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Abstract: Hydrogen has the potential to revolutionize the energy industry due to its clean-burning
and versatile properties. It is the most abundant element in the universe and can be produced through
a variety of methods, including electrolysis. The widespread adoption of hydrogen faces various
challenges, including the high cost of production; thus, it is important to optimise the production
processes. This research focuses on development of models for hydrogen production optimisation
based on various external factors and parameters. Models based on electricity prices are developed
and compared between different market situations. To run hydrogen production more effectively,
it is required to use renewable energy sources for the production process. Adding the solar power
component to the economic evaluation model outcome is more positive. The Monte Carlo tree
search (MCTS) algorithm is adapted to effectively control the electrolysis process. MCTS schedule
optimization was performed for a 24 h time horizon applying two time-resolution settings—1 h and
15 min. The results demonstrate the potential of the MCTS algorithm for finding good schedules for
water electrolyser devices by taking into account variable environmental factors. Whereas the MCTS
with a 15 min resolution ensures mathematically better results, it requires more computational power
to solve the decision tree.

Keywords: hydrogen; Monte Carlo tree search; cost optimisation; control modes; operation scheduling

1. Introduction

The unstoppable growth of the population and the world economy, together with
shifting from rural to urban living has led to a significant increase in energy demand [1,2].
Utilisation of fossil fuels as the main source of energy caused an increase in the carbon
dioxide (CO2) in the atmosphere, which is the main cause of global warming [3]. It would
be beneficial for future energy sustainability, resilience and global security to decarbonise
the energy supply by using renewable energy sources [4]. One of the options is to use
hydrogen (H2). H2 has received a great deal of attention as an energy carrier from both
scientists and policymakers [5]. Hydrogen energy is a clean and low-carbon energy, and its
combustion product is water that has no carbon emissions [6]. It is predicted that H2 will
play a significant role in shifting the global energy system towards a sustainable energy
system by 2050 [7]. In 2019, the entire worldwide hydrogen production was around 500
billion m3 per year [8]. Hydrogen can be produced from different resources, including
fossil fuels and renewable energy (RE) resources [9]; however, only the type produced
using renewable energy is considered as “green” hydrogen [10]. Additionally, nuclear
power could bring a significant contribution to hydrogen supplies in the future [11]).
Nowadays, 96% of H2 is produced from non-renewables and the remaining 4 % by water
electrolysis [12]. Thus, RE resources will play a significant role in the transition process
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towards a clean and sustainable energy system worldwide [13]. Unfortunately, renewable
energy (such as solar or wind) is intermittent and can be random [14], so it is not possible to
fully account for it while the hydrogen production process is ongoing. In addition, it should
be mentioned that renewable energy characteristics can significantly influence electrolyser
performance [15]. To increase the economic efficiency of the hydrogen production process,
it is required to control the process based on various parameters, including the availability
of renewable sources, actual electricity prices, demand for hydrogen, etc. In the long term, a
hydrogen-based economy could contribute towards reducing carbon dioxide emissions and
local environmental pollution, securing energy independence and achieving a sustainable
energy supply [16].

Two primary methods are used to produce H2: steam methane reforming of natural
gas and electrolysis of water. Within this study, the latter method is considered, which
contributes to green and sustainable energy production policy. Electrolysis is an electro-
chemical reaction that splits water into H2 and O2 with electricity input and it is considered
the most developed and commercial technology for hydrogen production [17].

There are different hydrogen production systems available for the electrolysis of water;
the most common are alkaline (AEL) and polymer electrolyte membrane (PEMEL) systems.
Alkaline electrolysers have good durability and maturity but have a low partial load range
and low current density [18]. Compared with AEL systems, polymer PEMEL enables
flexible operation, requires less than 1 min for start-up and seconds to ramp up from an
idle state to the maximum rated power [19]. A fast response to dynamic power supplies
allows PEMEL to provide services in the control reserves market and to take advantage of
dynamic electricity prices as it is one of the important issues in hydrogen production.

The aim of this study was to develop different models based on electricity prices and
the Monte Carlo tree search (MCTS) algorithm to effectively control the electrolysis process
by changing the operation modes of the electrolyser (switching on/off).

The MCTS was selected as it provides capabilities to solve decision trees with high
branching factors. Additionally, the MCTS is not dependent upon the starting position
(root) of the decision tree and can be used ad hoc when it is needed. The authors found
a new opportunity for this algorithm application, which is usually limited to gaming
environments.

In regard to electricity price modelling, various methods of electricity pricing such as
critical peak pricing (CPP), time-of-use pricing (TUP), real-time pricing (RTP) and so forth
have been presented. RTP is reportedly one of the best methods [20].

Optimal control strategies can significantly boost the efficiency of hydrogen electrol-
ysers [21]. Control strategies for hydrogen-producing systems that use solar energy are
important and required because several parameters (e.g., the number of electrolyser on/off
cycles, system component power levels) affect the performance of the whole system [22,23].
Regarding the control strategies, [23] proposed a novel model that aims to schedule the
production of hydrogen by an alkaline water electrolysis system and using renewable
energy. The developed model was a mixed-integer linear program that incorporates several
variables describing operational states and transitions, as well as taking into account the
hydrogen flow. A scheduling approach using a combination of solar power and power from
the grid was also proposed by [24], where various aspects within the alkaline water elec-
trolysis system were considered, such as electricity price, costs related to the operation of
the electrolyser, the solar radiation profile, etc. The control of the scheduling was based on
solving optimisation formulas that include the aforementioned aspects. In a study by [25],
a segmented fuzzy control method was proposed for scheduling the alkaline electrolyser
by using a wind power system. The implementation of fluctuating and highly intermittent
renewable energy for the electrolyser operation is challenging, as each component of a
hydrogen energy system needs to be optimised to increase the operation time and system
efficiency [26].



Processes 2023, 11, 1977 3 of 16

It is important to note that the field of electrolysis process control is dynamic and that
new methods and technologies can emerge in the future. Some of the methods used for the
control of electrolysis processes are:

• Advanced Process Control (APC): APC techniques involve using sophisticated algo-
rithms and models to optimise the performance of electrolysis processes [27]. These
methods take into account various process parameters and use real-time data to adjust
operating conditions and optimise energy efficiency.

• Model Predictive Control (MPC): MPC is an advanced control strategy that uses
mathematical models of the process to predict its behaviour and optimise control
actions [28]. By considering process constraints and objectives, MPC can determine
the optimal setpoints for various process variables, such as temperature, current
density and electrolyte flow rate.

• Machine Learning and Artificial Intelligence (AI): Machine learning and AI techniques
have gained significant attention in process control applications. These methods
involve developing models and algorithms that can learn from data and make pre-
dictions or control decisions. By utilizing historical data and real-time measurements,
machine learning algorithms can optimise the electrolysis process and improve its
performance [29].

2. Materials and Methods
2.1. Electricity-Price-Based Electrolyser Control

In the first stage, simple models based on electricity prices are developed to show-
case different scenarios for hydrogen production in various markets. For the comparison,
four countries are selected: Latvia, Germany, Spain and Romania, as these countries are
partners in the ERA-NET project “New technology to produce hydrogen from Renew-
able Energy Sources based on AI with optimized costs for environmental applications”
(HydroG(re)EnergY-Env).

From the available technoeconomic analysis, it was found that the cost of electricity
constitutes up to 40–57% of the levelised cost of hydrogen. However, this cost can be
reduced by considering different geographical locations and smart operation strategies.
Additionally, the carbon footprint of the electricity source must be considered to ensure
that the hydrogen produced has a minimal emission of CO2.

For this study, electricity prices are taken from the “Nord Pool” market
(https://www.nordpoolgroup.com/ (accessed on 8 February 2023) but data are acquired
from the EU Transparency platform ENTSO-E (https://newtransparency.entsoe.eu/
(accessed on 8 February 2023) using the provided application programming interface (API).

For calculation purposes, a small hydrogen production facility is considered with a
power consumption of 58 kWh (which could produce approx. 1 kg of H2). For this approach
(electricity-price-based electrolyser control), only H2 prices are considered: 6.25 EUR/kg.

For model demonstration purposes, the time frame for the calculations is taken
as one week, but if required it can be changed and adapted based on calculation and
analysis needs.

To increase the profit of the production, it is advisable to switch off the technological
process when the market electricity price is high and costs for the production exceeds
the potential income from the hydrogen. A threshold of 150 EUR/MWh was selected,
which corresponds to the daily income for H2 production—at this threshold H2 production
becomes profitable (24 kg of H2 per day with a H2 price of 6.25 EUR/kg).

2.2. Electrolyser Schedule Optimisation Using the MCTS Algorithm

At the next stage, the aforementioned approach was extended with additional input
parameters and variables and the Monte Carlo tree search (MCTS) algorithm was adopted
to optimise the electrolyser operation schedule.

By the definition, the MCTS is a heuristic best-first search algorithm that combines
Monte Carlo simulation with searching combinatorial spaces represented by decision trees.

https://www.nordpoolgroup.com/
https://newtransparency.entsoe.eu/
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In such trees, nodes denote states and edges denote transitions (actions) from one state
to another [30]. The MCTS iteratively explores the space by repeating random samples
according to Monte Carlo simulation technique [31] and gradually biassing the exploration
toward the most promising regions of the decision tree [32].

Each iteration of the MCTS algorithm usually involves four phases: selection, expan-
sion, simulation and backpropagation [33]. Although intermediate states do not need to
be evaluated, the MCTS is very good at shrinking large-sized problems by only taking the
reward from the terminal state at the end of the simulation process, then balancing the
exploitation and exploration [34].

The MCTS has been widely used in planning problems and video and board games
such as Go, Poker, Settlers of Catan, Civilization, Sokoban, etc. [35–40].

In the authors case, a flow chart for the execution of the MCTS for the problem solution
is depicted in Figure 1:
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Figure 1. Flow chart of the execution of the MCTS algorithm.

The execution of the MCTS algorithm involves updating of the prices for electricity,
hydrogen and oxygen in the expenses model when available. The current state of the
electrolyser is taken into account as one of the model parameters. The MCTS algorithm
resolves the decision tree defined by the model and produces a schedule that can be applied
for changing the operational modes of the electrolyser.

Several MCTS algorithm varieties have been developed over the years for specific-
use cases. In particular, single-player MCTS was proposed by [41]. The main differences
between SP-MCTS and MCTS are the range of values for the problem states—for two-player
environments the reward value alternates depending on which of the players makes the
decision (the best move for a player is the worst move for his opponent). Additionally,
SP-MCTS has no uncertainty about the opponent’s action, as there are no opponents.

2.3. Optimisation Problem Setup

An algorithm adaptation based on the ideas from the SP-MCTS was used for finding
the optimal control strategy of a H2-producing electrolyser considering variable external
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parameters. The authors used a simplified model for the H2 production process via
electrolysis and only critical parts of it were considered for the demonstration of the MCTS
approach. The possible states and corresponding parameters of the modelled electrolyser
are depicted in Figure 2.
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A distinctive feature of electrolysers is the characteristic process inertia—H2 produc-
tion does not start immediately upon powering up the electrolyser, nor stop immediately
after powering it down—electrolysers go through specific “StartUp” and “Shutdown”
sequences that can take up to 1 h (used in authors model). The time for these sequences
can vary for different electrolysers, as it is dependent on the required electrolyte temper-
ature for maximum efficiency as well as on the membrane types used. Moreover, due to
internal component degradation (mostly membrane), electrolysers have a limited number
of “On/Off” cycles before maintenance is needed. The distinct state sequences were in-
troduced into the model with the associated energy consumption profiles. The fixed costs
associated with the Start/Shutdown state cycles represent the maintenance costs due to
internal component degradation.

Upon reaching the production state, the electrolyser load can be varied within a
limited range. The product output (H2 and O2) changes according to the applied elec-
trical power. Discrete low/medium/high production states are used within the model.
The assumptions are made based on small-scale electrolysers available on the market (e.g.,
https://pureenergycentre.com/hydrogen-products-pure-energy-centre/hydrogen-electrolyser/
(accessed on 8 February 2023), taking an hourly H2 production of 1 kg and an energy con-
sumption of ~60 kWh.

The model variables (see Table 1) and parameters (see Table 2) of the modelled electrol-
yser are summarised in below. The selected parameters are not taken from any source and
are assumed by the authors based on the descriptions of small-scale electrolysers available
on market and used for demonstration purposes only.

https://pureenergycentre.com/hydrogen-products-pure-energy-centre/hydrogen-electrolyser/
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Table 1. List of nomenclature.

Symbol Property Units

RH2 H2 production rate kg/h

RO2 O2 production rate kg/h

C Fixed costs EUR

E Electrical energy kWh

T Timespan s

PH2 Price of H2 EUR

PO2 Price of O2 EUR

PE Price of electricity per kWh EUR

F Profit EUR

QH2 Quantity of H2 produced kg

QO2 Quantity of O2 produced kg

Table 2. Summary of the electrolyser states and their parameters.

Electrolyser State Electrical Energy
E, kWh

Fixed Costs
C, EUR

RH2,
kg/h RO2, kg/h Remarks

Start 2.0 3.00 - - Flat maintenance costs represent
membrane degradation over time

Purge 5.0 - - - Electrolyser purging (water pumping)
before starting production

Heating 15.0 - - - Energy consumption for reaching
optimal electrolyte temperature

BuildUp 20.0 - - - Pressure build-up phase with no
product output

Shutdown 2.0 3.00 - - Flat maintenance costs represent
membrane degradation over time

Low production 20.0 - 0.2 1.6 H2 production on low energy profile

Mid production 40.0 - 0.6 4.8 H2 production on medium energy profile

High production 60.0 - 1.0 8.0 H2 production on high energy profile

Electrolysers are not used as stand-alone devices but rather as a part of a larger
infrastructure that provides access to all needed supplies (electricity and water), storage
and other facilities. Within the model, such infrastructure components are considered as
external parameters and are modelled in the form of costs of supplies and the value of
output products. The following components are included in the model:

• An array of photovoltaic solar (PV) cells with a maximum capacity of 100 kW of energy.
This represents a source of renewable energy with available excess power that varies
over the day.

• The relative solar irradiation is modelled for a 12 h long light day, which roughly
corresponds to the spring or fall equinoxes. Depending on the actual day of the year
and the latitude the solar declination angle will change further, affecting the solar
irradiation captured by the PV cells.

• The power grid connection represents a source of energy with virtually unlimited
capacity but with prices changing every hour. Real “Nord Pool” spot market prices
for 8 February 2023 were used for modelling (see Figure 3). The model assumes that
all available renewable energy is used first and that only the remaining demand is
covered by the power grid.
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• Output products (H2 and O2) are considered as income for the production process and
modelled as sold for a fixed price. The H2 price can vary based on various factors and
production methods [42]. The oxygen generated by electrolysis can be used for some
medical and niche applications [43], so can also provide additional income. The prices
considered for the model were: PH2 for 5.00 EUR/kg and PO2 for 0.10 EUR/kg.
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The objective function (OF) is defined as (1) and aims to maximize revenue from H2
and O2 production for a 24 h schedule by taking into account varying energy prices and
available renewable energy sources.

OF =
T

∑
t=1

{
QH2

t ·PH2 + QO2
t ·PO2 − max

(
Et − EPV

t , 0
)
·PE

t − Ct

}
(1)

where:

• T is the timespan;
• Qt is the quantity of products produced;
• P is the price of products;
• Et is the energy consumed by the electrolyser;
• EPV

t is the energy provided by the PV cells;
• PE

t is the grid energy price;
• Ct is the fixed maintenance cost (component degradation).

2.4. MCTS Adaptation for Electrolyser Schedule Optimisation

The MCTS algorithm finds the best solution by exploring the most promising branches
of decision space. For the electrolyser schedule optimisation, the tree nodes represent
possible electrolyser states and each tree level corresponds to a discrete time step. The
MCTS algorithm starts from the root of the decision tree and selects child nodes based on
their value. The root of the tree corresponds to the current state of the system, which in the
case of electrolyser was selected as the off state at midnight.

Upon reaching a leaf node (unexplored branch of the decision tree), the MCTS algo-
rithm expands the tree by adding possible transitions to the next states. The next one of the
newly added states is selected and simulated: uniform random actions are applied to the
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electrolyser until it reaches the end of the timespan. At the end of the simulation stage, the
objective function value OF is calculated.

Finally, the obtained OF value is back propagated to all previously selected nodes
of the decision tree via updating their value. This gives an estimate of how valuable
the previously selected branch of the decision tree is, and the MCTS algorithm balances
between exploring new branches and exploiting the most promising branches that are
already known. The MCTS workflow is depicted in Figure 4.
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The MCTS algorithm usually evaluates nodes using the value of upper confidence
bound 1 applied to trees (UCT), which also ensures balancing between exploration and
exploitation strategies. However, the UCT was originally designed for zero-sum two-
player games and specifically considers binary results of the simulation—either a win or a
loss—which keeps the average value for the node in the range of [0; 1].

For the electrolyser, the OF values represent the costs and revenues of production
and are not bound to specific ranges. To overcome this peculiarity, the authors applied
sigmoid scaling on the average OF value prior to the UCT calculation. The parameters
of the sigmoid (see Equations (2) and (3) and Figure 5) are experimentally selected to fit
the range [−250; 150] from the electrolyser model (the parameters of the model have been
biased towards expenses, thus most common OF values are negative).

f(v) =
v −

(
vmin +

vmax−vmin
2

)
10(vmax − vmin)

(2)

where:

• v is the raw value of the objective function OF
• vmin is the lower range bound (−250)
• vmax is the upper range bound (150)

σ(v) =
1

1 + e− f (v)
(3)
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The final UCT formula used in the MCTS algorithm is (4).

UCT = σ
( v

n

)
+ c

√
ln N

n
(4)

where:

• v is the total value of the node;
• n is the total number of simulations from the node;
• N is the total number of simulations from the node’s parent;
• c is the exploration parameter; a value of 1.5 is used by the authors.

3. Results
3.1. The Economic Results of Electricity-Price-Based Electrolyser Control

Figure 6 demonstrates the possible scenario of hydrogen production operation for
one week (in four countries), taking into account the costs for electricity and the potential
income from the H2. The specification of the electrolyser should be considered as there
could be some limitations to the number of on/off switching cycles. Modern electrolysers
did not require much time to start production at the maximal rate and almost instantly
start up.

The production costs and income calculations results are as follows:

• 24 × 6.25 = EUR 150 (income per day when using a ~60 kWh electrolyser that produces
~1 kg of H2 per h) as a threshold (shown in Figure 6);

• The overall income per week = 150 × 7 = EUR 1050;
• The overall costs for H2 production for the selected countries are: LV—EUR 1160.71;

RO—EUR 1468.17; DE—EUR 1439.10; ES—EUR 1256.10.
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It can be concluded that hydrogen production only using the grid power is not
economically feasible in all the selected countries for the selected week (4–10 February
2023), as the costs for electricity are higher than the potential income.

With the dynamic market price for electricity, the operating modes for hydrogen
production can be changed and production can potentially be stopped during hours
when the electricity price is higher than the defined threshold. In Figure 7, the below
electricity price for one specific date is demonstrated and it can be concluded that hydrogen
production can be stopped from 8 to 10 and from 14 to 18, thus minimising the overall
production costs. Obviously, the amount of hydrogen produced will also be decreased. In
this case, hydrogen production will be for 16 h out of 24 h and costs will be EUR 80.67,
but the income from H2 = EUR 100. Therefore, it is profitable in this case, with a profit of
EUR 19.33.
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Calculating the income and costs for one week (but excluding hours with high elec-
tricity prices) leads to the following results: H2 production hours: 120 h; total energy used:
6960 kWh; costs: EUR 665.30; income: EUR 780; profit: EUR 114.70.

To run hydrogen production more effectively, it is required to use renewable energy
sources for the production process. Adding the solar power component to the economic
evaluation model outcome is more positive. A solar system of 100 kW is taken as a reference
for calculations.

Figure demonstrates the usage of grid and solar power within a one-day timeframe.
The bars in Figure 8 represent the electricity market price.
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The calculations for the Latvian market prices for the one-week scenario presented
are as follows: costs = EUR 718.95; however, without solar power it was EUR 1160.71, so
the costs are decreased by 441.76 (38%). The usage of solar power would decrease the
operational costs of hydrogen production, but investments in the solar system also should
be taken into consideration in real projects.

3.2. MCTS Results

MCTS schedule optimisation was performed for a 24 h time horizon. The schedule
started at midnight with the electrolyser switched off. Two time-resolution settings were
used in the experiments—1 h and 15 min. The first implies a 24-level deep decision tree; the
latter has a depth of 96 levels. Figures 9 and 10 show the best solutions found by the MCTS
algorithm alongside a few manually created schedules for comparison. The summaries
for each schedule include the total energy consumed E, hydrogen produced QH2, oxygen
produced QO2 and profit F.

The results demonstrate the potential of the MCTS algorithm to find good schedules
for water electrolyser devices by considering variable environmental factors. Although
the MCTS with a 15 min resolution ensures mathematically better results (the estimated
profit is EUR 47.24 vs. EUR 47.37), it requires more computational power to solve the
decision tree. The electrolyser state model has an average branching factor of 3, thus
the number of possible states to evaluate is around 324 and 396 for the 1 h and 15 min
resolutions, respectively.
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show the electrolyser running on (a) constant low power, (b) constant high power for the whole day
and (c) power adjusted for daylight hours. (d) The best schedule found by the MCTS algorithm after
taking into account available renewable energy sources and grid electricity prices.
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Figure 10. Comparison of electrolyser schedules (15 min resolution). The manually created schedules
show the electrolyser running on (a) constant high power for the whole day and (b) power adjusted
for daylight hours. (c) The schedule transferred from the best results for the MCTS with a 1 h
resolution (see Figure 9d). (d) The best schedule found by an MCTS with a 15 min resolution.
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An additional advantage of the MCTS is that it is able to search for solutions from any
state of the electrolyser and thus can be used ad hoc. Figure 11 shows the best schedules
found by the MCTS algorithm considering the initial state of the electrolyser. Such a feature
allows the use of the MCTS in a reactive manner when external factors change in order to
adapt to the actual situation. Another useful feature of the MCTS is partial results. MCTS, at
its core, investigates a decision tree and gradually builds confidence in the most promising
branches. After a number of iterations, even if the time horizon is not yet reached by the
algorithm, the latest branching option has already converged to a solution and can thus be
used for decision making.
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4. Discussion

The described hydrogen production scheduling problem can be also solved by other
approaches and methods. For instance, reinforcement learning (RL) can be applied. RL
is a branch of machine learning that incorporates human-level control [44]. As a branch
of machine learning, RL is gaining popularity beyond the machine learning community
because of its broader applicability. As reinforcement learning does not require a previous
data set for training and the agent can learn instantly, it has a strong appeal for real-time ap-
plications, for example for UAV task scheduling [45], for building-energy management [46]
and for robot manipulations [47]; it can also be applied in intelligent healthcare applica-
tions [48], etc. The general model for RL consists of the agent, environment, actions, states
and rewards. The purpose of RL is for the agent to maximise the reward by continuously
taking actions in response to an environment. The next action can be defined based on the
rewards and exploration–exploitation strategies [49].

Both RL and MCTS share some important similarities in their approach to decision-
making problems, but they also have some key differences in their algorithms and applica-
tions. Both of these approaches involve learning from experience and involve exploration
and the use of value functions. Additionally, RL and MCTS can be combined with deep
learning. Deep RL combines reinforcement learning with deep neural networks to handle
high-dimensional state spaces. Deep MCTS combines MCTS with neural networks to
improve the search process.

Another platform that can be used for such a problem is Google’s OR-Tools (Operations
Research) (https://developers.google.com/optimization (accessed on 20 March 2023). OR-
Tools is an open-source software suite for optimisation that is tuned for tackling the world’s
toughest problems in vehicle routing, flows, integer and linear programming and constraint
programming.

The achieved modelling results cannot be truly validated and directly compared with
other experiments in the literature, as a similar setup is not found in sources and industrial
experiments. However, the main outcome of this study is the proof-of-concept validation of
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the MCTS algorithm and its potential application for the control of the electrolysis process.
In the future, we plan to extend the model with additional parameters and to apply this
method for controlling the real electrolysis process in an experimental plant.

5. Conclusions

Hydrogen can be produced from a variety of sources, including fossil fuels, renewable
energy sources and water. Cost reductions in renewable energy sources such as solar, wind
and electrolysers will increase hydrogen production competitiveness over time.

Due to its unique properties and potential applications, hydrogen is the subject of
active research and development in many fields.

Simple models based on electricity prices can be used to demonstrate different scenar-
ios for hydrogen production in various markets. It is found that to gain economic benefits,
the usage of solar or other renewable energy power is mandatory.

The study of this algorithm, which is based on SP-MCTS ideas, is used to define the
optimal control strategy for the electrolyser in terms of the production of H2.

One of the advantages of MCTS is that it is able to search for problem solutions when
the electrolyser is in any state and can thus be used ad hoc.
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