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Abstract: In this study, we simulate the cooling of a microprocessor by thermal convection in three
different shapes: a square, a trapezoidal, and a triangular shape. The latter is improved by a variety
of types of roughness, including square roughness, triangular roughness Type 1, triangular roughness
Type 2, and triangular roughness Type 3. The microprocessors are kept at a constant temperature,
the air flow is constant, and the geometry is fixed. The physical phenomenon is simulated by the
ANSYS software. The numerical results reported in this study cover the ranges of the obstacle’s angle
of inclination, 0◦ ≤ θ ≤ 45◦, (square obstacles, θ = 0◦, trapezoidal obstacles, 0◦ < θ < 45◦, triangular
obstacles, θ = 45◦) and Reynolds number, 2500 ≤ Re ≤ 10, 000. The findings relate to streamlines,
dynamic pressure (max), mean velocity, temperature field, mean Nusselt number (Nu/Nu0) profiles,
local coefficient of friction (Cf/f0), mean coefficient of friction (f/f0) profiles, mean velocity field
with roughness, and fluid temperature field with roughness. The aim of the study is to show the
interaction between the roughness parameter and the obstacle geometry. In the case of a triangular
obstacle, the contact between the cold air and the obstacle is significant downstream of the obstacle,
which gives us good cooling, and the Nusselt number has an important value because the agitation
of the flow increases convective heat transfer, and the coefficient of friction is low because the air flow
is uniform.

Keywords: forced convection; obstacle; CFD; roughness; Nusselt numbers; friction

1. Introduction

Currently, forced or free convection environments are used to cool personal computers.
The most common cooling methods for greater or lower heat flows involve fans attached
to the central processing unit. However, due to a number of factors, including the size
of the workspace, the noise, and the quality of the limit cooling, these cooling systems
have some limitations for electronic components that operate at higher frequencies (over
1000 megahertz). As a result, novel cooling techniques must be used to dissipate thermal
energy greater than 100 W/cm2 from an electronic component’s surface while keeping
the device (or component) at acceptable temperatures, usually below 85 ◦C. In order to
accelerate the rate of heat transmission, impediments are placed in the channel’s duct to
induce turbulence. Baffles and fins are positioned in the forced flow to create secondary
currents or recirculation zones in order to produce turbulence. These are employed to
enhance heat transfer in a number of engineering applications, such as solar channels and
heat exchangers [1]. The improvement of heat transmission and pressure drop caused
by connecting barrier elements of various shapes, sizes, inclinations, and orientations to
the channel walls has been investigated by several researchers [2–6] using experimental
approaches. Their findings demonstrate that the Nusselt number and thermal efficiency
were raised by experimental and numerical analyses to improve thermal performance.
The characterization of the air pressure and velocity field inside a rectangular duct with
two baffle plates installed on opposing sides was provided by Demartini et al. [7]. Baffle
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plates are found in shell and tube heat exchangers, and the geometry of the problem is a
simplification of that geometry. The extent of the low-pressure regions in the downstream
regions and the high-pressure regions generated upstream of both baffle plates are the most
significant aspects seen. Cao et al. [8] and Saedodin et al. [9] used the lattice Boltzmann
method and Abchouyeh et al. [10] carried out a numerical investigation of a horizontal
sinusoidal baffle channel containing a water/Cu nanofluid. They claimed that when the
nanoparticle fraction and obstacle space increased, so did the average Nusselt number
values. According to the findings, the wedge ribs significantly improved heat transfer and
pressure drop. Chompookham et al. [11] offer two types of triangular ribs. Using inclined
solid and perforated baffles with a Reynolds number of 12,000 to 41,000, two equally sized
baffles were introduced into a rectangular channel by Dutta and Hossain [12], increasing
the local heat transfer characteristics as well as the friction through the channel. The
findings show that the local Nusselt number has a considerable impact on the orientation,
location, and shape of the second deflector. A flat plate solar air heater’s energy and exergy
analyses were shown by Kalaiarasi et al. [13]. In order to increase thermal efficiency, Peng
et al. [14] demonstrated a new kind of solar air collector that uses finned pins on its absorber.
Selimefendigil et al. [15] performed a computational analysis of the hydrothermal properties
of the convective laminar nanofluid Fe3O4 through a bifurcating type channel with a
changeable magnetic field based on the finite element method in addition to experimental
methods. Through a square pipe with various baffles, including trapezoidal, triangular, and
square shapes, Kamali and Binesh [16] explored turbulent heat transmission and examined
friction properties. A baffle was inserted by Nasiruddin et al. [17] to enhance heat transfer
inside a circular tube. The effect of the baffles’ size and position on the channel’s thermal
performance was investigated. Pin fins were installed by Wang et al. [18] to enhance heat
transfer in a rectangular channel. The properties of forced convection heat transfer in the
presence of transverse grooves on the bottom surface of a two-dimensional channel were
reported by Eiamsa-ard and Promvonge [19]. With the use of circular section rings with
various spacings, Ozceyhan et al.’s [20] simulation of heat transmission and friction in a
tube was accomplished. FLUENT was used to run the simulation, and the Reynolds values
ranged from 4475 to 43,725. In a square channel with discrete type “V” baffles, Promvonge
et al. [21] simulate a turbulent flow and heat transfer in three dimensions. This simulation
made use of the finite volume approach and the SIMPLE algorithm. In a two-dimensional
channel, the effects of introducing diamond-shaped baffles with various tip angles on
thermal enhancement were examined statistically by Sripattanapipat and Promvonge [22].
Yang [23] reviewed the development of LES applications in transitional flows and gas
turbine combustor flows. There were several major challenges/issues associated with
LES and its application such as SGS modeling, generation methods for inflow boundary
conditions, wall layer modeling, LES of turbulent combustion, etc. He concluded that the
LES will be undoubtedly the main tool for engineering fluid analysis within a couple of
decades since DNS will still be far too expensive. In the future, LES is likely to be used for
a broader range of flow problems and for more complex problems including more multi-
disciplinary applications. De Vanna et al. [24] studied the physical reliability of turbulence
modeling in an adverse pressure gradient wall flow setup at moderate/high Reynolds
number. A canonical configuration of shockwave/boundary layer interaction is used to
illustrate the wall modeling behavior. In particular, a standard equilibrium-based wall-
modeling approach, combined with an innovative strategy to keep the no-slip velocity and
adiabatic/isothermal temperature constraints at the wall, is adopted. The lattice Boltzmann
method was used by Pirouz et al. [25] to model conjugate heat flow inside a rectangular
channel with associated barriers. Mohammedi et al. [26] investigated how to increase heat
transfer efficiency and outlet air temperature in a finned and baffled solar water heater. The
enhancement of heat transfer inside a square duct fitted with oblique horseshoe baffles was
explored by Skullong et al. [27]. When airflow and an absorber installed with corrugated
fins were present, Priyam and Chand [28] investigated the effect of flow on the efficiency
of a solar collector. To assess the internal flow and heat transfer properties of a solar air
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collector with baffles, Hu et al. [29] used numerical analysis. Amraoui and Aliane [30] used
the CFD technique to simulate the research of fluid flow and heat transfer in a solar channel
with obstacles, while Amraoui [31] used CFX software to simulate the study of air flow
around a circular obstacle field in an air CSP. The same author, Amraoui [32], conducted
a three-dimensional evaluation of two different solar collector types more recently. To
complete their research quickly and cheaply, they used the ANSYS simulation code. In
order to improve efficiency, Amraoui and Benosman [33] incorporated square barriers.
The height and pitch of the roughness element are the two most significant characteristics,
although many other factors contribute to the arrangement and shape of the roughness
components. Reynolds number, rib cross section, angle of attack, and combined turbulence
promoters are further parameters. Using direct numerical simulations, Leonardi et al. [34]
investigated the ordered motion of a turbulent flow in a channel with a series of square
bars on the lower and upper sides. For the examination of heat transfer in a rough-walled
conduit with sand grains and two-dimensional periodic square section ribs on a wall
surface for turbulent flow, Miyake et al. [35] performed direct numerical simulations. The
impact of repeated ribs on the thermal efficiency of a flat absorber plate solar air channel
was investigated by Ansari and Bazargan [36]. After designing a ribbed rough surface for
a channel, Kim and Kim [37] presented a study on the numerical optimization technique
combined with RANS analysis of flow and heat transmission. A two-passage square
channel with and without square section parallel ribs at a 90◦ angle on a wall surface was
subjected to a 3D numerical simulation by Jang et al. [38]. With angular ribs extruded on
two opposing surfaces, Kim and Kim [39] carried out a numerical simulation of fluid flow
and heat transfer for channel shape optimization. In a triangular duct with ribs, Kumar
et al. [40] looked into the flow and heat transmission characteristics. In the context of surface
roughness effects, Ryu et al. [41] looked into the heat transfer characteristics of turbulent
flow in channels with two-dimensional ribs and three-dimensional blocks. In order to
analyze the heat transfer and hydraulic behavior of the fluid in a rectangular channel flow
with periodic ribs installed on one of the major walls, Liu et al. [42] conducted a numerical
and experimental investigation. To forecast the thermal–hydraulic performance of a solar
air channel roughened with conical and spherical ribs, Alam and Kim [43] used numerical
simulations. For the numerical optimization of the energy and exergy efficiency of a solar
air channel with twisted rib roughness on a heating plate, Kumar and Layek [44] conducted
a stochastic analysis. Skullong et al. [45] used corrugated grooves embedded with pairs
of trapezoidal fins (ATs) positioned on the absorber plate to investigate the heat transfer
properties in a solar air channel. In order to explore the heat transfer, friction factor, and
thermal–hydraulic performance characteristics of flow in a rough rectangular duct, Deo
et al. [46] carried out an experimental investigation. The thermal and hydraulic performance
of a roughened, dual-flow solar air channel with several C-shaped ribs was experimentally
investigated by Gabhane and Kanase-Patil [47]. An experimental investigation on heat
transmission and coefficient of friction for a synthetically rough solar air duct was presented
by Kumar et al. [48]. For the range of tested roughness parameters, it was discovered that a
rough solar air duct performs better than a smooth duct. The experimental research of heat
transmission and friction factor in a countercurrent double-pass solar air channel with a
V-shaped discrete rib roughness and shifted over two substantial surfaces of the heated
plate was reviewed by Ravi and Saini [49].

The numerical analysis of the turbulent air flow in forced convection around a barrier
was of particular interest to us in this work. In order to validate this model, the outcomes
were compared to those reported in the literature under similar circumstances. Our project
used fluid calculation code to mimic the cooling of a microprocessor in two dimensions.

2. Methodology

The investigation revolved around a heat exchanger. It has a horizontal, rectangu-
lar channel, an isothermal upper wall, a thermally insulated lower wall, and extended
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surfaces in the form of intermittently spaced-apart obstacles. Figure 1 presents a precise
geometric illustration.
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Figure 1. Geometry under investigation and boundary conditions.

In order to determine the ideal setting for enhanced heat transfer, we primarily con-
centrated on an essential geometric variable associated with an obstacle in the first section
of this study, namely the effect of the slope of their leading edges. Figure 2 shows three
cases that can occur depending on the leading edge of the obstacle’s angle of inclination:

• Square obstacles in the case where: θ = 0◦;
• Trapezoidal obstacles in the case where: 0◦ < θ < 45◦;
• Triangular obstacles in the case where: θ = 45◦.
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(b) 0◦ < θ < 45◦: trapezoidal obstacle, and (c) θ = 45◦: triangular obstacle.

To improve the performance of the heat exchanger channel, rough walls were used in
the presence of fins and triangular baffles. The third model, Figure 2c is compared to the
performances of four channels in the presence of four roughness modes: square, Figure 3a,
triangular Type 1, Figure 3b, triangular Type 2, Figure 3c, and triangular Type 3, Figure 3d.
In all the cases proposed, the roughness is present only on the upper hot wall of the channel,
exactly in line with the last obstacle.
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The specific parameters of the geometry and the thermo-physical data of the fluid (air)
and of the solid (walls) are indicated in Tables 1 and 2.

Table 1. Geometric parameters of heat exchanger channel with H = 0.01 m.

Dimension H

Channel length 25 H
Channel height 2 H
Channel hydraulic diameter 2 H
Obstacle width 1 H
Obstacle height 1 H
Separation distance from obstacles 3 H
Roughness width 0.5 H
Roughness height 0.5 H
Distance between two roughness units 0.5 H
Distance between the channel entrance and the left side of the first obstacle 5 H
Distance between the right side of the last obstacle and the exit of the conduit 7 H
Distance from the right side of the last obstacle to the first roughness unit 1 H
Distance from the right side of the last roughness unit to the exit of the channel 0.5 H

Table 2. Thermo-physical data of air and Al at 300 K.

k (W/m·K) Cp (J/kg·K) ρ (kg/m3) µ (Pa·s) Pr

Air 0.0242 1006.43 1.225 1.7894 × 10−5 0.71
Al 0.1672 14,283 0.08189 . . . . . .

The aerodynamic and thermal boundary conditions were chosen according to the
simulation of Nasiruddin and Kamran Siddiqui [17] as shown in Figure 1.

At the inlet (x = 0, 0 ≤ y ≤ 2H):

u(0, y) = Uin
v(0, y) = 0
T(0, y) = Tin

k(0, y) = kin = 0.005×U2
in

ε(0, y) = εin = 0.1× k2
in

 (1)

At the outlet (x = 25H, 0 ≤ y ≤ 2H):

P(L, y) = Patm
∂∅
∂x (L, y) = 0

}
(2)

where φ ≡ (u, v, T, k, ε).
At the upper surface (0 ≤ x ≤ 25H, y = 2H):

u = v = 0
k = ε = 0
T = Tw

 (3)

At the lower surface (0 ≤ x ≤ 25H, y = 0):

u = v = 0
k = ε = 0

∂T
∂y = 0

 (4)



Processes 2023, 11, 1979 6 of 22

At the solid/fluid interface, the following condition is applied:

Ts = Tf

λS
∂Ts
∂n

∣∣∣→
N
= λ f

∂Tf
∂n

∣∣∣→
N

}
(5)

where
→
N is the vector normal to the considered surface interface, λS and λ f are thermal

conductivities of solid and fluid, respectively.
The computational domain fitted with square obstacle, trapezoidal obstacle, and trian-

gular obstacle was simulated using the computational fluid dynamics (CFD) commercial
software ANSYS Fluent.

The k− ε turbulence was adopted in this study. In Cartesian coordinates, the continuity,
momentum, energy, and turbulence equations can be written in the following compact
form Patankar [50]:

∂

∂x
(ρuφ) +

∂

∂x
(ρvφ) =

∂

∂x

[
Eφ

∂φ

∂x

]
+

∂

∂y

[
Eφ

∂φ

∂y

]
+ Sφ

}
(6)

where φ is a variable that serves to represent quantities such as the velocity components
u and v, the turbulent kinetic energy k or the rate of turbulent energy dissipation ε, and
the temperature T. However, the diffusion coefficient Eφ and the source term Sφ have
specific values for the different conservation equations in the case of the standard k− ε
turbulence model.

Continuity equation
∅ = 1
Eφ = 0
Sφ = 0

 (7)

Momentum equation in X-direction

∅ = u
Eφ = µe

Sφ = − ∂P
∂x + ∂

∂x

[
µe

(
∂u
∂x

)]
+ ∂

∂y

[
µe

(
∂v
∂x

)]
 (8)

Momentum equation in Y-direction

∅ = v
Eφ = µe

Sφ = − ∂P
∂y + ∂

∂x

[
µe

(
∂u
∂x

)]
+ ∂

∂y

[
µe

(
∂v
∂x

)]
 (9)

Conservation of energy in the fluid region

∅ = T
Eφ = µe

σT
Sφ = 0

 (10)

Conservation of energy in the solid region

∅ = T
Eφ = λS
Sφ = ∂

∂x (ρsuT) + ∂
∂y (ρsvT)

 (11)
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k-Turbulent kinetic energy equation

∅ = k
Eφ = µl +

µt
σk

Sφ = −ρε + Gk

 (12)

ε-Turbulent dissipation rate equation

∅ = ε

Eφ = µl +
µt
σε

Sφ = ε
k (C1εGk − C2ερε)

 (13)

Gk is the rate of kinetic energy production due to energy transfer from the turbulent
mean flow; it is given by:

µe f f = µl + µt

Gk = µt

{
2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
]
+
(

∂u
∂y + ∂v

∂x

)2
} (14)

where Cµ = 0.09; C1ε = 1.44; C2ε = 1.92; σk = 1.0; σε = 1.3, σT = 0.9 are the constants of
the model, as proposed by Laundry and Spalding [50].

3. Results and Discussion

For the numerical simulations presented in this article, we refer to the experimental
work of Demartini et al. [7], who studied planar baffles. Figure 4 shows our result and
those obtained by Demartini et al. [7]. The three meshes tested (coarse: 97,593 nodes,
medium: 215,897 nodes, and fine: 458,632 nodes) are illustrated in Figure 4. For turbulence
models that use the wall functions equation, k−ε, the first cell is placed in the fully tur-
bulent (log-law) region just after the buffer layer which satisfies the condition y+ ≈ 30. It
depicts the pressure coefficient profiles with some previously studied numerical results
for Uin = 7.8 m/s after the second chicane at x = 0.405 m. A good agreement between the
numerical results, for fine mesh, and experimental results is observed, showing the growth
of the pressure coefficient near the walls. The lower pressure values near the tip of the
baffles are due to the high velocities in this region. Consequently, the fine mesh was chosen,
despite the simulation being terminated due to excessive element distortion.

The evolution of the streamlines for the various types of obstacle with angles of
θ = 0◦, 0◦ < θ < 45◦, and θ = 45◦ is shown in Figure 5. According to the obstacle, we see
that the streamlines alternate between the three forms, Figure 5a–c. The streamlines in
Figure 5a (square obstacle) are less contoured as they cross the barrier, causing turbulence
that disrupts the flow. The streamlines in Figure 5b, for the trapezoidal obstacle, straighten
as they cross it, changing the streamlines’ field direction. The streamlines are attached to
the obstacle in Figure 5c, the triangular obstacle, giving us a powerful streamline field.

According to Figure 5, complex phenomena including recirculation zones and regions
of turbulence upstream and downstream of the obstacle are produced by the flows in the
air veins for the three different types of obstacle. The existence of impediments leads the
three air streams to divide into multiple distinct zones above, below, and upstream of
the obstructions. As a result, the flow creates recirculation zones (Zone A) close to the
lower obstacles, which intensifies the turbulence upstream of the upper obstacles (Zone
B). In addition to the separation of the fluid flow induced by the obstructions (Zone C),
there are dead zones upstream of the lower obstacles (Zone C) plus the separation of the
fluid flow caused by the obstacles. We observe that the importance of the dead zone for
trapezoidal-shaped obstacles is less than that of square obstacles, and that it is almost
zero for the model with triangular obstacles. When compared to previous models that
have square and trapezoidal barriers, the model with triangle obstacles has a significantly
large turbulent zone (Zone B). Figure 6 depicts dynamic pressure, which is the flow of
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momentum per unit volume (the kinetic energy density). The three varieties under study
are similar in terms of the overall dynamic pressure setup.
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Figure 6. Contours of dynamic pressure fields for Re = 2500 and different angles of obstacles:
(a) θ = 0◦: square obstacle; (b) 0◦ < θ < 45◦: trapezoidal obstacle; and (c) θ = 45◦: triangular obstacle.

The dynamic pressure is uniform at the entrance, immediately below the first upper
obstacle zone. Upstream of the upper and lower obstacles, the dynamic pressure approaches
zero values. The zones (A, B, C, and D) with the highest dynamic pressure are separated
by the sharp upstream edge. However, the flow separates from the obstacle’s wall, which
results in a depression downwind of these obstacles. Due to the poor circulation at this
location, the dynamic pressure at the attack terminals in Figure 6a is nearly negligible. The
dynamic pressure in Figure 6b must be displaced along the profile, causing an average flow
of kinetic energy. The pressure in Figure 6c has a substantial value since the profile is ideal,
which allowed for a large movement.

For the three types of obstacles, 0◦ < θ < 45◦, Figure 7 shows the dynamic pressure
fluctuation as a function of the Reynolds number (Re = 2500, 5000, 7500, and 10,000).
Remember that pressure increases every time the Reynolds number increases. As can be
seen, the pressure values for the square and trapezoidal obstacles are extremely close to
each other. In addition, compared to the two preceding situations, the pressure value in the
triangular case is relatively low.
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The entire distance traveled over a certain period of time divided by that period of time
is the average velocity. The vortex is always created upstream of the rectangular obstacle, as
seen in Figure 8. On the other hand, at the level of the triangular and trapezoidal obstacles,
the flow consistently adheres to the obstacle’s wall and follows it. As a result, the flow
has two crucial moments. Figures clearly demonstrate that the ridge downstream of the
obstacle has an impact on fluid behavior even upstream of it, altering how the flow interacts
with the upper wall of the triangle obstacle. This enables us to claim that the presence of
the inclination at the level of the edge upstream of the obstacle not only controls the zone
of the triangle but also the area around this obstacle.
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Figure 8. Contours of mean velocity fields for Re = 2500 and different obstacle: (a) θ = 0◦: square
obstacle; (b) 0◦ < θ < 45◦: trapezoidal obstacle; and (c) θ = 45◦: triangular obstacle.

According to the average intensity of the velocity, different zones are identified in
the three models under investigation (low or high). Just upstream of the first obstacle, the
average velocities for the three models under study are low. Along the downstream side
of square, trapezoidal, and triangular obstacles, they are also weak. For the three models
under study, the average velocities are very high under both the upper and lower obstacle.

The distribution of the average velocity as a function of the Reynolds number is shown
in Figure 9. Keep in mind that the average velocity increases as the Reynolds number
increases. Additionally, we discover that for Reynolds values 2000–6000, the average
velocity in the three instances was quite similar. Reynolds number 6000 indicates that the
average velocity dropped in the case of the triangular obstacle and stayed constant in the
situations of the square and trapezoidal obstacles.

For the square, trapezoidal, and triangular examples under study, the fluctuation of
the axial velocity is depicted in Figure 10. As a result of the obstacle, it can be seen that the
flow is actually accelerated. For the flow’s perfect straightening upstream of a triangular
obstacle, axial velocity is crucial. Velocity is affected in the case of the trapezoidal obstacle.
However, because of the vortex that is created in the square case, the velocity varies.

At x = 0.07 m and for various values of the Reynolds number in each of the cases taken
into consideration, Figure 11 shows the fluctuation of the axial velocity as a function of
the height of the channel. When the channel height is between 0 and 0.015 m, it is shown
that the velocity increases, and that the velocity increases as the value of the Reynolds
number increases. If we use a Reynolds number to examine the axial velocity profiles for
the three models, we find that the square and trapezoidal obstacle models have nearly
identical velocities.

For the model with triangle obstacles, the velocities take substantial values. The
velocities are observed to be in the opposite direction of the flow at a height of 0.015 m, and
the model with triangular obstacles has the highest values of velocities when compared to
the other models (Figure 12).
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Figure 12. Profiles of the axial velocity for different angles of obstacles and various values of the
Reynolds number.

The profiles of the ratios (u/Uin) at the channel’s outflow (x = L) are shown in Figure 13.
These profiles demonstrate that for the smallest Reynolds number, Re = 2500, the ratios
(u/Uin) are similar. The ratios (u/Uin) (at the point 0 up to 0.01 m) of the model with a
triangular obstacle are low for the maximum Reynolds number, Re = 10,000. For the square
obstacle, the model has high ratios (u/Uin). The model with a triangular obstacle has large
ratios (u/Uin) at positions 0.01 to 0.018 m.
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Figure 13. Dimensionless axial velocity profiles (u/Uin) at the channel outlet (x = L), for different
hydrodynamic (2500 ≤ Re ≤ 10,000) and geometric (0◦ ≤ θ ≤ 45◦) parameters.

For the square obstacle, the model has low ratios (u/Uin). The other heights (u/Uin)
for the three models range from 0.018 to 0.02 m. The fluid is viscous, thus when close to
the wall, the velocity is zero. Due to the constant section and the varied flow, the various
Reynolds numbers result in a variation in velocity.

The change in average axial velocity for the three examples is shown in Figure 14 as a
function of Reynolds number. As can be seen, the axial velocity increases as the Reynolds
number increases. However, the three investigations revealed an increase in axial velocity.
When the Reynolds number is between 2000 and 4000, the velocity value is roughly constant
at 5 m/s.
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Figure 14. Maximum axial speeds for the different cases studied.

From the value of the Reynolds number 4000, it can be seen that the three examples
have different velocities, with the triangular obstacle having the smallest increase in velocity,
followed by the trapezoidal obstacle, and then the square obstacle.

Figure 15 shows how the vertical (transverse) velocity varies in the three cases of
the triangle, trapezoid, and square. With the exception of the head of the obstacles, the
transverse velocity is homogeneous throughout the duct of the channel. However, at the
left extremities of the upper and lower obstacles, the velocity assumes positive and negative
values, respectively. Upstream of a square obstacle, the velocity is high because of the
abrupt pipe section reduction.
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Figure 15. The transverse velocity field in the three cases: (a) square, (b) trapezoidal and (c) triangular,
for Re = 2500.

The straightening of the flow causes a trapezoidal obstacle to reduce velocity. Due to
the consistent convergence of the channel segment in the event of a triangular obstacle, the
velocity is low.

For various shapes of obstacles, Figure 16 illustrates how the maximum transverse
velocity varies as a function of the Reynolds number. The velocity rises as the Reynolds
number rises. Due to the acute deformation of the pipe section, which results in a vertical
translation of the fluid particles, the square shape has the fastest velocity. Due to the
low flow convergence, the trapezoidal form moves slower than the square impediment.



Processes 2023, 11, 1979 14 of 22

Compared to other obstacle forms, the triangle shape moves at a slower speed, which
reduces the vertical component of velocity by half.
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Figure 16. Transverse velocity for different Reynolds numbers in the three cases: square, trapezoidal,
and triangular.

The temperature field is depicted in Figure 17. Forced convection causes the air
near the absorber to heat up quickly the secondary air in the lower part of the channel
downstream of the upper obstacles in Zone A; this suggests that the temperature is high
for the three models under consideration. It has been shown that the square obstacle’s
weak flow recirculation results in minimal contact between the cold air and the obstacle.
Due to the obstacle’s diversion of the flow in the trapezoidal cases, we see that there is
good turbulence. We obtain good cooling in the triangular instance because the interaction
between the cold air and the impediment is significant downstream of the obstacle.
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(c) triangular for Re = 2500.

The temperature change at the channel’s exit is shown in Figure 18 for a range of
Reynolds number values and obstacle types. With increasing pipe height, the fluid tem-
perature profile rises exponentially with a different curve for each value of the Reynolds
number. Due to the substantial heat flux that heats the surface, the triangle obstacle has
the maximum heat transfer. The temperature value at the middle of two configurations
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is what causes the trapezoidal obstacle to have an average heat flow (between square
and triangular). Due to the cooling air temperature, the square obstacle has the weakest
heat transmission (poor cooling). It can be concluded that the temperature values of the
model channel with triangle obstacles are very high. The three models’ temperatures are
comparable when the Reynolds number is raised to 10,000.
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Figure 19 shows how the square, trapezoidal, and triangular shapes of obstacles af-
fect the evolution of the adimensional Nusselt ratio (Nux/Nu0) with channel length.
Depending on the width of the channel, the Nusselt number fluctuates sinusoidally
between obstacles.
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The turbulence of the flow results in increased convective heat transfer, which is
illustrated in the picture as having a significant value for the Nusselt number in the case
of the triangle obstacle. As the heat flow is blended in the trapezoidal enclosure, the
heat transfer is better (a solid part and a fluid part). As there is more heat transfer in
the solid in the square example, the Nusselt number is low, emphasizing the significance
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of conduction. The important values in the model with triangle obstacles are used to
calculate the normalized local Nusselt number; the value of the ratio (Nux/Nu0) reaches
a maximum of 1600 at the 0.17 m position. This explains why the model with triangle
obstacles had better heat transfer than the other models analyzed.

The change in the average normalized Nusselt number (Nux/Nu0) as a function of
the Reynolds number for various obstacle forms is shown in Figure 20. It has been noted
that as the Reynolds number rises, the average Nusselt value also rises (convection is
important for a high Reynolds value, and conduction is almost zero for high velocities).
The high axial velocity produces a higher convection force than the other examples, by
increasing the fluid’s recirculation zones, as shown in the picture, which demonstrates that
the Nusselt number has a considerable value in the case of the triangle obstruction. The
Nusselt number is smaller for the trapezoidal obstacle because the shape itself creates the
restriction to the flow. Due to the geometry of the impediment blocking flow velocity in the
square case, the Nusselt number is low.
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Over the course of the channel’s whole hot length, Figure 21 depicts the local variation
of the friction coefficient’s adimensional ratio

(
C f / f0

)
. Only at the level of the obstacles

does the coefficient of friction rise. The figure demonstrates that for the square obstacle,
the friction coefficient has a high value. At a distance of 0.19 m, the value of

(
C f / f0

)
can

be as high as 4800. The average value of the coefficient of friction is zero due to the flow’s
straightening. As the air flow is homogeneous in the triangular example, the coefficient of
friction is low.

This shows how the physical characteristics of the fluid flow, the increase in heat
transfer rate resulting from the decrease in the local coefficient of friction, are strongly
influenced by the geometry of the obstacles.

Figure 22 illustrates the evolution of the friction ratio ( f / f0) according to the different
values of the Reynolds number for different obstacle models. On the other hand, it is seen
that for the three models examined, the average coefficient of friction rises as the Reynolds
number rises. When comparing the models for a given Reynolds number, we see that the
average coefficient of friction values for the model with square obstacles are crucial due to
the significant turbulence they produce. However, because of air recirculation, the average
coefficient of friction values for the model with triangular obstacles are low.



Processes 2023, 11, 1979 17 of 22

Processes 2023, 11, x FOR PEER REVIEW 17 of 23 
 

 

Over the course of the channel’s whole hot length, Figure 21 depicts the local varia-
tion of the friction coefficient’s adimensional ratio (𝐶 /𝑓 ). Only at the level of the obsta-
cles does the coefficient of friction rise. The figure demonstrates that for the square ob-
stacle, the friction coefficient has a high value. At a distance of 0.19 m, the value of (𝐶 /𝑓 ) 
can be as high as 4800. The average value of the coefficient of friction is zero due to the 
flow’s straightening. As the air flow is homogeneous in the triangular example, the co-
efficient of friction is low. 

 
Figure 21. The profile of the local friction coefficient (𝐶 /𝑓 ) along the channel (upper wall) in the 
three cases: square, trapezoidal, and triangular for Re = 2500. 

This shows how the physical characteristics of the fluid flow, the increase in heat 
transfer rate resulting from the decrease in the local coefficient of friction, are strongly 
influenced by the geometry of the obstacles. 

Figure 22 illustrates the evolution of the friction ratio (𝑓/𝑓 )  according to the 
different values of the Reynolds number for different obstacle models. On the other hand, 
it is seen that for the three models examined, the average coefficient of friction rises as the 
Reynolds number rises. When comparing the models for a given Reynolds number, we 
see that the average coefficient of friction values for the model with square obstacles are 
crucial due to the significant turbulence they produce. However, because of air recircu-
lation, the average coefficient of friction values for the model with triangular obstacles are 
low. 

 

Figure 21. The profile of the local friction coefficient
(

C f / f0

)
along the channel (upper wall) in the

three cases: square, trapezoidal, and triangular for Re = 2500.

Processes 2023, 11, x FOR PEER REVIEW 17 of 23 
 

 

Over the course of the channel’s whole hot length, Figure 21 depicts the local varia-
tion of the friction coefficient’s adimensional ratio (𝐶 /𝑓 ). Only at the level of the obsta-
cles does the coefficient of friction rise. The figure demonstrates that for the square ob-
stacle, the friction coefficient has a high value. At a distance of 0.19 m, the value of (𝐶 /𝑓 ) 
can be as high as 4800. The average value of the coefficient of friction is zero due to the 
flow’s straightening. As the air flow is homogeneous in the triangular example, the co-
efficient of friction is low. 

 
Figure 21. The profile of the local friction coefficient (𝐶 /𝑓 ) along the channel (upper wall) in the 
three cases: square, trapezoidal, and triangular for Re = 2500. 

This shows how the physical characteristics of the fluid flow, the increase in heat 
transfer rate resulting from the decrease in the local coefficient of friction, are strongly 
influenced by the geometry of the obstacles. 

Figure 22 illustrates the evolution of the friction ratio (𝑓/𝑓 )  according to the 
different values of the Reynolds number for different obstacle models. On the other hand, 
it is seen that for the three models examined, the average coefficient of friction rises as the 
Reynolds number rises. When comparing the models for a given Reynolds number, we 
see that the average coefficient of friction values for the model with square obstacles are 
crucial due to the significant turbulence they produce. However, because of air recircu-
lation, the average coefficient of friction values for the model with triangular obstacles are 
low. 

 
Figure 22. Average coefficient of friction ( f / f0) at different numbers of Re along the hot wall (upper
wall) in the three cases: square, trapezoidal, and triangular.

To enhance heat transmission between the absorber and the heat transfer fluid, the
researched roughnesses of square and triangular Type 1, Type 2, and Type 3 are situated
on the hot top part of the channel (absorber), downstream of the second baffle. In the
presence of triangular obstacles, Figure 23 shows the distribution of the average velocity as
a function of the shape of the roughness (square roughness and triangle roughness). Due
to the driving surface’s unprofiled deformation, the average velocity in the case of square
roughness is insignificant. As the subsequent profile lies downstream of the triangular
roughness (Type 1), the average speed is low at the beginning of the roughness. Due to the
flow profiling discontinuities with the triangular roughness (Type 2), the average velocity
is relatively high. The average velocity has a significant value when there is triangular
roughness (Type 3).
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Figure 23. Average velocity fields in the four cases of roughness, (a) square roughness, (b) triangular
roughness Type 1, (c) triangular roughness Type 2, and (d) triangular roughness Type 3 for Re = 2500.

Figure 24 displays the temperature distribution for each of the four proposed models
for the roughness, fin presence, and triangle baffles across the entire examined region. The
temperature is quite high where the absorber and obstacles are located, as well as in the
roughness asperities. The channel’s exit is improved by the addition of roughness. Due to
inadequate air recirculation at the roughness’s center, the fluid temperature field has low
cooling effectiveness in the case of square roughness. Due to the airflow being inserted
into the triangle roughness Type 1, the channel has effective cooling. Due to the good
curvature of the triangle roughness Type 2, the temperature field has good agitation in the
region. Due to the best heat flow straightening provided by triangle roughness Type 3, the
temperature field has ideal cooling in this scenario.
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Figure 24. The temperature field in the four cases of roughness: (a) square roughness, (b) triangular
roughness Type 1, (c) triangular roughness Type 2, and (d) triangular roughness Type 3 for Re = 2500.

For each of the several situations of roughness considered for the air duct with tri-
angular fins, Figure 25 shows the fluctuations in values of normalized average Nusselt
number (Nu/Nu0) as a function of the Reynolds number. With an increase in Reynolds
number comes an increase in the mean Nusselt number, and high velocity produces
high convection.
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Figure 25. Normalized average Nusselt number (Nu/Nu0) as a function of the Reynolds number in
various roughnesses.

Due to the flow’s effective guidance, the figure demonstrates that the average Nusselt
number is large in the case of triangular roughness Type 3. Due to the regular separation of
the flow, the Nusselt number is decreased in the case of triangular roughness Type 2.

Because the attack surface has straight roughness in the case of triangular roughness
Type 1, the Nusselt number is low. Due to inadequate fluid recirculation, the Nusselt
number in the case of square roughness is minimal. The exchange surface is low in the
absence of roughness, which causes a very noticeable fall in the Nusselt values.

For four various types of roughness, including square and triangular roughness,
Figure 26 depicts the evolution of the average ratio ( f / f0) as a function of the Reynolds
number, which ranges between 2500 and 10,000 (Types 1, 2, and 3). As Reynolds number
rises, the average coefficient of friction rises as well. As there is a huge contact surface in
the case of square roughness, the figure demonstrates that the average coefficient of friction
has a high value. Moreover, as the triangular roughness Type 1 is perpendicular to the flow
direction, the coefficient of friction is lower. Due to the minimal flow disturbance in the case
of a triangular roughness Type 2, the coefficient of friction is lower. The low flow resistance
in the case of a triangular roughness Type 3 lowers the coefficient of friction. When there is
no roughness, the coefficient of friction is low because the flow cannot be impeded.
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4. Conclusions

In this article, we presented a numerical study of forced convection cooling of a
microprocessor in a channel with obstacles and roughness. The main goal of this study
is to provide a better understanding of this phenomenon, while also reflecting on more
diverse cooling techniques and getting as close as possible to actual usage conditions.

During our study, we used the fluent computer code ANSYS as well as its gambit
mesh generator on several cases, which allowed us to become more familiar with numerical
simulation. The complexity of the geometric configuration has been mastered by the gambit,
but the shape intended for us is relatively complicated to achieve and to knit, which requires
quality and, above all, precise work. The importance of digital investigation is to shed light
on the physical phenomena described by the theory without physical experience, which is
more expensive.

• Several parameters are studied, in particular the hydrodynamic (2500 ≤ Re ≤ 10,000)
and geometric (0 ◦≤ θ ≤ 45◦) parameters.

• The three types of obstacle: θ = 0◦: square obstacle; 0◦ < θ < 45◦: trapezoidal obstacle;
and θ = 45◦: triangular obstacle, with Re = 2500, generate complex phenomena such as
recirculation zones and turbulence regions upstream and downstream of the obstacles
and a turbulent zone for the model containing triangular obstacles is very important
compared to other models.

• The upstream sharp edge has a point of separation (wall of the obstacle) where the dy-
namic pressure is very high, which causes a depression downstream of these obstacles.

• For a triangular obstacle the pressure has a significant value, which gave us a tremen-
dous movement.

• The higher the Reynolds number, the greater the dynamic pressure.
• For Reynolds values between 2500 and 6000, the average velocity for the three cases

(square, trapezoidal, and triangular obstacle) was extremely close.
• In the case of a triangular obstacle, the contact between the cold air and the obstacle is

important downstream of the obstacle, which gives us good cooling, and the Nusselt
number has an important value, because the agitation of the flow gives us more
convective heat transfer and the coefficient of friction is low because the air flow
is uniform.

• The comparative study among the four models of the triangular Type 1, triangular
Type 2, and triangular Type 3 channels shows that in the case of a triangular roughness
Type 3 the average velocity has a great value.

• In the case of a triangle roughness Type 3 channel, the average velocity has a consider-
able value, according to the comparative study using the four models for triangular
Type 1, triangular Type 2, and triangular Type 3 channels.

• The temperature field has perfect cooling, because of the best straightening of the heat
flux by this roughness;

• The average Nusselt number has a high value;
• The coefficient of friction is lowered, because the flow resistance is low.
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