of conversion determined empirically,
wi is the weight fraction of monomer i, nvi is the number of vinyl groups in monomer i and
MWi is the monomer i molecular weight.

σ = 1406.6− 7484.51x + 6611.61xV + 78, 231.7CDmax − 149, 268.6CD (30)

CD = DC∑
i

wi(nvi − 1)
MWi

(31)

The framework was a single objective problem aiming to maximise polymer tensile strength.
However, mathematical programming algorithms were to be developed to correlate binary
terms in structural constraints with the connectivity indices in the predictive model. The
correlation terms were derived for 1x and 1xV in Equations (32) and (33), respectively.

1x =
nmax

∑
i=1

nmax

∑
p=i+1

∑smax
j=1 zijp√

∆i∆j

(32)

1xV =
nmax

∑
i=1

nmax

∑
p=i+1

∑smax
j=1 zijp√
∆V

i ∆V
j

(33)

∆i =
nmax

∑
i=1

uikδk ; k = 1 . . . m (34)

∆V
i =

nmax

∑
i=1

uikδV
k ; k = 1 . . . m (35)

Equations (32)–(35) were utilised to determine the connectivity indices of the bond
between the attachment of the groups at different positions. Nevertheless, connectivity
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indices within the first-order group itself were also calculated using similar approach where
edges of the groups are known [46], as presented in Equations (36) and (37).

1x =
nmax

∑
i=1

uik√
δiδj

; k = 1 . . . m (36)

1xV =
nmax

∑
i=1

uik√
δV

i δV
j

; k = 1 . . . m (37)

Incorporation of Equations (30)–(37) make the optimisation formulation non-convex
because of the trilinear terms. Therefore, it is necessary to linearise some of the equations
and make it a convex problem to obtain feasible solutions. In this context, the trilinear
terms in Equations (32) and (33) were modified to make the square root denominator terms
known values, which will be demonstrated in Section 3.2.2.

Step 3.3: Incorporation of physical constraints in CAMD modelling

To ensure a viable molecule could be generated, property constraints determined
from RSML were included. Since tensile strength is influenced by connectivity indices
as observed in Equation (30), the constraints to be included in CAMD consist of only the
selected predictive rules comprising connectivity indices. The remaining selected predictive
rules containing other topological indices were cross-checked and verified again after the
molecular structure was derived. The property constraints model will be either of upper
and/or lower bound number range derived from RSML to ensure the molecule designed
is under the desired category. At this stage, the CAMD formulation has been formulated
by maximising σ, subjected to structural and property constraints. The CAMD problem
was then solved using global solver in LINGO extended version 20.0 after transforming the
non-linear terms in Equations (32) and (33) to be convex functions, which will be elaborated
in Section 3.2.2.

Step 4: Verification

Once a molecule was generated from CAMD, it was first verified whether the molecule
exists in the present polymer database. If the designed molecule was present in existing
database, this proved the model’s accuracy in discovering potential polymer structure
candidates. In the context where the polymer generated was not suitable for air separation
purposes, integer cuts constraints would be incorporated to generate different solutions.
Otherwise, if it is not available in present database, a literature review could be performed
to determine its separation characteristics. If the designed molecule could neither be found
in the literature nor existing database, experimental verification should be conducted to
validate the molecule’s properties. Solutions from CAMD could be utilised to guide the
focus of experimental analysis. However, if the generated molecules were not able to meet
the desired properties, RSML shall be revisited and modified to improve the prediction
reliability and accuracy.

3. Results and Discussions

The development of polymer properties predictive models is pre-requisite for CAMD
formulation; therefore, the determined rules generated from RSML were discussed exten-
sively prior to incorporating them as property constraints into CAMD problem. Approach
to generate feasible polymer structure was demonstrated with case studies as well.

3.1. Development of Predictive Models Using RSML

Polymer predictive models from RSML were used as constraints in the generation of
feasible polymeric membrane molecules. The generation of cores, reducts and rules as well
as selection of most prominent rules were discussed in the following sections.
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3.1.1. Cores and Reducts Generation

There were five information systems established for Tg, Vm, Ecoh, O2 permeability and
O2/N2 selectivity, respectively. Each of the information systems consisted of 12 conditional
attributes whilst the decision attribute was each classified into 2 classes—Class 1 being the
less desired property ranges and Class 2 as the more favoured property ranges. There was
no core generated from either of the information systems. Nevertheless, the number of
reducts generated from Tg, Vm, Ecoh, O2 permeability and O2/N2 selectivity information
systems were 19, 20, 20,11 and 10, respectively, where repeated rules were identified in the
subsequent analysis.

3.1.2. Rules Generated from Reducts

All the rules generated from all the reducts were evaluated based on their strength,
certainty and coverage. In this study, a total of 602 rules were generated from Tg reducts,
305 rules for Vm, 206 rules for Ecoh, 192 rules for permeability and 157 rules generated
for selectivity. Table 2 presents the example rules from each decision class extracted from
selectivity reduct 1.

Table 2. Example rules generated from selectivity reduct 1.

Rule Kappa Order 3 Kappa Alpha
Order 2 Decision Strength Coverage

(Recall)
Certainty

(Precision) Accuracy

2 5.432 to 11.545 - Class 1 (Selectivity < 4) 13.51% 29.41% 100% 83%
10 <3.828 0.671 to 1.773 Class 2 (Selectivity ≥ 4) 10.81% 20% 100% 60%

Based on Table 2, rule 10 covers 4 data out of the entire training dataset consisting of
37 data, having a strength of 10.81%, which is considered as a feasible rule to be applied in
CAMD by constraining Kappa Order 3 and Kappa Alpha Order 2 values according to the
values derived from RSML. Rule 10 in this case also depicts that Kappa Order 3 is lesser
than 3.83 and the effect of Kappa Alpha Order 2 potentially results in high certainty that
the polymer has O2/N2 selectivity of more than 4. All the other rules were interpreted
in a similar manner, however, since there were abundant rules generated that fall under
the desired properties class, further interpretation and analysis were performed to select
reasonable rules.

Generally, the rules generated for Tg, Vm and Ecoh show high coverage and strength
as compared to the rules derived for permeability and selectivity. This may be due to the
lack of data available for both polymer permeability towards oxygen and O2/N2 selectivity,
leading to low coverage and strength. All the rules were analysed using a validation dataset
where the filtered rules with their respective strength, coverage and certainty were shown
in Appendix C—Tables A3 and A4. These rules were filtered based on a certainty of more
than 75% and were selected for the desired properties class. However, it was observed that
about 90% of the rules for permeability and selectivity attributes could only fulfil one data
in the validation set. On the contrary, there were more physical property rules satisfying
certainty of more than 75% as well as having higher average coverage (≈ 30%) than the
transport properties’ rules. The accuracy of individual rules is lower because those rules
are developed to classify molecules into one of the categories. However, since the certainty
is high for all the rules, it can be confirmed that the chosen molecules have the potential to
meet the property in the desired range. These rules will be further verified in the testing
section and with respect to scientific findings.

Furthermore, it can be noticed that Kappa shape indices including first, second, and
third order as well as the incorporation of alpha were present in approximately 65% of
the total filtered rules. As a result, Kappa shape indices can be regarded as a significant
parameter encoding molecular structure information that could potentially influence the
polymeric membrane performance. Nevertheless, it shall be noted on overlapping cases
where the exact same polymer might fall in more than one rule under the same decision
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class. Though a huge number of rules were filtered from the validation dataset, there were
still abundant remaining rules to be selected as the finalised constraints in CAMD.

3.1.3. Evaluation of Model Performance and Scientific Coherency of Rules Generated

The physical property rules were tested using a dataset retrieved from different
reference sources to gauge the model performance when dealing with entirely new sets of
molecules. Through the testing evaluation, rules with a certainty above 80% were further
evaluated by analysing any overlapping molecules and the scientific coherency between
the conditional and decision attributes. Since the focus is to design desired physical and
transport properties of a polymer, only rules falling under the proper category were further
analysed which are Class 2 for Tg, Vm, permeability and selectivity attributes whereas Class
1 for Ecoh attribute.

From the analysis, it was found that there were large overlapping polymers between
the rules, particularly for physical properties. Therefore, the rules were selected considering
the largest coverage as summarised in Table 3. The strength, coverage and certainty were
based on rule combinations tabulated from testing data for physical properties, while
transport properties were according to validation data due to the lack of a database. A
higher 1x indicates a higher number of vertices in the hydrogen-suppressed graph which
means more non-hydrogen atoms that could lead to higher Tg. In addition, Kappa order
3 provides more detailed molecular shape information than the first and second order.
A lower Kappa third-order value implies a more spherical and symmetrical molecular
structure with more organised polymer chain packing resulting in higher Tg [47].

Table 3. Rules selected for CAMD modelling.

Rule Decision Strength Coverage
(Recall)

Certainty
(Precision) Accuracy

1x ≥ 2.94 and Kappa Order 3 < 2.98 Tg = Class 2 31% 44% 89% 83%

Kappa Alpha Order 2 ≥ 7.03, or
Kappa Alpha Order 3 from 5.16 to 6.31 Vm = Class 2 42.3% 50% 100% 85%

0x ≥ 2.5 and E-state Index < 13.81, or
1x from 1.404 to 3.59 and E-state
Index < 15.08, or
Kappa Alpha Order 1 ≥ 2.72 and E-state
Index < 15.08

Ecoh = Class 1 29.4% 100% 100% 86%

E-state Index < 18.25 and
Kappa Order 3 ≥ 4.67, or
0x from 4.63 to 5.08

Permeability = Class 2 11.1% 40% 100% 83%

Kappa Order 3 < 3.83 and Kappa Alpha
Order 2 from 0.67 to 1.77, or
Kappa Flexibility Index from 2.72 to 3.32

Selectivity = Class 2 12.5% 28.57% 100% 89%

For Vm, a higher Kappa order such as, in this case, Kappa order 3, tends to have
a lower molar volume, thus, the constraint for the third order is lower than the second
order as observed in Table 3. This is because branched or networked polymers occupy
a smaller space than linear polymers of the same molecular weight [48]. Two rules were
combined for Vm to increase the coverage. The higher value of the zeroth order connectivity
index indicates a greater degree of connectivity within the polymer; simultaneously, the
cohesive energy can be reduced by having a lower E-state index denoting lesser electronic
delocalization [49]. Therefore, the polymer has weaker intermolecular interactions resulting
in lower cohesive energy. A similar concept applies to the rule consisting of a first-order
connectivity index with a narrower limit. The third rule in Ecoh can be explained by having
a higher Kappa alpha order 1 value which defines a less ordered structure due to higher
branching [50], having lower cohesive energy.
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In the case of permeability, 2 rules were combined to improve the coverage. A higher E-
state index is considered as having stronger intermolecular interactions with gas molecules that
reduce the permeation through the polymer. Moreover, a higher degree of polymer branching
reflects by a higher value of Kappa order 3 brings about a more porous and open structure
allowing gas molecules to diffuse through [50]. Therefore, it is reasonable from a scientific point
of view for the first rule of permeability to be selected. Zeroth order connectivity index was also
proven to affect polymer permeability by Bicerano [33]. A more porous structure leads to higher
permeability performance but lower selectivity; therefore, Kappa order 3 in the selectivity rule
is to be below 3.83 to prevent larger pore size than oxygen molecules. The range of Kappa alpha
order 2 might be derived based on the optimum range for oxygen selectivity. The second rule for
selectivity involving Kappa flexibility index ensures that the polymer formed is not too flexible
nor rigid to selectively allow oxygen but no other gases to permeate through. All the constraints
selected in Table 3 demonstrate a trend satisfying the rationale behind scientific reasoning with
the numerical value derived from RSML programming based on training dataset pattern.

Referring to Table 3, it is also noted that the E-state index and Kappa shape indices would
be widely incorporated in the CAMD modelling. Therefore, the reverse approach was used in
the subsequent step to verify whether the molecules generated satisfy these RSML rules since
only connectivity indices constraints were included in the optimisation framework.

3.2. Generated Air Separation Polymer Molecules

This sub-section presents the results obtained from solving the optimisation model. Various
case studies were conducted to produce a set of solutions. Molecules that fulfil structural,
physical and transport property constraints are identified as the potential candidates to be used
as air separation membranes.

3.2.1. Non-Convexity in CAMD Modelling

As aforementioned, the typical formulation of this optimisation problem, as demonstrated
in Section 2, would yield an MINLP problem. As a consequence of the formation of trilinear
terms in Equations (32) and (33), the model became a non-convex problem that will be hard to
solve. The non-linearities were contributed by the crosslinking term in the tensile strength equa-
tion (Equation (31)) and connectivity indices correlation terms (Equations (32)–(37)). Therefore,
the problem was relaxed to form a convex problem through modifications of trilinear equations.

3.2.2. CAMD Model with Linearised Connectivity Index Terms

Since the non-linearities were contributed by the connectivity indices correlation terms,
linear formulations were proposed. All the structural constraints from Equations (19)–(29) were
still incorporated in this case study while assumptions were made to derive the correlation
terms. In the first attempt, only one heteroatom group was included which was CF group with
CH3 and CH2 groups, i.e., k = 3 in this case. To reduce the number of integer terms, m was set
to be 6. Another assumption made was that with any presence of the CF group, it would be
attached to three groups of CH2. Moreover, CH3 groups would only be attached to CH2.

With these connection assumptions, first order connectivity index was formulated as
Equation (38) where nCF, nCH3 and nCH2 define the number of CF, CH3 and CH2 groups,
respectively. These numbers were defined from Uik terms by specifying k term. The first term
in this equation refers to the connectivity index within CF in addition to the bond connections
between CF with three CH2. The second term defines 1x between the CH3 and CH2 group and
the final term depicts the connectivity index between CH2 groups only, where nCF and nCH3 are
deducted to avoid duplication since two of the CH2 groups from CF are attached to CH3, leaving
one CH2 connected to CF which is not connected to CH3. Equation (39) ensures the number
of CH2 groups is equal to or more than the other functional groups. The 1xV applies the same
approach, as in Equation (40). Since the edges of groups are known, δi values will be specified
making the denominator terms in the equations to be known values, i.e., δCF, δCH2, δCH3 are
not variables, resulting in linear equations. Hence, Equations (32)–(35) would be replaced with
the following linear equations.
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1x = nCF(1xCF +
3√

δCFδCH2
) + nCH3

(
1√

δCH2δCH3

)
+ (nCH2 − nCF− nCH3 + 1)(

1√
(δ CH2)

2
) (38)

nCH2 ≥ (3nCF + nCH3) (39)

1xV = nCF(1xV
CF +

3√
δV

CFδV
CH2

) +

 nCH3√
δV

CH2δV
CH3

+ (nCH2 − nCF− nCH3 + 1)(
1√

(δ V
CH2

)2
) (40)

Following next, DC in the crosslinked density term was estimated to be 0.7 and wi to be 1.
This has now become a convex formulation as the terms in the denominator are known values
in this case, instead of variables. Global optimum results were then able to be generated since
there were values generated for 1x and 1xV to be substituted in the objective function (Equation
(30)). For this combination of functional groups, it was determined that heteroatoms were not
favoured to maximise polymer tensile strength subjected to the property constraint. The result
obtained was a short hydrocarbon structure (butane).

As a result, it is evident that by linearising the correlation terms, the optimisation model
becomes convex. This example only considers three first-order groups in the molecules—
CF, CH3 and CH2; hence, with different first-order groups and specific group attachment
assumptions, the structural constraints formulations from Equations (19)–(28) would need to
be modified for each assumption. However, the formulation is linear and can generate reliable
results for each class of polymer molecules.

3.3. Verification of Model

From Tables 4 and 5, the potential candidates were generated according to the structural
assumptions made where six out of the seven candidates are available in the existing polymer
database [51]. This proves the model’s accuracy in identifying potential polymer structure
candidates and the potential of RSML to generate new polymer molecules for effective air
separation. The first assumption was to analyse the performance of straight-chain hydrocarbons.
Results showed that monomer 1-hexene was the optimum structure fulfilling the permeability
rules at the same time satisfying the O2 permeability classification under Class 2. However,
none of the selectivity rules were fulfilled which corresponds to its selectivity value that is less
than 4. Since Tg and Vm of poly(1-hexene) fall under Class 1, none of the rules in Table 4 are
satisfied. On the other hand, its Ecoh is under Class 1, i.e., less than 35,000 J/mol, satisfying
Ecoh rule generated from RSML, where poly(1-hexene) 0x ≥ 2.5 and E-state index < 13.81. This
verifies the robustness and effectiveness of the predictive model from RSML.

Poly(4-methyl-1-pentene) is the isomer of poly(1-hexene) with branching. Despite altering
the assumption to have branching, the optimisation model still yielded a six-carbon structure
indicating that the six-carbon chain has the maximum tensile strength subjected to the constraints.
Furthermore, the tensile strength of the branched chain is expected to be lower than the straight
hydrocarbon chain in view of the less ordered chain packing leading to weaker intermolecular
forces [52], which is also observed in Table 4. Though its tensile strength is lower, both O2
permeability and selectivity fall within the desired classes, simultaneously fulfilling all the
physical properties requirements as well. This makes poly(4-methyl-1-pentene) more attractive
than poly(1-hexene) as the candidate for air separation membranes.

Benzene rings were also considered in this study on air separation performance. The
aromatic rings positioned in the polymer backbone potentially form a rigid structure with stronger
mechanical strength and thermal stability [53]. The hetero group incorporated was the carbonate
functional group. CAMD showed polycarbonate as the optimum structure of high tensile strength.
However, this result was obtained by relaxing the permeability constraint−0x between 4.63 and
5.08 rule, even so, polycarbonate structure still does not meet the other permeability rule where
E-state index < 18.25 and Kappa Order 3≥ 4.67. The actual value of polycarbonate permeability
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towards oxygen is 1.5 barrers (Class 1) which again verifies the effectiveness and accuracy of the
RSML predictive model since the permeability of polycarbonate does not fall in Class 2. Although
polycarbonate portrays high tensile strength characteristics and meets the desired selectivity, it is
not considered a potential candidate due to its low oxygen permeability.

Table 4. CAMD results.

Polymer Name Poly(1-Hexene) Poly(4-Methyl-1-Pentene) Poly(5-Methyl-Hexene-1) Poly(3-Chlorohexene)

Monomer
Molecular
Structure
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Formula C6H12 C6H12 C7H14 C6H11Cl

CAS number 592-41-6 691-37-2 3524-73-0 53101-38-5

Structural
Assumptions

• CH = CH2 attach to
one CH2

• CH3 only attach to
CH2

• CH = CH2 attach to one
CH2

• (CH3)2CH only attach to
CH2

• CH = CH2 attach to one
CH2

• (CH3)2CH only attach to
CH2

• CH = CH2 attach to
one CHCl

• (CH3)2CH only
attach to CH2

TS [1] 3 4 5 2

O2 Permeability
(Barrers) 10 32.3 20 Not available

O2 Selectivity 2.6 4.225 2.5 Not available
0x 4.406 4.992 5.698 5.698
1x 2.932 2.770 3.270 3.3081
1xV 2.932 2.379 2.879 3.011

E-state index 11.5 11.833 13.333 15.4444
1κ 6 6 7 7
2κ 5 3.2 4.167 4.167
3κ 5.333 5.333 6 3.840

1κα 5.740 5.740 6.740 7.026
2κα 4.740 2.951 3.915 4.192
3κα 5.105 5.105 5.740 3.867

Φ 4.535 2.824 3.769 4.208

Tg (K) 223 302 259 Not available

Vm (cm3/mol) 97.9 235 139.6 Not available

Ecoh (J/mol) 13,000 26,160 7900 Not available

Literature TS
(MPa) 39 28 40 Not available

Furthermore, polyphenylene oxide was the optimum structure from CAMD by considering
branching and oxides from the benzene ring. Polyphenylene oxide shows relatively high
tensile strength which also satisfies the desired permeability and selectivity class. This also
illustrates that the predictive rules selected from RSML are fulfilled in this case. Polyphenylene
oxide has the highest cohesive energy among the generated molecules, even so, it is still
within the acceptable range and does not show any adverse effect towards oxygen molecules
permeation. Therefore, polyphenylene oxide emerges to be one of the potential candidates
for air separation application. The final generated molecule was polymethyl methacrylate
incorporating consideration of the presence of carbonate groups in a straight chain. Though it
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satisfies the permeability constraint, the molecule does not meet the desired selectivity. Its tensile
strength generated from the CAMD model contradicted the trend from the literature which
might be due to the inaccuracy of the objective function model extracted from the literature.
Nevertheless, based on scientific reasoning, benzene ring structures have stronger mechanical
strength as compared to straight chain structures [54].

Table 5. CAMD results (continued).

Polymer Name Polycarbonate Polyphenylene Oxide Polymethyl Methacrylate

Monomer
Molecular
Structure
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Table 5. CAMD results (continued). 

Polymer Name Polycarbonate Polyphenylene Oxide Polymethyl Methacrylate 

Monomer Mo-
lecular Struc-

ture 
 

 
Formula C15H16O2 C8H8O C5O2H8 

CAS number 25037-45-0 25134-01-4 9011-14-7 

Structural As-
sumptions 

• C6H4O attach to one C 
• C only attach to CH3 and 
C6H4COO 

• C6H3O attach to CH3 
• C = CH2 attach to one 
COO and CH3 

TS * 1 7 6 
O2 Permeability 

(Barrers) 
1.5 16.8 20 
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1𝜅 4 3.938 7 
2𝜅  3.740 1.240 3.061 
3𝜅 1.333 0.490 2.667 

1𝜅  1.105 3.218 6.377 
2𝜅  0 0.874 2.533 
3𝜅  0 0.302 2.121 
Φ 1.033 0.402 2.307 

Tg (K) 423 488 378 
Vm (cm3/mol) 320 76.6 89.3 
Ecoh (J/mol) 14,400 33,300 27,700 

Literature TS 
(MPa) 

62.1 75 50 

* Tensile strength is ranked based on CAMD results. 
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Formula C15H16O2 C8H8O C5O2H8

CAS number 25037-45-0 25134-01-4 9011-14-7

Structural
Assumptions

• C6H4O attach to one C
• C only attach to CH3 and

C6H4COO
• C6H3O attach to CH3

• C = CH2 attach to one COO
and CH3

TS * 1 7 6

O2 Permeability
(Barrers) 1.5 16.8 20

O2 Selectivity 5.769 4.421 3.71
0x 3.577 4.690 5.492
1x 1.732 3.450 3.189
1xV 1.354 2.230 2.274

E-state index 8.667 11.095 20.833
1κ 4 3.938 7
2κ 3.740 1.240 3.061
3κ 1.333 0.490 2.667

1κα 1.105 3.218 6.377
2κα 0 0.874 2.533
3κα 0 0.302 2.121

Φ 1.033 0.402 2.307

Tg (K) 423 488 378

Vm (cm3/mol) 320 76.6 89.3

Ecoh (J/mol) 14,400 33,300 27,700

Literature TS
(MPa) 62.1 75 50

* Tensile strength is ranked based on CAMD results.

4. Conclusions

In this study, a computer-aided molecular design (CAMD) framework incorporating rough
set-based machine learning (RSML) algorithms for the determination of polymeric structures
that has the potential to be considered for air separation has been developed. Topological indices
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were used to estimate both the physical and transport properties of polymer molecules where
the deterministic rules were generated in RSML. The promising rules generated with the highest
coverage and certainty were studied qualitatively from scientific standpoints to ensure that
they were reliable to be included as property constraints in CAMD modelling. The original
non-convex formulation of the CAMD model was transformed into a convex equivalent by
transforming the equations into an alternative form. Results demonstrated that the rough set
model was able to precisely predict the polymer characteristics of all molecules generated from
the optimisation model, proving the reliability of RSML predictive models. After analysing the
results, poly(4-methyl-1-pentene) (PMP) and polyphenylene oxide (PPO) emerge to be the most
potential candidates for air separation since these two polymers fulfil both oxygen permeability
and selectivity requirements as well as the desired physical properties in this study. The results
depicted that the proposed methodology in this work could potentially be implemented for the
systematic design of air separation polymeric membrane structure. To improve the quality of
the models predicted by this method in the future, it is suggested to enhance the robustness and
accuracy of the RSML model by incorporating more attributes that could potentially relate to
the structure–property relationship. Furthermore, before utilizing a polymeric membrane for air
separation applications, it is advisable to conduct economic analysis and feasibility studies to
assess aspects such as scale-up feasibility.
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Nomenclature

Symbol Description
0x Zeroth Order Connectivity (Chi) Index
0xV Zeroth Order Valence Connectivity (Chi) Index
1x First Order Connectivity (Chi) Index
1xV First Order Valence Connectivity (Chi) Index
δi Number of sigma electrons in the hydrogen suppressed graph
δV

i Number of valence electrons
δV

i δV
j Number of edges in the molecules with bond s terminates on vertices i and j

1κ First Order Kappa Shape Index
2κ Second Order Kappa Shape Index
3κ Third Order Kappa Shape Index
1κα First Order Kappa Alpha Shape Index
2κα Second Order Kappa Alpha Shape Index
3κα Third Order Kappa Alpha Shape Index
Φ Kappa Flexibility Index
uik Binary variable that indicates if ith position is occupied by kth group
zijp Binary variable that indicates if ith group is attached to pth group via jth site
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Appendix A. Example of Information Table

Table A1. Part of permeability information table with 12 conditional attributes.

Decision
Attribute Condition Attributes

Tag Polymer PO2
(Class)

0x 0xV 1x 1xV E-States
Index

Kappa
Order 1

Kappa
Order 2

Kappa
Order 3

Kappa
Alpha

Order 1

Kappa
Alpha

Order 2

Kappa
Alpha

Order 3

Kappa
Flexibility

Index

1 Poly[l-(trimethylsilyl)-1-
propyne] 2 5.91 6.50 3.06 6.00 13.69 7.00 2.34 6.00 7.08 2.40 6.08 2.43

2 Poly(tert-butylacetylene) 2 5.21 2.91 2.56 1.06 15.42 6.00 1.63 5.33 5.56 1.34 4.95 1.24

3 Poly(1-n-heptyl-propyne) 2 7.66 7.24 4.91 4.31 26.95 10.00 9.00 9.14 9.56 8.56 8.71 8.18

4 Poly[o-
(trimethylsilyl)phenylacetylene] 2 9.19 8.89 5.55 7.62 24.96 10.08 3.81 2.49 9.39 3.35 2.14 2.62

5 Poly(1-chloro-2-n-
butylacetylene) 2 5.54 5.26 3.41 2.88 15.61 7.00 6.00 6.00 6.84 5.84 5.84 5.71

6 Poly(1-chloro-2-n-
hexylacetylene) 2 6.95 6.67 4.41 3.88 21.51 9.00 8.00 8.00 8.84 7.84 7.84 7.71

7 Poly(1-chloro-2-n-
octylacetylene) 2 8.36 8.08 5.41 4.88 27.28 11.00 10.00 10.00 10.84 9.84 9.84 9.70

8 Poly[o-
(trifluoromethyl)phenylacetylene] 2 9.19 6.02 5.55 3.18 18.07 10.08 3.81 2.49 8.68 2.91 1.81 2.10

9 Poly(1-n-hexyl-2-
phenylacetylene) 2 10.06 8.92 6.93 5.47 30.95 12.07 8.32 6.19 10.86 7.21 5.20 5.59

10 Poly(1-ethyl-2-
phenylacetylene) 2 7.23 6.09 4.93 3.47 19.42 8.10 4.76 3.11 6.89 3.74 2.29 2.58

11 Poly(1-phenyl-1-propyne) 1 6.53 5.39 4.43 2.91 16.53 7.11 3.92 2.38 5.91 2.94 1.62 1.93

12 Poly(1-chloro-2-
phenylacetylene) 1 6.53 5.52 4.43 2.98 13.97 7.11 3.92 2.38 6.19 3.16 1.79 2.17
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Table A1. Cont.

Decision
Attribute Condition Attributes

Tag Polymer PO2
(Class)

0x 0xV 1x 1xV E-States
Index

Kappa
Order 1

Kappa
Order 2

Kappa
Order 3

Kappa
Alpha

Order 1

Kappa
Alpha

Order 2

Kappa
Alpha

Order 3

Kappa
Flexibility

Index

13 Poly(oxydimethylsilylene) 2 8.41 9.14 4.27 9.17 25.28 10.00 2.94 5.53 10.70 3.40 6.20 3.64

14 Hydrogenated
Polybutadiene 2 3.41 2.57 1.91 1.15 9.65 4.00 3.00 4.00 3.48 2.48 4.56 2.16

15 Poly(1,3-butadiene) 2 3.41 2.57 1.91 1.15 9.65 4.00 3.00 4.00 3.48 2.48 4.56 2.16

16 Polyisoprene (NR) 2 5.00 3.70 3.49 2.39 11.67 5.00 2.25 4.00 4.48 1.77 3.48 1.58

17 Polychloroprene 1 3.70 3.63 2.39 2.12 13.78 5.00 2.25 4.00 4.77 4.77 3.77 1.94

18 Polystyrene 1 5.40 4.67 3.97 3.02 16.67 6.13 3.11 1.80 5.10 2.31 1.21 1.48

Appendix B. List of First-Order Groups

Table A2. Selected first-order groups.

First-Order Groups

CH3 CH=CH2 COOH CH=O
CF CCl CH2OH C=ONH2

CH3Si COO -O- CH2

Appendix C. Rules Filtered from Validation Dataset

Table A3. Physical properties rules filtered from validation dataset.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

0x ≥ 4.49 and Kappa Alpha Order 3 < 2.35 Class 2 24% 50% 100%
0x ≥ 4.49 and Kappa Order 3 < 2.98 Class 2 24% 50% 100%
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Table A3. Cont.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

0x ≥ 4.49 and Kappa Alpha Order 3 < 2.35 Class 2 24% 50% 100%
0x ≥ 4.49 and Kappa Order 3 < 2.98 Class 2 24% 50% 100%
0x ≥ 5.34 and Kappa Alpha Order 2 < 3.43 Class 2 24% 50% 100%
1x ≥ 2.94 and Kappa Alpha Order 3 < 2.35 Class 2 24% 50% 100%
1x ≥ 2.94 and Kappa Order 2 < 3.861 Class 2 24% 50% 100%
1x ≥ 2.94 and Kappa Order 3 < 2.98 Class 2 24% 50% 100%

E-state Index ≥ 10.17 and Kappa Flexibility Index from 1.08 to 2.32 Class 2 34% 57% 80%

Molar Volume (Vm)

Kappa Alpha Order 2 ≥ 7.03 Class 2 10.71% 13.64% 100%

Kappa Alpha Order 2 from 5.27 to 6.4 Class 2 7.14% 9.09% 100%

Kappa Alpha Order 2 ≥ 4.89 and Kappa Alpha Order 3 from 3.96 to 6.31 Class 2 7.14% 9.09% 100%

Kappa Alpha Order 2 from 3.85 to 4.69 Class 2 17.86% 18.18% 80%

Kappa Alpha Order 2 ≥ 2.96 and Kappa Alpha Order 3 ≤ 3.19 Class 2 21.43% 27.27% 100%

Kappa Alpha Order 2 ≥ 2.40 and Kappa Alpha Order 3 ≤ 1.92 Class 2 42.86% 50% 91.67%

Kappa Alpha Order 3 from 5.16 to 6.31 Class 2 3.57% 4.55% 100%

Kappa Flexibility Index ≥ 6.65 Class 2 10.71% 13.64% 100%

Kappa Flexibility Index from 3.66 to 4.45 Class 2 17.86% 18.18% 80%

Kappa Alpha Order 3 from 3.96 to 6.31 and Kappa Flexibility Index ≥ 4.66 Class 2 3.57% 4.55% 100%

Kappa Alpha Order 3 ≤ 3.19 and Kappa Flexibility Index ≥ 2.54 Class 2 7.14% 9.09% 100%

Kappa Alpha Order 3 from 1.19 to 1.92 and Kappa Flexibility Index ≥ 1.67 Class 2 35.71% 45.45% 100%
0xV ≥ 7.76 Class 2 25% 31.82% 100%
0xV from 5.61 to 6.56 Class 2 28.56% 36.36% 100%
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Table A3. Cont.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

0xV from 5.16 to 5.32 Class 2 3.57% 4.55% 100%
0xV from 5.56 to 5.59 Class 2 7.14% 9.09% 100%
1x ≥ 3.98 and Kappa Alpha Order 2 < 5.17 Class 2 39.29% 45.45% 90.9%
1x ≥5.68 Class 2 32.14% 36.36% 88.89%
1x from 3.98 to 5.65 and Kappa Alpha Order 3 ≥ 3.96 Class 2 7.14% 9.09% 100%
1x ≥ 3.98 and Kappa Alpha Order 3 < 3.93 Class 2 57.14% 63.64% 87.5%
1x from 3.24 to 3.68 and Kappa Alpha Order 3 ≥ 3.51 Class 2 3.57% 4.55% 100%
1x from 3.96 to 4.71 and Kappa Alpha Order 3 ≥ 1.32 Class 2 21.43% 22.72% 83.33%
1x ≥ 3.98 and Kappa Flexibility Index < 4.85 Class 2 67.86% 77.27% 89.47%
1x from 3.98 to 5.65 and E-state Index ≥ 25.58 Class 2 17.86% 18.18% 80%
1x ≥ 3.98 and E-state Index < 25.42 Class 2 32.14% 36.36% 88.89%
1x ≥ 3.24 and E-state Index from 13.25 to 15.5 Class 2 3.57% 4.55% 100%
1x from 3.96 to 4.71 and Kappa Alpha Order 1 ≥ 5.85 Class 2 25% 27.27% 85.71%
1x from 4.76 to 5.65 Class 2 10.71% 13.64% 100%
1x < 3.68 and Kappa Alpha Order 1 ≥ 6.68 Class 2 3.57% 4.55% 100%
1xV ≥ 4.09 Class 2 35.71% 40.91% 90%
1xV from 3.05 to 3.54 Class 2 28.57% 31.82% 87.5%
1xV from 3.64 to 4.07 Class 2 7.14% 9.09% 100%

E-state Index ≥ 25.58 and Kappa Alpha Order 2 from 2.96 to 6.4 Class 2 32.14% 36.36% 88.89%

E-state Index from 14.42 to 25.42 and Kappa Alpha Order 2 from 2.76 to 3.46 Class 2 17.86% 18.18% 80%

Kappa Alpha Order 2 from 2.4 to 2.5 Class 2 3.57% 4.55% 100%

E-state Index ≥ 36.33 Class 2 14.29% 18.18% 100%
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Table A3. Cont.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

E-state Index from 20.92 to 30.01 and Kappa Alpha Order 3 ≥ 3.96 Class 2 10.71% 13.64% 100%

E-state Index ≥ 30.42 and Kappa Alpha Order 3 ≥ 5.16 Class 2 3.57% 4.55% 100%

E-state Index from 14.42 to 15.08 Class 2 3.57% 4.55% 100%

Kappa Alpha Order 3 from 1.32 to 1.92 Class 2 35.71% 45.45% 100%

E-state Index ≥ 27.39 and Kappa Flexibility Index from 2.06 to 6.36 Class 2 25% 27.27% 85.71%

E-state Index from 20.92 to 27.25 and Kappa Flexibility Index from 1.71 to 3.21 Class 2 7.14% 9.09% 100%

E-state Index ≥ 13.25 and Kappa Flexibility Index from 3.66 to 4.85 Class 2 17.86% 18.18% 80%

Kappa Flexibility Index from 4.86 to 6.36 Class 2 3.57% 4.55% 100%

E-state Index from 13.81 to 18.63 and Kappa Flexibility Index from 1.67 to 2.17 Class 2 7.14% 9.09% 100%

E-state Index from 25.58 to 30.31 and Kappa Order 1 ≥ 7.06 Class 2 21.43% 22.73% 83.33%

E-state Index ≥ 30.42 and Kappa Order 1 ≥ 6.06 Class 2 25% 31.82% 100%

E-state Index from 17.67 to 24.43 and Kappa Order 1 ≥ 7.06 Class 2 32.14% 36.36% 88.89%

E-state Index < 15.5 and Kappa Order 1 ≥ 6.06 Class 2 7.14% 9.09% 100%

E-state Index < 25.42 and Kappa Order 1 ≥ 8.05 Class 2 17.86% 18.18% 80%

E-state Index from 25.58 to 30.31 and Kappa Order 2 ≥ 4.23 Class 2 17.86% 18.18% 80%

E-state Index ≥ 30.42 and Kappa Order 2 ≥ 3.22 Class 2 25% 31.82% 100%

E-state Index from 15.5 to 22.64 and Kappa Order 2 from 3.22 to 4.15 Class 2 21.43% 27.27% 100%

Kappa Order 2 ≥ 7.82 Class 2 7.14% 9.09% 100%

E-state Index ≥ 27.39 and Kappa Order 2 from 3.09 to 4.15 Class 2 7.14% 9.09% 100%

E-state Index ≥ 30.42 and Kappa Order 3 ≥ 3.06 Class 2 17.86% 22.72% 100%

E-state Index < 15.5 and Kappa Order 3 ≥ 5.36 Class 2 3.57% 4.55% 100%

E-state Index from 13.81 to 15.5 and Kappa Order 3 < 3.92 Class 2 3.57% 4.55% 100%

E-state Index from 25.58 to 30.31 and Kappa Alpha Order 1 ≥ 8.04 Class 2 17.86% 18.18% 80%
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Table A3. Cont.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

E-state Index ≥ 30.42 and Kappa Alpha Order 1 ≥ 5.85 Class 2 25% 31.82% 100%

E-state Index from 18.63 to 24.43 and Kappa Alpha Order 1 ≥ 6.98 Class 2 17.86% 18.18% 80%

E-state Index < 18.63 and Kappa Alpha Order 1 from 5.85 to 7.52 Class 2 10.71% 13.64% 100%

Kappa Order 2 from 5.16 to 6.98 and Kappa Alpha Order 3 ≥ 3.96 Class 2 7.14% 9.09% 100%

Kappa Order 2 ≥ 3.97 and Kappa Alpha Order 3 < 3.19 Class 2 17.86% 22.72% 100%

Kappa Order 2 from 3.16 to 3.93 and Kappa Alpha Order 3 < 2.3 Class 2 28.57% 31.82% 87.5%

Kappa Order 2 ≥ 4.23 and Kappa Alpha Order 3 < 3.93 Class 2 17.86% 18.18% 80%

Kappa Order 2 ≥ 7.32 and Kappa Alpha Order 3 ≥ 6.82 Class 2 10.71% 13.64% 100%

Kappa Order 2 from 3.09 to 3.16 and Kappa Alpha Order 3 ≥ 1.32 Class 2 3.57% 4.55% 100%

Kappa Order 2 <5.72 and Kappa Alpha Order 1 ≥ 8.04 Class 2 25% 27.27% 85.71%

Kappa Alpha Order 2 ≥ 11.36 Class 2 17.86% 22.72% 100%

Kappa Order 3 ≥ 3.06 and Kappa Alpha Order 1 from 6.68 to 7.52 Class 2 3.57% 4.55% 100%

Kappa Order 2 from 3.09 to 3.93 and Kappa Alpha Order 1 ≥ 5.85 Class 2 32.14% 36.36% 88.89%

Kappa Order 2 < 6.98 and Kappa Alpha Order 1 ≥ 9.42 Class 2 10.71% 13.64% 100%

Kappa Order 3 from 4.49 to 7.09 and Kappa Alpha Order 2 ≥ 4.89 Class 2 7.14% 9.09% 100%

Kappa Order 3 < 3.59 and Kappa Alpha Order 2 ≥ 2.96 Class 2 21.4% 27.27% 100%

Kappa Alpha Order 2 ≥ 7.03 Class 2 10.71% 13.64% 100%

Kappa Order 3 < 4.37 and Kappa Alpha Order 2 ≥ 4.89 Class 2 3.57% 4.55% 100%

Kappa Order 3 < 2.6 and Kappa Alpha Order 2 ≥ 2.4 Class 2 42.86% 50% 91.67%

Kappa Order 3 < 3.92 and Kappa Alpha Order 2 ≥ 3.85 Class 2 7.14% 9.09% 100%

Kappa Order 3 from 1.6 to 2.6 and Kappa Flexibility Index ≥ 1.67 Class 2 35.71% 45.45% 100%

Kappa Order 3 from 5.36 to 7.09 Class 2 7.14% 9.09% 100%

Kappa Order 3 from 3.06 to 3.59 Class 2 7.14% 9.09% 100%
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Table A3. Cont.

Glass Transition Temperature (Tg)
Rule Decision Strength Coverage Certainty

Cohesive Energy (Ecoh)
0x ≥ 2.5 and E-state Index < 13.81 Class 1 23.5% 57.14% 100%

E-state Index < 10.75 Class 1 23.5% 57.14% 100%
0x from 2.5 to 3.78 Class 1 5.88% 14.29% 100%

Kappa Alpha Order 1 < 2.69 Class 1 11.77% 28.57% 100%
0x < 4.7 and Kappa Alpha Order 2 ≥ 1.73 Class 1 11.77% 28.57% 100%
0x < 4.7 and Kappa Flexibility Index ≥ 1.57 Class 1 11.77% 28.57% 100%

Kappa Order 3 ≥ 3.25 and Kappa Flexibility Index from 1.52 to 2.33 Class 1 11.77% 28.57% 100%
1x from 1.4 to 3.59 and E-state Index < 15.08 Class 1 23.53% 57.14% 100%
1x from 1.4 to 2.13 Class 1 11.77% 28.57% 100%
1x from 2.35 to 2.6 Class 1 5.88% 14.29% 100%
1x < 3.59 and Kappa Alpha Order 2 from 1.73 to 2.57 Class 1 17.65% 42.86% 100%

E-state Index < 13.81 and Kappa Order 1 ≥ 3.1 Class 1 23.53% 57.14% 100%
1x < 2.6 and Kappa Flexibility Index ≥ 1.57 Class 1 11.77% 28.57% 100%

E-state Index from 11.33 to 13.81 Class 1 11.77% 28.57% 100%

E-state Index < 13.81 and Kappa Alpha Order 1 ≥ 2.72 Class 1 23.53% 57.14% 100%

E-state Index < 13.81 and Kappa Alpha Order 2 ≥ 1.73 Class 1 11.77% 28.57% 100%

E-state Index < 20.92 and Kappa Alpha Order 3 ≥ 3.42 Class 1 11.77% 28.57% 100%

E-state Index < 13.81 and Kappa Flexibility Index ≥ 1.57 Class 1 11.77% 28.57% 100%

E-state Index < 13.81 and Kappa Flexibility Index < 1.52 Class 1 23.53% 57.14% 100%
0xV from 1.85 to 2.73 Class 1 17.65% 42.86% 100%
1xV < 1.07 Class 1 11.77% 28.57% 100%
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Table A4. Transport properties rules filtered from validation dataset.

O2 Permeability
Rule Decision Strength Coverage Certainty

0x from 4.63 to 5.08 Class 2 5.56% 20% 100%
0xV from 4.55 to 4.62 Class 2 5.56% 20% 100%
1x from 2.71 to 2.78 Class 2 5.56% 20% 100%
1x from 2.92 to 3.12 Class 2 5.56% 20% 100%
1xV from 5.84 to 6.13 Class 2 5.56% 20% 100%

E-state Index < 18.24 and Kappa Order 3 ≥ 4.67 Class 2 11.11% 40% 100%

Kappa Order 3 from 5.43 to 6.28 Class 2 5.56% 20% 100%

Kappa Alpha Order 1 from 5.52 to 5.75 Class 2 5.56% 20% 100%

Kappa Alpha Order 2 from 2.94 to 3.02 Class 2 5.56% 20% 100%

Kappa Alpha Order 3 from 4.87 to 5.51 Class 2 5.56% 20% 100%

O2/N2 Selectivity
0x ≥ 9.92 Class 2 25% 42.86% 75%
0x from 6.26 to 6.61 and Kappa Alpha Order 2 ≥ 2.94 Class 2 6.25% 14.29% 100%
0xV ≥ 9.99 Class 2 6.25% 14.29% 100%
1x ≥ 6.16 Class 2 25% 42.86% 75%
1xV from 6.08 to 7.58 Class 2 12.5% 28.57% 100%

E-state Index from 22.09 to 23.82 Class 2 12.5% 28.57% 100%

E-state Index ≥ 31.88 Class 2 12.5% 28.57% 100%

Kappa Order 1 ≥ 12.22 Class 2 12.5% 28.57% 100%

Kappa Order 2 from 6.12 to 7.84 Class 2 6.25% 14.29% 100%
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Table A4. Cont.

O2 Permeability
Rule Decision Strength Coverage Certainty

Kappa Order 2 from 0.67 to 1.48 Class 2 6.25% 14.29% 100%

Kappa Order 3 < 2.3 and Kappa Alpha Order 2 ≥ 2.38 Class 2 6.25% 14.29% 100%

Kappa Order 3 < 3.83 and Kappa Alpha Order 2 from 0.67 to 1.77 Class 2 6.25% 14.29% 100%

Kappa Order 3 < 3.83 and Kappa Alpha Order 2 ≥ 4.03 Class 2 6.25% 14.29% 100%

Kappa Alpha Order 1 ≥ 11.34 Class 2 12.5% 28.57% 100%

Kappa flexibility Index from 3.8 to 5.55 Class 2 6.25% 14.29% 100%

Kappa flexibility Index from 1.7 to 1.85 Class 2 6.25% 14.29% 100%

Kappa flexibility Index from 2.72 to 3.32 Class 2 6.25% 14.29% 100%
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