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During the process of drug discovery, many compounds have exhibited polyphar-
macological interactions with various biological entities [1–4]. This complexity poses a
significant challenge in developing therapies to enhance efficacy with less toxicity, particu-
larly for treating complex diseases such as cancer [5,6]. Meanwhile, the determination of
bioactive compounds from natural products remains a tedious process with a low success
rate, primarily due to the poor understanding of compound–activity relationships [7–9]. In
response to this challenge, network pharmacology modeling has emerged as a promising
paradigm for the next generation of drug discovery [10–12]. With the growing abundance
of molecular data derived from both pharmacological and biological entities, the field of
network pharmacology modeling has witnessed increasingly exciting applications [13–16].
This Special Issue, titled “Network Pharmacology Modelling for Drug Discovery”, which is
available online at https://www.mdpi.com/journal/processes/special_issues/Network_
Pharmacology_Modelling, aims to highlight the recent advances in this endeavor, with
a specific focus on understanding the mechanisms of action of herb medicine. In what
follows, we will provide a brief overview of the studies that were selected for the Special
Issue, highlighting the database resources and computational tools that may be references
for future studies.

1. Galangal against gastric cancer

Galangal, the rhizome of the ginger plant, has been reported to relieve stomach dis-
eases. However, its potential treatment effects on gastric cancer remain largely unexplored.
In [17], the authors determined a total of 13 active compounds of galangal, as well as
their potential target genes from the TCMSP database [18]. Through a protein–protein
network analysis and gene ontology enrichment analysis, they found that several known
gastric cancer genes indeed interact with the key targets of galangal. Furthermore, they
were able to validate several ligand–receptor bindings through computational simulations,
suggesting the potential of galangal in treating gastric cancer.

2. Zhi Bai Di Huang Pill against Systemic Lupus Erythematosus (SLE)

SLE is an autoimmune disease where the body’s immune system mistakenly attacks
its own organs, causing widespread inflammation and tissue damage. In [19], the au-
thors explored the potential of a traditional Chinese medicine called Zhi Bai Di Huang
Pill (ZBDHP) for the treatment of SLE. The TCMSP database was utilized to retrieve the
active ingredients of ZBDHP, while their targets were predicted by the SwissTargetPre-
diction tool [20]. On the other hand, the SLE-associated genes were retrieved from the
GeneCards [21], OMIM [22], and DisGeNET [23] databases. Further gene set enrichment
analyses showed that ZBDHP may affect the PI3K, AKT, and mTOR signaling pathways.
Similar databases and computational tools have also been used to study the following herb
plants: Qianghuo Shengshi decoction (QHSSD) against ankylosing spondylitis [24] and
Ocimum Sanctum against tuberculosis [25].
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3. Glycyrrhiza Uralensis against alcoholic liver injury

In [26], the authors explored the mechanisms of action of Glycyrrhiza uralensis, also
known as Chinese liquorice, in treating alcoholic liver injury. Notably, multiple molecular
docking tools were used, including AutoDock [27], PYMOL, and Discovery Studio. Using
similar network pharmacology modeling approaches to those of [19], the authors provided
initial evidence of Glycyrrhiza uralensis that may warrant future experimental validation
using in vitro or in vivo studies.

4. Glutinol against multiple diseases

Glutinol is a triterpenoid compound that has been reported to have a range of antidia-
betic, anti-inflammatory, and anticancer effects. In [28], the authors studied the mechanisms
of action as well as the ADMET properties of glutinol. Confirming first that glutinol has
drug-likeness properties through using the pkCSM tool [29], the authors determined target
genes from the BindingDB database [30] and their interacting proteins from the STRING
database [31]. A gene ontology enrichment analysis was performed using the DAVID
tool [32]. Molecular docking with MOE has further revealed top binding targets of glutinol,
such as CYP19A1.

5. Ginseng against COVID-19

Network pharmacology modeling has also been applied for treating the recent COVID-
19 pandemic. In [33], the authors studied the low-molecular-weight compounds (LMWCs)
from Panax Ginseng C.A. Meyer (PGCAM). Using SwissTargetPrediction and SEA [34]
analyses, multiple target genes were predicted for COVID-19 and further validated using
molecular docking simulations. Another antiviral study concerns quercetin against the
influenza A virus (IAV), where a compound–target–pathway network has been estab-
lished [35].

6. Sochehwan against metabolic syndrome

Sochehwan is a herbal formula of traditional Korean medicine with limited knowledge
on its mechanisms of action. In [36], the authors studied its effect on metabolic syndrome.
Using the TCMID database [37], active compounds of Sochehwan were retrieved and
screened in the STRING database for their protein targets. Notably, the authors validated
the efficacy of Sochehwan in a mouse macrophage cell line, mainly through the suppression
of lipopolysaccharide-induced NF-kB and MAPK inflammatory responses.

7. Pueraria lobata against diabetes

In [38], the authors determined the active ingredients of the roots of Pueraria lobata
using mass spectrometry experiments, and then retrieved their targets from TCSMP and
Drugbank [39]. A related study is on obesity, where the authors used similar mass spectrom-
etry techniques to determine the metabolites of Ilex cornuta and identified the NOD-like
receptor (NLR) signaling pathway as the key target when treating obesity [40].

8. Summary

Network pharmacology modeling is increasingly being recognized as a crucial tool for
prioritizing potential drug candidates in in silico drug discovery processes, particularly for
herbal medicine, which inherently contains multiple active ingredients. As we showcased
the applications of network pharmacology modeling, it is also imperative to discuss their
limitations. Firstly, as most of the studies have acknowledged, there is a lack of experimental
validation concerning these potential drug targets. Moreover, while these studies focus
on the elucidation of drug targets, they often leave unanswered how these interactions
contribute to the synergistic or antagonistic effects in disease contexts. Understanding
these network dynamics could significantly enhance our capacity to develop more targeted
and effective treatment [41]. We anticipate that the Special Issue may bring more attention
from a systems medicine perspective of drug discovery. With growing datasets about drug
targets as well as their effects in multiple disease contexts, we look forward to further
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advances in the mechanistic modeling of network pharmacology. These developments, we
believe, could improve the efficiency of drug screening and ultimately improve clinical
translation as well as precision medicine [42].

Conflicts of Interest: The author declares no conflict of interest.
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