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Abstract: Remaining Useful Life (RUL) prediction is an important component of failure prediction
and health management (PHM). Current life prediction studies require large amounts of tagged
training data assuming that the training data and the test data follow a similar distribution. However,
the RUL-prediction data of the planetary gearbox, which works in different conditions, will lead
to statistical differences in the data distribution. In addition, the RUL-prediction accuracy will be
affected seriously. In this paper, a planetary transmission test system was built, and the domain
adaptive model was used to Implement the transfer learning (TL) between the planetary transmission
system in different working conditions. LSTM-DNN network was used in the data feature extraction
and regression analysis. Finally, a domain-adaptive LSTM-DNN-based method for remaining useful
life prediction of Planetary Transmission was proposed. The experimental results show that not only
the impact of different operating conditions on statistical data was reduced effectively, but also the
efficiency and accuracy of RUL prediction improved.

Keywords: remaining useful life prediction; LSTM-DNN network; domain adaptation; planetary
transmission

1. Introduction

The planetary gearbox is widely used in various fields as an important core component
of rotating machinery [1]. It often works in complex and bad environmental conditions.
Many operation accidents are caused by malfunctions or failures of the planetary gearbox.
The accurate remaining useful life (RUL) prediction of planetary transmissions has great
significance for preventing major industrial accidents and economic losses [2].

The advent of failure prediction and health management (PHM) offers a solution for
RUL prediction in a gearbox. PHM generally consists of five parts: data acquisition and
processing, feature extraction, fault diagnosis, health state assessment, and life prediction.
Health status assessment and life prediction are the main directions of PHM research.
Health status assessment is conducted using constructing Health Index (HI)-curves for
machinery and equipment, which usually have a monotonic upward or downward trend.
A threshold value was set to assess the health status of the equipment. The historical data
and the online condition data were used to predict the remaining life and health status of
mechanical equipment in the future.

The current research on RUL prediction methods for mechanical equipment is based
on physical models (Model-based) and data-driven models (Data-driven). The current RUL
prediction methods mostly use data-driven model methods because the physical model
requires a large amount of expert knowledge and experience. Chen et al. [3] proposed
a multiscale long-term cyclic convolutional network deep learning framework (MSWR
LRCN) with residual shrinkage construction units to address the low accuracy of traditional
RUL prediction. This method can effectively improve the accuracy of RUL prediction.
Fu et al. [4] proposed a combination of a convolutional neural network (CNN) and a short-
term memory network (LSTM) to predict the RUL of a gearbox. He et al. [5] proposed
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an improved temporal convolutional network (TCN) method for predicting the RUL of
gearboxes. This method can learn more complete historical information and has higher
prediction accuracy than other methods.

However, the above studies are all based on life prediction under the same operating
conditions, with the pre-requisite assumption that the data in the training and test sets
are required to belong to the same data distribution. In fact, the operating environment of
mechanical equipment such as gearboxes is complex, the operating conditions are diverse,
and the data distribution may vary greatly under different operating conditions, which
will lead to low prediction accuracy using traditional machine learning algorithms.

The emergence of transfer learning (TL) methods avoids these problems. TL is a
machine learning method that uses existing models and knowledge to solve unknown but
related fields. Transfer learning can be divided into model-based, parameter-based, and
feature-based methods. Among them, feature-based transfer learning has been a hot topic
of research [6]. The traditional feature-based transfer learning, such as: In 2009, Professor
Yang Qiang’s [7] team proposed Transfer Component Analysis (TCA) for edge distribution
adaptation, which mainly uses Maximum Mean Discrepancy (MMD) to calculate the
difference between the mean values of the source and target domains after mapping.
The main purpose of TCA is to calculate the difference between the mean values of the
source and target domains after mapping using Maximum Mean Discrepancy (MMD).
Subsequently, many scholars have extended the research on the basis of TCA [8–10]. In
2013, Ming-Sheng Long [11] et al. proposed the classical Joint Distribution Adaptation
(JDA) method, which uses the MMD distance to calculate the difference between the edge
distribution and the conditional distribution. In 2018, JinDong Wang [12] et al. argued
that the edge distribution and the conditional distribution are not equally important
and proposed Dynamic Distribution Adaptation (BDA). In recent years, deep learning
technology has developed rapidly, and many research scholars have proposed deep transfer
learning on top of traditional transfer learning methods [13–15]. Compared with traditional
non-deep transfer learning methods, deep transfer learning has more adaptive feature
extraction capability, as well as meeting the end-to-end training requirements in practical
applications. The advantages of deep transfer learning have received attention from
scholars both at home and abroad and have been successfully used in the fields of object
recognition [16] and PHM research [17].

Deep transfer learning has achieved good application in fault diagnosis research [18].
However, there is relatively little research on RUL prediction. Furthermore, most prediction
studies focus on bearings, with few of the literature related to the RUL prediction of
gearboxes. For example, Wang et al. [19] predicted the RUL of bearings by combining
transfer learning with the bidirectional long short-term memory (BiLSTM) model with an
attention mechanism. Zhu et al. [20] proposed a bearing RUL prediction method combining
transfer learning and LSTM. Compared with other methods, the LSTM method achieved
better prediction results. LSTM and its variants have received attention from researchers
in the prediction of bearings and have achieved good prediction accuracy. However, the
predicted objects are mostly bearings and rarely involve objects such as planetary gearboxes.
However, planetary gearboxes are also key components of rotating machinery, so accurately
predicting the RUL of planetary gearboxes is of great significance for preventing major
industrial accidents and economic losses.

In view of this, this article proposes a long, short-term memory network deep neural
networks (LSTM-DNN) life prediction model based on domain adaptation. The proposed
model can predict the lifespan between different operating conditions and has good gener-
alization ability.

In this paper, labeled source domain data and unlabeled target domain data are used
for training, which can be seen as a feature migration-based learning process, while various
types of losses are considered to learn domain-invariant features. In order to verify the
method proposed in this paper, a planetary gearbox test rig was built, and the experimental
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results show the effectiveness of the method proposed in this paper. The main contributions
of this paper are as follows:

1. A domain-based adaptive LSTM-DNN prediction algorithm is proposed, which
utilizes the respective strengths of LSTM and DNN and combines transfer learning
algorithms to reduce data distribution differences.

2. Experiments on planetary gearboxes were built, and the proposed network model
was compared with other network models to show that the prediction accuracy
is better by considering the regression loss and metric loss based on the dataset
and the effectiveness and superiority of the proposed domain adaptive LSTM-DNN
RUL prediction method for life prediction under different operating conditions were
verified using the experiments.

3. The network model proposed in this paper is more accurate than the lifetime predic-
tion method using a single LSTM, as evaluated with Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE), and the results show that the method outperforms
its single algorithm model.

The main arrangement of the remaining sections of the paper: Section 2 focuses on
the theoretical analysis of the LSTM, LSTM-DNN, and domain adaptation algorithms;
Section 3 focuses on the experimental details under different working conditions; Section 4
focuses on the experimental validation and analysis of the proposed algorithms, and finally
Section 5 concludes the whole paper.

2. Theoretical Analysis
2.1. Definition of the Problem

This article uses Xs to represent the training task and Xt to represent the target task.
Traditional RUL prediction assumes that the source and target domains follow the same dis-
tribution. However, due to different working conditions, there are distribution differences
among datasets of different bearings. Therefore, when only training source domain data
under one operating condition, the distribution difference between the source domain and
the target domain will reduce the accuracy of the RUL prediction model. The TL method
makes up for this defect. Given the source domain Ds = {(xi, yi)}Ns

i=1(xi ∈ Xs, yi ∈ Ys) and
target domain Dt =

{
xj
}Nt

j=1(xj ∈ Xt). Among them, xi is the i-th sample in the source
domain and xj is the j-th sample in the target domain. Ns and Nt are the total number of
samples in the source and target domains, respectively. yi is the label of the i-th sample in
the source domain and Ys is the label set of different samples in the source domain. The
source domain Ds and target domain Dt have the same feature space Xs = Xt and different
probability distributions P(Xs, Ys) 6= P(Xt, Yt).

2.2. LSTM Neural Networks

LSTM is the prediction of time series, for which the use of time series, in reality, is
very common, such as weather prediction, health data analysis, traffic condition prediction,
etc., all require the creation of time series models, which are composed of a sequence of
data in time, space or other determined order [21]. Because there is continuity in time,
temporal data is dynamic, and in particular certain statistics of a time series (e.g., mean,
variance, etc.) are subject to dynamic temporal changes. To address this problem, traditional
methods are usually modeled based on the Markov assumption that each observation on
a time series depends only on the observation at its previous moment. Based on this
assumption, Hidden Markov Models, Dynamic Bayesian Network Models, Kalman Filter
Models, and other statistical models, such as autoregressive moving averages, have been
found to be more effective in time series forecasting. With the rise of deep learning in recent
years, approaches based on Recurrent Neural Networks (Recurrent Neural Networks,
RNN) have achieved better results than these previous approaches. In contrast, RNNs
rely on powerful neural networks that can automatically discover and model higher-order
non-linear relationships in time series and enable prediction, making the RNN family of
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methods very effective in solving short time series modelling. However, RNNs are prone to
gradient disappearance and explosion, and cannot solve the long-time prediction problem.
Therefore, the emergence of LSTM has solved the problem of RNNs, and LSTM has
been better applied by constructing storage units to store long-term memory information,
especially in lifetime prediction. The LSTM controls the state of the memory cell by linking
the three cells of the forgetting gate, the input gate, and the output gate by means of point
multiplication. The forget gate ft is used to control whether the information in the memory
cell is saved or discarded. The function of the input gate it is used to estimate whether to
allow the input information to enter the current memory cell state. The outgoing gates Ot
serve much the same purpose as the input gates and are used to determine whether the
current signal will be output to the next layer. The structure of the specific LSTM network
is shown in Figure 1.
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Figure 1. The structure of an LSTM memory cell.

Forgetting Gate: This forgetting gate will read the previous output ht−1 and the current
input xt to create a sigmoid non-linear mapping and then output a vector ft

ft = sigmoid(W f hht−1 + W f xxt + b f ) (1)

Input gate: It mainly consists of two parts, first using ht−1 and xt to determine which
information to update through an operation called input gate. Then, new candidate cell
information is obtained through a tanh layer using ht−1 and xt.

it = sigmoid(Wihht−1 + Wixxt + bi) (2)

_
C t = tanh(Wchht−1 + Wcxxt + bc) (3)

Update cell status: Update old cell information Ct−1 to new cell information Ct. The
updated rule is to select a part of the forgotten old cell information through the forgetting
gate and obtain new cell information Ct by selecting a part of the candidate cell information
Ĉt to be added by the input.

Ct = ft · Ct−1 + it · Ĉt (4)

Output gate: After updating the cell state, it is necessary to determine which state
features of the output cell based on the input ht−1 and xt. Here, the input needs to pass
through a sigmoid layer to obtain the judgment conditions. Then, the cell state is passed
through the tanh layer to obtain a vector with values between −1 and 1. The vector is
multiplied by the judgment condition obtained by the output gate to obtain the final output
of the LSTM unit.

Ot = sigmoid(Wohht−1 + Woxxt + bi) (5)

ht = Ot · tanh(Ct) (6)
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The above equation illustrates the principle of calculating the forgetting gate, the input
gate, and the output gate, where c is the memory unit, Ct is the storage cell, and ht is the
hidden state. W is the weight matrix of the three gate cells and b is the threshold value.
Sigmoid and tanh are the activation functions, and “•” stands for dot product.

2.3. LSTM-DNN Prediction Model

Numerous studies have shown that shallow neural network architectures cannot
accurately model the non-linear and wider range of time series and that deep neural
network architectures are more generalizable than shallow architectures. Therefore, this
paper proposes a prediction model based on domain adaptive LSTM-DNN. The proposed
model can accurately predict its remaining life under different working conditions and has
good generalization ability.

This article is mainly divided into three parts: feature extraction, domain adaptation,
and RUL prediction, as shown in Figure 2. The feature extraction part mainly extracts
traditional time-domain and frequency-domain features and then inputs them into the
LSTM layer. The domain adaptation part mainly uses the MMD algorithm to calculate the
difference in feature distribution between different domains and improves the accuracy of
RUL prediction by reducing the difference between the source and target domains. The
RUL prediction part inputs the features of the target domain into the trained source domain
network model and outputs the final prediction results.
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2.4. Domain Adaptive

The domain adaptation model proposed in this paper considers two main types of
loss in combination: regression loss based on the dataset and metric loss.

(1) Maximum Mean Difference (MMD)

Maximum Mean Discrepancy (MMD) is a metric learning method in TL that calcu-
lates the distribution difference between two domains, which can reduce the distribution
difference [21]. For two sets of random variables with Ns and Nt elements, respectively, the
MMD distances of the two random variables are:

MMD2(X, Y) =

∥∥∥∥∥ 1
Ns

Ns

∑
i=1

φ(xi)−
1

Nt

Nt

∑
j=1

φ(yj)

∥∥∥∥∥
2

H

(7)

Ns: Number of source domain features; the number of features in the Nt target domain.
H represents the Reproducing Kernel Hilbert Space (RKHS), a kernel learning method,
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and φ(·) is the mapping, which is used to map the original variables into the regenerating
kernel Hilbert space. MMD losses were calculated as follows [22]:

LMMD =
1

N2
s

Ns

∑
i=1

Ns

∑
j=1

k(xsi, xsj) +
1

N2
t

Nt

∑
i=1

Nt

∑
j=1

k(xti, xtj)−
2

NsNt

Ns

∑
i=1

Nt

∑
j=1

k(xsi, xtj) (8)

where k(·, ·) denotes the kernel function.

(2) Training optimization

During training, mean square error (MSE) is selected as the loss function, and the
formula is as follows [23]:

Lregression =
1
m

m

∑
i=1

(
yi −

_
y i

)2

(9)

where m: batch size of s training set, yi: real label;
_
y i: Predictive labels.

The final optimized loss objective function is summarized as:

Ltotal = Lregression + LMMD (10)

(3) Assessment indicators

Average absolute error (MAE) and root mean square error (RMSE) are selected as the
evaluation indicators of RUL prediction, and the formula is as follows:

MAE =
1
m

m

∑
i=1

∣∣∣yi −
_
y i

∣∣∣ (11)

RMSE =

√
1
m

m

∑
i=1

(yi −
_
y i)

2

(12)

3. Experiments

In order to study the degradation process and remaining service life of planetary
gearboxes under different operating conditions and to validate the remaining life prediction
method proposed in this paper, the group built a planetary gearbox experimental bench and
carried out 1003 h of planetary gearbox degradation experiments to collect the performance
degradation data of planetary gearboxes from intact to failure.

The planetary gearbox test stand consists of a base, motor, magnetic powder brake,
and planetary gearbox. This is shown in Figure 3. (1) The base is a steel table frame
with recesses for fixing the other components of the test stand; (2) An electromagnetic
speed-regulating motor (model YCT180-4A) with a rated power of 4 kW is used to provide
power; (3) A speed-torque sensor (model JN338) is fitted between the output of the motor
and the input of the planetary gearbox to provide the speed and torque signals of the input
shaft of the planetary gearbox; (4) A magnetic powder brake (model FZJ-5) is connected to
the output of the planetary gearbox to provide the load for the experimental process. The
main components of the test stand are mounted coaxially on the base and are connected
with couplings. The planetary gearbox used for this experiment is a single-pole planetary
gearbox, type NGW11, which consists of a gear ring, a sun wheel, and three planetary
wheels connected by a planetary carrier.

The star gearbox is fitted with four vibration sensors in different orientations, as shown
in Figure 3. 1#, 2#, 3#, and 4# represent the positions of the first, second, third, and fourth
sensors, respectively. The vibration signals are acquired at a sampling frequency (Fs) of
20 kHz and a sampling time of 12 s at 15 min intervals. The main parameters of speed and
load current during the experiment were: speed of 1000 rpm and load current of 1 A. The
vibration signals were collected for four operating conditions. Table 1 shows the operating
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conditions of the experimental planetary gearbox, the speed was kept at 1000 rpm, and the
loads were 0.8 A, 1.0 A, 1.2 A, and 1.4 A.
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Table 1. The description of the run-to-fail datasets.

Working Condition Speed Load

A 1000 rpm 1.0 A
B 1000 rpm 1.4 A
C 1000 rpm 1.2 A
D 1000 rpm 0.8 A

4. RUL Forecast

In order to achieve the prediction of RUL, an LSTM-DNN network needs to be built
and the corresponding hyperparameters set. For different migration tasks, the optimal
parameters of the model may vary. The parameters of the network model in this paper are
mainly based on several experiments. The main parameters are: the network learning rate
is set to 0.01, the number of training iterations is set to 2000, the batch size m is 128, and the
weights are optimized for Stochastic Gradient Descent (SGD).

4.1. Feature Extraction and Analysis

The raw signal extracted by the sensors does not reflect the degradation trend of the
planetary gearbox well, while using raw data for network training increases the network
training cost and affects the final output. This paper collects vibration signal datasets
from normal operation to fault failure under four operating conditions to extract useful
features related to the remaining service life of the planetary gearbox; 12 degradation feature
parameters are extracted in this paper. For the time domain feature parameters, information
from the entire frequency band was chosen without specifying a particular band so that
information from other bands would not be lost and would facilitate subsequent predictions.
Table 2 shows the performance degradation feature parameters. The 12 degradation
characteristics were used to form a multisensor data set as the source and target domain
for the study of the remaining service life of the planetary gearbox. The performance
degradation characteristics are shown in Figure 4, from which it can be seen that most of
the degradation characteristics have good monotonicity and can reflect the performance
degradation characteristics of the planetary gearbox.

Table 2. Classification of feature parameters.

Characteristic Parameters

Time domain characteristic parameters

Mean Square Value, RMS, Average amplitude,
Square root amplitude, Variance, Standard

Variance,
Waveform Index, Residual clearance factor

Frequency domain characteristic parameters FC, RMSF, STDF
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Figure 4. The particle extracted features for: (a) mean square, (b) Root Mean Square, (c) Mean
amplitude; (d) Square root amplitude, (e)Variance, (f) Standard Deviation, (g) Energy, (h) Waveform
index, (i) Clearance factor, (j) Frequency Center, (k) Root Mean Square frequency, (l) Frequency
Standard Deviation.

4.2. Forecasting Models

The life prediction of planetary gearboxes under different operating conditions uses
the data set in Table 3 to extract 12 characteristic degradation parameters for each operating
condition. To obtain better experimental results, the extracted experimental data needs to
be normalized by the normalization formula:

MFnorm(x) =
MF(x)−MFmin

MFmax −MFmin
(13)

Table 3. Layer details of the model in this article.

Layer Name Details

Feature extractor LSTM layer Units = 96 × 3,dropout = 0.8

Regression

Fully connected layer(FFC1) Layer_size = 128
Fully connected layer(FFC2) Layer_size = 64
Fully connected layer(FFC3) Layer_size = 32
Fully connected layer(RFC1) Layer_size = 1

Output layer(ROL) Layer_size = 1

Among them, MF(X): the feature set extracted for the xth time; MFmin: the minimum
value; MFmax: the maximum value.

Table 3 provides the specific layer details of the proposed method in this article. In
this paper, the dropout layer is added after each full connection layer, and its value is set to
0.5. ReLu is selected as the activation function of the prediction model.

4.3. Comparison with Related Transfer Learning Models

This article conducted four sets of experiments and collected four sets of operating
conditions data from Table 3. This article uses the last 110 samples from each group of
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operating conditions for RUL prediction. The experiment has been described earlier, with
each collection lasting for 12 s and every 15 min. Therefore, the remaining 110 sample
data are 28 h of data samples. This article first compares the proposed method with
traditional migration methods (TCA (31), JDA (11), BDA (12), and JGSA (32)). Input the
features constructed by TCA, JDA, BDA, and JGSA into the LSTM-DNN network for RUL
prediction. For all LSTM-DNN models, the radial basis function is selected as the function,
MSE is selected as the loss function, Adam (Adaptive Moment Estimation) is optimized
as the weight value, and the learning rate is 0.001. In this article, the proposed domain
adaptive LSTM-DNN model uses 96 × 3 units of LSTM layer and 128, 64, and 32 units
of fully connected layer for feature modules. The regression module uses 16 units of a
fully connected layer and one output layer. The model uses the Gaussian kernel function,
optimizes the weight to SGD, and has a learning rate of 0.01. The method proposed in this
article mainly utilizes labeled source domain data to train the LSTM-DNN model. Then the
loss function selects MSE loss and MMD loss as the common loss function to adjust the
specific parameters of the LSTM-DNN model. Finally, input the target domain dataset into
the trained LSTM-DNN model and output the prediction results.

The proposed model is compared with other transfer learning methods, as shown
in Figure 5. This article selects 28 time datasets from four working conditions for life
prediction. It can be seen from the figure that the model proposed in this paper is superior
to other transfer learning models and can adapt to different working conditions well. The
transfer learning conducted under any working condition can well match the actual model.
Regardless of the network model, the prediction effect between operating conditions B-C
and C-B is very good because the load of operating conditions B is 1.4 A and the load
of operating conditions C is 1.2 A, and the difference in operating conditions is very
small. The distribution of the collected datasets is similar. The traditional transfer learning
method cannot obtain a good prediction effect when there is a large difference in working
conditions, such as B-D, C-D, D-B, D-C, and other cross-working conditions. Especially,
TCA-LSTM-DNN exhibits negative transfer under B-D and C-D conditions. A possible
reason is that the TCA method is simple, similar to PCA, which involves placing two large
matrices inside, mapping them to higher dimensions, finding the minimum distance,
and outputting two small matrices. Therefore, it cannot adapt well to each operating
condition data. JDA, BDA, and JGSA have made a series of improvements to the classic
TCA. However, when the load changes significantly, RUL prediction cannot be performed
well. Although the method proposed in this article is relatively simple, it mainly consists of
a feature layer and a regression layer. However, the focus of this article is to add an MMD
adaptation layer after the feature layer to calculate the distance between the source and
target domains. Furthermore, the focus is to add the MMD adaptation layer to the loss
layer of the network for training, which can make the data distribution in the source and
target domains closer. In addition, this article adds a DNN layer after LSTM to improve the
fitting ability of the network, thereby improving the accuracy and stability of the network.
Therefore, the method proposed in this article can adapt to RUL prediction between any
cross-working conditions.

In order to accurately conclude that the proposed domain adaptive LSTM-DNN
model outperforms other transfer learning models, Table 4 lists the prediction performance
evaluation indicators of different transfer learning models, and the table shows that the
proposed model has the smallest MAE and RMSE, which are 0.069 and 0.144, respectively,
smaller than other migration models. Figure 6 shows the comparison histogram between
the proposed model and other transfer learning models under different working conditions.
From the figure, it can be seen that the values of MAE and RMSE of the proposed model
are smaller than those of other models, which verifies that the proposed model has a better
prediction effect and better generalization under different working conditions.
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Figure 5. Comparative results of different transfer learning models. (a) RUL prediction for Source
A—Target B, (b) RUL prediction for Source A—Target C, (c) RUL prediction for Source A—Target
D; (d) RUL prediction for Source B—Target A, (e) RUL prediction for Source B—Target C, (f) RUL
prediction for Source B—Target D, (g) RUL prediction for Source C—Target A, (h) RUL prediction
for Source C—Target B, (i) RUL prediction for Source C—Target D, (j) RUL prediction for Source
D—Target A, (k) RUL prediction for Source D—Target B, (l) RUL prediction for Source D—Target C.

Table 4. Predictive performance evaluation indicators of different transfer learning.

Source
Domain

Target
Domain

BDA-LSTM-DNN TCA-LSTM-DNN JDA-LSTM-DNN JGSA-LSTM-DNN Proposed Model

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

A B 0.205 0.276 0.176 0.272 0.225 0.298 0.199 0.282 0.066 0.162
A C 0.200 0.272 0.249 0.333 0.168 0.245 0.222 0.306 0.070 0.162
A D 0.141 0.203 0.262 0.347 0.194 0.279 0.138 0.241 0.058 0.145
B A 0.280 0.345 0.137 0.184 0.259 0.336 0.181 0.228 0.072 0.166
B C 0.104 0.180 0.132 0.243 0.124 0.201 0.116 0.193 0.070 0.155
B D 0.316 0.348 0.269 0.332 0.452 0.560 0.184 0.233 0.062 0.118
C A 0.335 0.397 0.178 0.274 0.238 0.332 0.237 0.300 0.038 0.087
C B 0.136 0.248 0.093 0.196 0.191 0.257 0.129 0.211 0.050 0.118
C D 0.332 0.397 0.270 0.345 0.512 0.626 0.323 0.367 0.083 0.170
D A 0.197 0.303 0.214 0.329 0.151 0.275 0.165 0.302 0.097 0.145
D B 0.317 0.368 0.158 0.239 0.340 0.415 0.226 0.298 0.090 0.185
D C 0.210 0.288 0.270 0.324 0.223 0.275 0.226 0.314 0.071 0.119

Total 0.231 0.302 0.201 0.285 0.256 0.342 0.196 0.273 0.069 0.144
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4.4. Comparison with LSTM Model

In order to better verify the effectiveness of the proposed model, this section compares
the lifetime prediction results of the proposed network model with the domain adaptive
LSTM model, as shown in Figure 7, which shows that the proposed model matches the
actual results better than the LSTM model. From Figure 7, it can be concluded that using
only the LSTM model has lower prediction accuracy. Because in LSTM networks, adding a
DNN layer can increase the depth of the network, thereby improving its expressive and fit-
ting abilities. Specifically, each time step of the LSTM network outputs a state vector, which
typically contains the feature information of the input sequence for that time step. However,
these vectors are usually high-dimensional and may not necessarily be the optimal feature
representations. Therefore, adding a DNN layer to further process these vectors, mapping
them to lower dimensional spaces, and extracting more discriminative features.

In addition, adding a DNN network after LSTM can also increase the non-linearity
of the network, thereby improving its fitting ability. In deep learning, non-linear transfor-
mations are very important as they allow neural networks to approximate any complex
function. Therefore, by adding a DNN network, the depth and non-linearity of the network
can be increased, thereby improving the performance of the LSTM network.

The performance indicators of the proposed network model and the domain adaptive
LSTM network model are shown in Table 5. It can be concluded from the table that the
MAE and RMSE of the proposed network model are smaller than those of the domain
adaptive LSTM network model for life prediction under different operating conditions.
The comparative histograms of MAE and RMSE of the network model proposed in this
paper and the domain adaptive LSTM network model are shown in Figure 8, through
which it can be seen that the values of MAE and RMSE with the addition of the DNN
structure are smaller than those without the DNN structure, verifying the superiority of
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the model proposed in this paper and reflecting the fact that in general, shallow neural
network structures cannot accurately model non-linear. It also reflects that, in general,
shallow neural network structures cannot accurately model non-linear and wider range
of time series and that deep neural network architectures have more generalization and
prediction capabilities compared to shallow architectures.
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Figure 7. Comparison results between LSTM-DNN and LSTM models. Comparative results of
different transfer learning models. (a) RUL prediction for Source A—Target B, (b) RUL prediction
for Source A—Target C, (c) RUL prediction for Source A—Target D; (d) RUL prediction for Source
B—Target A, (e) RUL prediction for Source B—Target C, (f) RUL prediction for Source B—Target
D, (g) RUL prediction for Source C—Target A, (h) RUL prediction for Source C—Target B, (i) RUL
prediction for Source C—Target D, (j) RUL prediction for Source D—Target A, (k) RUL prediction for
Source D—Target B, (l) RUL prediction for Source D—Target C.

Table 5. RUL predicted performance indicators compared with LSTM.

Source
Domain

Target
Domain

LSTM Proposed Model

MAE RMSE MAE RMSE

A B 0.175 0.275 0.065 0.130
A C 0.147 0.251 0.065 0.154
A D 0.110 0.206 0.057 0.147
B A 0.142 0.223 0.047 0.105
B C 0.228 0.311 0.076 0.156
B D 0.201 0.284 0.070 0.158
C A 0.111 0.174 0.042 0.100
C B 0.122 0.191 0.068 0.150
C D 0.134 0.206 0.040 0.101
D A 0.211 0.303 0.106 0.193
D B 0.242 0.351 0.098 0.206
D C 0.179 0.263 0.066 0.128



Processes 2023, 11, 2002 13 of 15

Processes 2023, 11, x FOR PEER REVIEW 13 of 15 
 

 

of time series and that deep neural network architectures have more generalization and 

prediction capabilities compared to shallow architectures. 

Table 5. RUL predicted performance indicators compared with LSTM. 

Source Domain Target Domain 
LSTM Proposed Model 

MAE RMSE MAE RMSE 

A B 0.175 0.275 0.065 0.130 

A C 0.147 0.251 0.065 0.154 

A D 0.110 0.206 0.057 0.147 

B A 0.142 0.223 0.047 0.105 

B C 0.228 0.311 0.076 0.156 

B D 0.201 0.284 0.070 0.158 

C A 0.111 0.174 0.042 0.100 

C B 0.122 0.191 0.068 0.150 

C D 0.134 0.206 0.040 0.101 

D A 0.211 0.303 0.106 0.193 

D B 0.242 0.351 0.098 0.206 

D C 0.179 0.263 0.066 0.128 

 

Figure 8. Comparison of MAE and RMSE between LSTM-DNN and LSTM. (a) Compare the MAE 

evaluation indicators between the LSTM domain adaptive method and the method proposed in this 

article; (b) Compare the RMSE evaluation indicators between the LSTM domain adaptive method 

and the method proposed in this article. 

5. Conclusions 

In this paper, a life prediction method for planetary gearboxes under different oper-

ating conditions is proposed. The domain-adaptive LSTM-DNN network proposed in this 

paper is validated against four other different prediction models on an experimental data 

set in our laboratory, and the effectiveness and superiority of the model proposed in this 

paper are derived. The main conclusions of this paper are as follows: 

Figure 8. Comparison of MAE and RMSE between LSTM-DNN and LSTM. (a) Compare the MAE
evaluation indicators between the LSTM domain adaptive method and the method proposed in this
article; (b) Compare the RMSE evaluation indicators between the LSTM domain adaptive method
and the method proposed in this article.

5. Conclusions

In this paper, a life prediction method for planetary gearboxes under different operat-
ing conditions is proposed. The domain-adaptive LSTM-DNN network proposed in this
paper is validated against four other different prediction models on an experimental data
set in our laboratory, and the effectiveness and superiority of the model proposed in this
paper are derived. The main conclusions of this paper are as follows:

1. Compared with traditional transfer learning models, the method not only accurately
predicts the remaining lifespan but also has better feature extraction capability and
enhanced adaptivity of data distribution compared to other adaptive methods.

2. The model proposed in this paper can effectively extract degradation features from
condition monitoring data under various operating conditions. Through domain
adaption, the generalization capability of the data-driven RUL prediction model can
be effectively improved, and to a certain extent, it can adapt to the RUL prediction
tasks under different operating conditions, making up for the limitations of the
traditional data-driven model.

3. The model has made predictions under different working conditions and obtained bet-
ter prediction results, which facilitate engineers to make effective maintenance plans
in advance and shorten maintenance intervals, which can further save maintenance
costs, thus realizing planetary gearbox life prediction and health management.
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In the future, we will make further improvements in the following areas. (1) Loss
functions such as classification and CORAL are not considered in this paper, and mul-
tiple loss functions will be introduced in this network model for prediction in the next
step. (2) Further refinement of the proposed models and algorithms to obtain more practi-
cal applications.
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