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Abstract: The diesel engine, as the main power source of equipment, faces practical problems in
the maintenance process, such as difficulty in fault location and a lack of preventive maintenance
techniques. Currently, breakdown maintenance and cyclical preventive maintenance are the main
means of maintenance support after a diesel engine failure, but these methods require professional
maintenance personnel to carry out manual fault diagnosis, which is time-consuming. Prognostics
and health management (PHM), as a new technology in the field of equipment maintenance support,
has significant advantages in improving equipment reliability and safety, enhancing equipment
maintenance support capability, and reducing maintenance support costs. In view of this, when
introducing PHM into diesel engine maintenance support, the research progress and development
trend of the key technologies of PHM for diesel engines are carried out with the objective of achieving
precise maintenance and scientific management of diesel engines, and the key technologies demand
traction. Firstly, the development history of PHM technology is reviewed, and its basic concept
and main functions are introduced. Secondly, the system architecture of PHM for diesel engines is
constructed, and its key technologies are summarized. Then, the research progress in the field of PHM
for diesel engines is reviewed from four aspects: data acquisition, data processing, fault diagnosis,
and health status assessment. Finally, the challenges faced by diesel engine PHM in engineering
applications are analyzed, effective solutions to address these challenges are explored, and the future
development trend is foreseen.

Keywords: diesel engine; reliability; prognostics and health management; data acquisition; data
processing; fault diagnosis; health status assessment

1. Introduction

As the power system of self-propelled artillery, tanks, armored vehicles, and other
weapons and equipment in the army’s active equipment, diesel engines have the advantages
of high torque and good economic performance. However, due to its complex structure and
harsh working environment, reliability and safety gradually decrease with the increase in
running time. If the failure of the diesel engine cannot be found in time to assess its health
status, it will affect the performance of the equipment and even cause serious economic
losses and safety accidents. According to statistics, in tank failure accidents, mechanical
failure accounted for 35%, of which 48% were caused by diesel engine failure [1]. Currently,
breakdown maintenance and cyclical preventive maintenance are the main means of
maintenance support after a diesel engine failure, but these methods require professional
maintenance personnel to carry out manual fault diagnosis, which is time-consuming. In
addition, as a complex reciprocating machine, the diesel engine has multiple stages of
health status, from normal operation to downtime, so how to effectively characterize and
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evaluate the different health status of the diesel engine during operation is a key issue that
needs to be addressed in the actual maintenance support process of the diesel engine [2].

To effectively ensure the safe and reliable operation of equipment and economic
maintenance, prognostics and health management (PHM) came into being. Previously,
equipment maintenance support methods have been developed in four stages: breakdown
maintenance, periodic preventive maintenance, condition maintenance, and predictive
maintenance. However, the above traditional maintenance methods and concepts have
the problem of being difficult to determine the maintenance intervals, difficult to meet
the current new situation of equipment maintenance support needs, and requiring active
exploration of the new theory and new technology applicable to the maintenance support of
new and complex equipment. PHM integrates the ideas of condition maintenance and pre-
dictive maintenance, through sensing equipment status information, diagnosing equipment
fault types, assessing equipment health status, predicting equipment remaining life, taking
timely measures before the occurrence of faults, realizing effective diagnosis and early
prevention of equipment faults, and ensuring equipment reliability and safety [3]. PHM
extends traditional built-in test (BIT) techniques, external test equipment, fault monitoring,
and diagnostic techniques, places greater emphasis on predicting future health status,
changes reactive maintenance activities into pioneering maintenance support activities, and
greatly improves the combat readiness of equipment. In summary, PHM is a maintenance
support technology to enhance equipment management and support capabilities, improve
the general quality characteristics of equipment, reduce whole life costs, and achieve scien-
tific management of equipment information and maintenance resources in the information
age. It is also the key development direction for future intelligent equipment operation and
maintenance management.

Based on the above analysis, this paper takes the diesel engine, which is the main
power source of the equipment, as the research object and aims at achieving the precise
maintenance and scientific management of the diesel engine, focusing on the research
progress and development trend of the key technologies of diesel engine PHM. It constructs
the system architecture of diesel engine PHM, sorts out the key technologies of the diesel
engine PHM, reviews the research status and hotspots of key technologies of diesel engine
PHM, discusses the main existing problems, foresees the future research direction in the
field of diesel engine PHM, and analyzes the possible solutions.

The literature in the review was mainly obtained through the China National Knowl-
edge Infrastructure (CNKI) and Web of Science (WOS) databases. The review uses diesel
engine PHM, reliability, diesel engine data acquisition (vibration signals, sound signals,
infrared thermography, oil analysis, etc.), data processing (signal noise reduction, fault
feature extraction, feature dimensionality reduction, etc.), diesel engine fault diagnosis, and
diesel engine health status assessment as search keywords. A large amount of literature is
available after searching for the above keywords. However, not all of the literature obtained
is valuable, and redundancy is high. In order to enhance the referability of this review,
the authors first restricted the search to the last three years. Secondly, the abstracts and
conclusions of the obtained literature were read one by one, and those that were highly
innovative as well as valuable were selected, and those that used similar methods were re-
tained on a merit basis, in an attempt to streamline the full paper while covering all feasible
methods. Finally, the selected literature was further assessed for its applicability, and the
final literature required was summarized to obtain the literature analyzed in this review.

2. PHM Architecture for Diesel Engine Equipment

The composition of diesel engine equipment structure as shown in Figure 1 is mainly
determined by the body group, two major structures (the crank rod structure and the
gas distribution structure), and five systems (the intake and exhaust systems, fuel supply
system, the lubrication system, the cooling system, and the starting system).
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Figure 1. Schematic diagram of diesel engine components.

With the demand for diesel engine maintenance support as the driving force, PHM
is introduced into diesel engine maintenance support to improve operational reliability
and reduce the maintenance cost of diesel engines. Based on the existing achievements of
the laboratory and with reference to condition-based maintenance under the open system
architecture the relevant standards of the ISO 13373 to ISO 13381 series and the IEEE
1232 series standards, a generalized, standardized, and practical PHM system architecture
for diesel engines is constructed as shown in Figure 2. The architecture enables a holistic
consideration of diesel engine data acquisition, data processing, fault diagnosis, health
status assessment, life prediction, and maintenance decision-making.

As can be seen from Figure 2, the PHM architecture for diesel engine equipment
mainly consists of a data acquisition layer, a data processing layer, a fault diagnosis layer,
a health assessment layer, a life prediction layer, a decision support layer, and a decision-
making advice layer. Firstly, data reflecting the operating status of the diesel engine,
such as vibration, sound, infrared thermal images, oil, etc., is collected through the data
acquisition system. However, due to the complex operating environment of diesel engines
and the interference of various components with each other, the data collected through
sensors is inevitably of poor quality. Therefore, effective data processing methods are
needed to guarantee data quality, including signal noise reduction, fault feature extraction,
feature dimensionality reduction, etc. Secondly, the processed data can be fed into the
fault diagnosis layer to correctly indicate fault location on the one hand, and the extracted
feature parameters can be used in the health assessment layer to realize the classification of
health classes and identification of degradation status of the diesel engine, as well as in the
life prediction layer to predict the location, time, and remaining life of the diesel engine
when a fault occurs. Finally, the fault diagnosis results, degradation status identification
results, health status assessment results, remaining life prediction results, and maintenance
support resources are comprehensively analyzed, and the decision support layer and
decision-making advice layer are used to formulate the maintenance support plan for the
diesel engine according to the maintenance tasks and give maintenance recommendations.
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In summary, the PHM system architecture for diesel engine equipment makes up for
the limitations of traditional maintenance support methods and provides a set of theoretical
and methodological systems with deep potential for diesel engine maintenance support,
which has significant military significance and practical needs for the enrichment and
development of diesel engine maintenance support theory and technology.

3. PHM Key Technologies for Diesel Engine Equipment

Relying on the analysis of the decision-making process of PHM for diesel engine equip-
ment in the previous section, combined with the existing prominent technical problems and
practical needs in diesel engine maintenance support, according to the research progress
and hot topics of diesel engine PHM, this section reviews the current situation of research
and hotspots around the first four key technologies of the PHM system architecture for
diesel engine equipment in Figure 2. That is, the key technologies of diesel engine operation
and maintenance, such as data acquisition, data processing, fault diagnosis, and health
status assessment, are discussed.
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3.1. Data Acquisition

The acquisition of condition monitoring data is the basis for fault diagnosis and health
status assessments of diesel engines. With the development of testing technology, the
techniques that can be applied to obtain data reflecting the operating condition of diesel
engines are vibration signal, sound signal, infrared thermography, oil analysis, etc.

Diesel engines have a complex working environment (affected by high temperature,
high pressure, and a harsh environment), and the whole engine body will vibrate under the
combined force of various components during the working process. The path of the diesel
engine vibration excitation is shown in Figure 3. The vibration signal is easy to collect,
simple, and feasible without disassembling the body of the diesel engine, etc. It can quickly
reflect the health status of the equipment and is suitable for online or offline condition
monitoring. The installation position of the vibration sensors (#1 to #6) when collecting the
diesel engine vibration signal is shown in Figure 4. Therefore, the vibration signal-based
diesel engine condition monitoring data acquisition method has become a hot spot for
research. Jiang et al. [4] proposed a diesel engine valve clearance fault diagnosis method
based on the Teager energy operator (TEO) gradient neighborhood vibration shock start
point adaptive accurate extraction. Cai et al. [5] discussed a fault identification method for
visualizing diesel engine vibration signals based on an improved local binary model with
two-way two-dimensional principal component analysis.
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Acoustic emission technology is a non-destructive monitoring technique developed in
recent years that uses acoustic emission sensors to non-destructively monitor the sound
emitted during the operation of diesel engines. Yan et al. [6] constructed a diesel engine
acoustic fault diagnosis method based on variational mode decomposition (VMD), Mel-
frequency cepstral coefficient (MFCC), and a long short-term memory (LSTM) network.
Ibarra-Zarate et al. [7] used the cepstral pre-whitening technique to analyze equipment
fault vibration signals and acoustic emission signals, and the results showed that the diag-
nostic results based on vibration signals outperformed those of acoustic emission signals.
Acoustic emission fault characteristic frequencies are usually much higher than vibration
characteristic frequencies, requiring very high sampling frequencies and consuming large
amounts of computer memory.
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Based on the principle that the increase in stress at the failure location of diesel engines
causes a rise in temperature, the infrared thermal camera is used to collect infrared thermal
images of the diesel engine and assess the operating status of the diesel engine by observing
the temperature distribution in the thermal images, which has the advantages of being non-
contact and requiring no downtime. Wang et al. [8] reviewed the current status of research
on diesel engine fault diagnosis based on infrared thermal images and proposed the process
of diesel engine fault diagnosis based on thermal images. He et al. [9] studied a diesel
engine fault diagnosis method based on small sample thermal images with an augmented
convolutional neural network (CNN). Compared with vibration signals, thermal image
data storage requires a large amount of computer memory, and although it can diagnose the
location of faults, it is difficult to determine the type of fault. At present, thermal imaging
technology is mainly used in the fault detection of electronic products and is still in the
exploration stage in the field of diesel engine fault diagnosis.

Oil analysis technology uses online monitoring sensors to analyze the wear particle
characteristics (size, quantity, generation rate, etc.) and metal composition of diesel engine
lubricating oil samples to indirectly determine the wear of metal components and thus the
operating condition of the diesel engine. Yan et al. [10] investigated weighted evidence data
fusion techniques to enable fault diagnosis of diesel engine drive systems by monitoring
lube oil fluid information. Liu et al. [11] proposed an intelligent monitoring technique for
engine lubricating oil based on kinematic analysis of microfluidic oil wear particles and
developed a real-time tracking condition monitoring algorithm. Compared to vibration
analysis, the oil collection process is complex, and the analysis steps are tedious and time-
consuming, making it more suitable for detecting the extent of the fault, while determining
the exact location of the fault is relatively difficult.

Considering the operability of diesel engine condition information acquisition, the
theoretical basis of signal analysis, and the accuracy of fault diagnosis, vibration signals
have more advantages compared with other data acquisition techniques. The acquisition of
signals reflecting the operating condition of the diesel engine through vibration sensors is
simple, diagnostically accurate, efficient, and easy to apply in engineering. The subsequent
content is based on vibration signals.

3.2. Data Processing

The raw signals reflecting the operating conditions of diesel engines are usually of
poor quality and require effective data processing methods to guarantee data quality and
extract reasonable feature parameters. This sub-section discusses key data processing
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techniques such as vibration signal noise reduction, fault feature extraction, and feature
dimensionality reduction.

3.2.1. Vibration Signal Noise Reduction

Fault components in diesel engine vibration signals can be enhanced through noise
reduction processing. Common methods that can be applied to diesel engine vibration
signal noise reduction include conventional filtering, morphological filtering, singular value
decomposition (SVD), wavelet threshold noise reduction, empirical mode decomposition
(EMD) and its derivatives, deconvolution, independent component analysis (ICA), deep
learning, etc.

Filtering techniques are widely used in the field of vibration signal noise reduction
because they are simple and easy to implement. Diesel engine vibration signals contain
various frequency components, some of which may have the same interference frequencies
as the characteristic frequencies, so traditional linear filtering methods such as low-pass,
high-pass, and band-pass are not effective in filtering out the noise in the signal. Li et al. [12]
investigated a noise reduction method based on interval local mean decomposition (LMD)
with parabolic tracking time-frequency peak filtering (PTTFPF) and verified experimentally
that the noise reduction performance of this method is better than that of conventional
Kalman filtering. To address the problem that the modulation signal bi-spectrum (MSB) is
susceptible to non-Gaussian noise in engineering applications, Guo et al. [13] constructed
an autoregressive modeling filter based on non-Gaussian noise suppression to filter out
non-Gaussian noise from the MSB processed signal. Time synchronous averaging (TSA)
is essentially a series of equidistantly distributed bandpass filters. To solve the problem
that TSA mixes octave signal waveforms at specific frequencies, leading to difficult de-
composition, Guo et al. [14] proposed an improved TSA noise reduction method based on
correlation detection, without the need to obtain the exact period of the vibration signal
and without strict requirements on the smoothness of the signal.

Morphological filtering is a non-linear filtering technique developed from mathemat-
ical morphological theory. Duan et al. [15] designed adaptive morphological filters to
address the problem that the filtering effect of conventional morphological operators is
susceptible to random pulses. Yan [16] proposed a noise suppression method based on
adaptive smooth continuous-scale morphological filtering of partial differential equations.
Although morphological filtering has achieved good results in the field of vibration signal
noise reduction, both how to construct a suitable filter in this method and the problems of
waveform distortion in the filtering process need further research.

SVD is a non-linear filtering technique whose singular values can reflect the proportion
of true and noisy components of the signal and has been widely used in the field of
vibration signal noise reduction. Liang et al. [17] used the mean descent rate factor to
construct a singular value descent rate difference spectrum and used the maximum value
of this spectrum as the singular value threshold to design a mean descent rate-based noise
reduction method for SVD vibration signals. In response to the deficiency that the noise
reduction effect of the SVD method depends on the selection of effective singular values,
Zhao et al. [18] proposed the concept of singular value difference spectrum for describing
the sudden change state of complex signal singular values, and the automatic selection of
effective singular values can be achieved by the peak of the difference spectrum.

Wavelet thresholding noise reduction includes soft thresholding and hard threshold-
ing noise reduction methods, which have the advantages of small computational effort
and wide application. However, there are deviations between the wavelet coefficients
after soft thresholding and the true wavelet coefficients, which result in large errors when
reconstructing the signal. The hard thresholding function is discontinuous and may gener-
ate oscillations after noise reduction. In addition, the selection of a suitable wavelet basis
function requires a certain degree of a priori knowledge of the signal itself, making the
method less adaptive. Zhang et al. [19] proposed a noise reduction method for vibration
signals based on the modified dual-tree complex wavelet transform (DTCWT), which
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adaptively determines the number of decomposition levels and effective sub-bands of
the DTCWT based on the correlation coefficient matrix. Ying et al. [20] studied wavelets
from the perspective of real-time, solved the problem of constructing real-time wavelet
noise reduction systems for engineering applications, and validated the method with the
collected diesel engine vibration signals.

Based on wavelet noise reduction, scholars have proposed adaptive noise reduction
methods for vibration signals, such as EMD and its derivative algorithms. Sha et al. [21]
proposed a noise reduction method based on differential EMD and polar field mean mode
decomposition. However, EMD suffers from endpoint effects, mode mixing, and other
problems. The empirical wavelet transform (EWT) uses wavelet analysis as a framework
and combines the adaptive nature of EMD. Chen et al. [22] proposed a noise reduction
method based on improved EWT with compression sensing (CS), but the robustness of the
method is poor. LMD has greatly improved over EMD in terms of reducing the number of
iterations and suppressing endpoint effects. Ning et al. [23] studied a hybrid noise reduction
method based on LMD, sample entropy, and time-frequency peak filtering. However, LMD
suffers from the problem of mode mixing, and the decomposition results are prone to bias.
The ensemble empirical mode decomposition (EEMD) improves the mode mixing problem
in EMD, but the computational efficiency of the method is low. Guo et al. [24] proposed
a multi-stage noise reduction method based on EEMD, wavelet thresholding, and MSB
that can remove the interference components from the strong background noise vibration
signal. To improve the low reconstruction accuracy of EEMD, Niu et al. [25] proposed
a vibration signal noise reduction method based on complementary ensemble empirical
mode decomposition (CEEMD) and bilateral filtering. Considering that statistical metrics
such as correlation coefficient and kurtosis are invalid when containing non-Gaussian noise,
Zhou et al. [26] proposed a noise reduction method combining complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) and a noise quantization strategy.
The intrinsic time-scale decomposition (ITD) method has good time-frequency aggregation.
Gao et al. [27] proposed a noise reduction model combining ITD with adaptive maximum
correlation kurtosis deconvolution. Compared with the above methods, VMD has been
favored by scholars since its proposal for its good noise robustness, low computational
complexity, and complete mathematical theoretical foundation. Dai [28] introduced time-
frequency streamline learning in the adaptive VMD, which effectively suppressed the noise
in the vibration signal.

Deconvolution recovers the fault shock characteristics from the signal without manual
pre-setting of the basic functions and is suitable for processing non-linear and non-smooth
vibration signals. Zhou [29] proposed a vibration signal noise reduction method based
on adaptive maximum cyclic smoothness blind deconvolution. Meng et al. [30] used an
autoregressive moving average model to remove intrinsic components and pre-whitened
signals, and then recovered the periodic fault signals by adaptive multipoint optimal mini-
mum entropy deconvolution to achieve secondary noise reduction of the vibration signals.
However, the deconvolution method is prone to generating pseudo-pulse sequences if the
length of the filter is not chosen properly.

ICA is based on the theory of sample higher-order statistical analysis and has a
strong blind discrimination capability, which can extract the true components of the mixed
signal and has a better noise reduction effect compared with the traditional adaptive
filtering method. Li et al. [31] proposed a vibration signal noise reduction method based
on cross-spectral analysis of CEEMDAN combined with ICA, which effectively improved
the signal-to-noise ratio (SNR). However, ICA requires the number of sources to be less
than or equal to the number of observed signals, which is not suitable for the common
underdetermined single channel situation in engineering.

Deep learning methods can extract abstract features from vibration signals and achieve
adaptive noise reduction without extensive signal processing knowledge, which is more
effective than traditional noise reduction methods. Zhao et al. [32] constructed a deep
residual shrinkage network fusing attention mechanisms and soft threshold filtering to
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achieve adaptive threshold filtering and achieve a better noise reduction effect in the
case of strong noise. In response to the lack of noise reduction structure in traditional
CNN, Jia et al. [33] proposed an end-to-end CNN model based on Gramian noise reduction.
Zhao et al. [34] proposed a vibration signal noise reduction method based on stacked
denoising auto-encoder (SDAE), using encoder and decoder to extract features in the signals
and reconstruct them, respectively. However, the deep learning method has problems, such
as the need to collect vibration signals with distinct features in advance and the need for a
large number of samples for training.

3.2.2. Fault Feature Extraction

In the area of fault feature extraction based on vibration signals, scholars have con-
ducted a lot of theoretical research and application exploration. Typical methods that can
be applied to diesel engine fault feature extraction include entropy characterization, signal
demodulation analysis, signal decomposition algorithms, time-frequency representation,
graph signal processing, sparse representation, stochastic resonance (SR), morphological
filtering, fractal dimension, genetic programming (GP), deep learning, etc.

Entropy characterization is a non-linear dynamical method that reflects the different
levels of failure of equipment by estimating the complexity of the vibration signal and
quantitatively reflecting the characteristic information of complex signals. To effectively
extract transient pulse signals, Li et al. [35] introduced wavelet packet transformation
into band entropy and enhanced the depth of band entropy using adaptive resonant
bandwidth and power amplitude spectral entropy optimization. Wang et al. [36] proposed
a multichannel fault feature extraction method called variational embedded multiscale
diversity entropy. Yang et al. [37] discussed the use of hierarchical multiscale permutation
entropy to represent fault characteristics. Wang et al. [38] investigated a highly flexible
feature extraction method called concentric diversity entropy, which uses multiple wavelets
to extract fault features over the entire frequency band.

Signal demodulation analysis demodulates the signal associated with the fault from
the modulated signal to avoid confusion with other disturbances. Common signal demodu-
lation methods include envelope demodulation, energy operator demodulation, and cyclic
smooth demodulation.

Envelope demodulation is divided into generalized detector filter demodulation
(including high-pass absolute demodulation, detector filter demodulation, and square
demodulation) and Hilbert demodulation. Of these, Hilbert demodulation is the most
widely used and representative demodulation method, as it enables both amplitude and
phase (frequency) demodulation. Wang et al. [39] extended the Hilbert transform to
a fractional-order Hilbert transform defined in the frequency domain, where the fault
characteristic frequencies can clearly appear in the fractional envelope spectrum. To address
the problem that envelope order tracking may be ineffective for multiple pulse sources,
Yang et al. [40] proposed a weak fault feature extraction method combining envelope order
tracking and constrained ICA.

TEO is a non-linear energy tracking operator that can be used for real-time processing
of signals. Compared with Hilbert transform demodulation, this method is able to suppress
endpoint effects, highlight signal transient shocks, and have low computational complexity.
Han et al. [41] proposed a weak fault feature extraction method fusing TEO and CEEMD.
However, TEO demodulation itself has errors and is influenced by noise. The envelope
derivative energy operator is based on the envelope derivative operation, which can detect
transient changes in the signal and further improve the demodulation performance with
lower complexity compared with TEO. Qi et al. [42] proposed an improved envelope
derivative energy operator to enhance the fault shock characteristics in morphologically
filtered signals. The 1.5-dimensional symmetric differential energy operator solves the
problems of low demodulation accuracy and poor noise reduction in 1.5-dimensional TEO.
Chen et al. [43] proposed a fault feature extraction method for vibration signals based
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on optimized singular spectrum decomposition and demodulation of a 1.5-dimensional
symmetric differential energy operator.

Diesel engines are mainly in reciprocating motion; the vibration signal collected is
usually cyclic smooth, and cyclic smooth demodulation can be applied. Cyclic statistics for
cyclic smooth demodulation usually use spectral correlation functions and cyclic autocorre-
lation functions. However, this method is computationally less efficient compared with
Hilbert demodulation [44]. He et al. [45] proposed a logarithmic envelope self-spectrogram
vibration signal multi-fault feature extraction method. Yao et al. [46] studied a weak fault
feature extraction method for equipment based on dual-window spectral fusion enhance-
ment. The kurtosis diagram is based on spectral kurtosis and avoids the shortcomings
of traditional envelope demodulation analysis, which requires empirical selection of fre-
quency bands. Yuan et al. [47] proposed a simultaneous multi-channel vibration signal
feature extraction method called Msegram.

The three demodulation methods mentioned above are closely related to each other
and can be replaced equivalently in a unified framework. In the case of multi-fault vibration
energy imbalance and random shock interference, the optimal fault demodulation band
selection is the most critical problem facing the signal demodulation technique and is a
task that requires further research.

By decomposing the signal, the useful signal components can be extracted, enabling
the separation and extraction of fault features. Yuan et al. [48] proposed a dual-mode noise
reconstruction EMD weak fault feature extraction method combining adaptive decomposi-
tion and natural noise reduction. Liu et al. [49] studied a fault feature extraction method
based on EEMD and curve code CC. Wang et al. [50] used the ratio of the periodic modula-
tion component caused by the fault to the generalized disturbance as a new criterion for
CEEMDAN to quantify the degree of fault correlation in vibration signals and were able
to successfully extract fault features in the presence of both Gaussian and non-Gaussian
noise disturbances. Xu et al. [51] proposed a quaternion EWT multi-channel signal fault
feature extraction method that achieved a comprehensive use of data in different directions
in space. He et al. [52] proposed a fault feature extraction method based on parametric
adaptive optimization of VMD with the fusion impact index of fault components as the
objective function. Zhang et al. [53] integrated the logarithmic window energy criterion into
multichannel multicomponent decomposition and later applied the method to vibration
signal fault feature extraction. Yu et al. [54] proposed a fault feature extraction method
based on ITD with sparse coding shrinkage. Cheng et al. [55] improved the symplectic
geometry mode decomposition (SGMD) by calculus operators and characteristic value
decomposition to improve the characteristic enhancement capability and noise robustness.

Currently, most of the fault feature extraction methods are based on one-dimensional
vibration signals, and although the non-linear features of the original signal can be pre-
served to a certain extent, the correlation of the vibration signals on the time series is not
taken into account. In addition, network models are more suitable for extracting feature
information from high-dimensional data. As a result, scholars in this field have begun to
investigate the conversion of diesel engine 1D vibration signals into 2D images by some
method for feature extraction of image data. Shen et al. [56] performed the Gabor transform
on the vibration signal to obtain the time-frequency diagram of each operating status
of the diesel engine. Mou et al. [57] converted the diesel engine vibration signal into a
time-frequency diagram by smoothing the pseudo-Wigner distribution.

Graph signal processing methods are graph structures that study the relationships
of vibrating signals. A complex network is a special kind of graph structure that is able
to capture the characteristics of non-smooth signals. The viewable algorithm is capable
of transforming time-discrete sequences into complex networks. Chen [58] proposed a
fault feature extraction method based on viewable mapping amplitude entropy without
considering the problem of parameter selection. The ability to link fault signals to other
complex network diagrams characterizing the structure of the time series and to extract
indicators that better characterize the faults needs further research.
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Sparse representation means that as few atoms as possible are selected to represent
the signal in the overcomplete dictionary, which is characterized by sparsity and adaptive-
ness. Li et al. [59] constructed a non-convex penalty function based on the elastic net and
Lp criterion and proposed a sparsely enhanced periodic overlapping group contraction
method. Yao et al. [60] proposed an adaptive period matching enhanced sparse repre-
sentation weak fault feature extraction method by embedding period estimation into the
sparse representation. However, the sparse coefficients are difficult to solve and construct
over-complete dictionaries, and the vibration signals processed by traditional sparse de-
composition methods suffer from weak signal fidelity, poor model convexity preservation,
and poor model generality.

SR enhances weak fault characteristics in vibration signals by adding noise to the
non-linear system. Gong et al. [61] proposed adaptive cascade SR to enhance and extract
weak fault features in the presence of strong background noise. Li et al. [62] developed a
dual feedback cascaded monostable SR system from the perspective of feedback control
and multi-system synergy, which can better match the frequency characteristics of the
target signal. However, the quality of the SR output is influenced by a combination of
adjustable parameters.

Morphological operators can be divided into two main categories: noise-reducing op-
erators and feature-extraction operators. In feature extraction, morphological filtering can
also achieve more satisfactory results. Chen et al. [63] constructed a generalized composite
morphological operator framework for improving the extraction of fault transient pulse fea-
tures. Chen et al. [64] proposed an adaptive time-varying morphological filtering method
that can adaptively determine the shape and scale of structural elements based on the inher-
ent characteristics of the vibration signal, effectively improving computational efficiency.

The fractal dimension is the basis of chaos theory and fractal theory and can be used to
describe the similarity of the local signal with the overall signal. Yan et al. [65] investigated
a fractal dimension method based on composite multiscale morphology to quantify the
self-similarity of vibration signals. The detrended fluctuation analysis (DFA) method
can describe the irregularity and self-similarity of the signal locally and as a whole and
extract the features of the multifractal spectrogram as signal features. Zhao et al. [66]
proposed an equipment fault feature extraction method based on improved DFA and linear
discriminant analysis.

The GP method automatically generates solutions to problems without the need for
domain knowledge and has flexible programmatic expression. Peng et al. [67] discussed
automatic GP-based feature extraction and construction methods. Peng et al. [68] proposed
a GP multi-view feature construction and integration method to automatically construct
low-level features from different views into high-level features to improve the diversity
and discrimination of fault features. However, the GP method has problems with the need
to set up individual fitness evaluation processes, program structures, sets of functions, sets
of terminators, etc.

Deep learning can extract valuable fault characteristic information from data reflecting
the operational status of equipment. Zhao et al. [69] proposed a fault feature extraction
method based on semi-supervised deep sparse self-coding based on a sparse self-coding
model. Yu et al. [70] constructed a one-dimensional residual convolutional self-coding
model to learn features directly from vibration signals in an unsupervised learning manner.
Zhang et al. [71] designed a compact enhanced multi-scale CNN feature extraction model
that can extract features at different time scales without adding convolutional layers and
alleviate the overfitting problem caused by complex networks.

3.2.3. Feature Dimensionality Reduction

The high-dimensional complex fault features of the extracted equipment diesel engine
may produce redundancy, which not only affects diagnostic accuracy but also reduces
computing efficiency. Therefore, compressing the data by feature dimensionality reduction
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on the basis of keeping the original features of the data as much as possible is the key to
improving diagnostic efficiency.

The methods that can be applied to the dimensionality reduction of diesel engine
faults are divided into linear and non-linear dimensionality reduction methods (non-linear
dimensionality reduction is also divided into kernel function-based and characteristic value-
based methods). Linear dimensionality reduction methods include principal component
analysis (PCA), ICA, linear discriminant analysis (LDA), etc. Non-linear dimensionality
reduction methods based on kernel functions include kernel principal component analy-
sis (KPCA), kernel entropy component analysis (KECA), kernel independent component
analysis (KICA), etc. Non-linear dimensionality reduction methods based on characteristic
values (stream learning) include: t-distributed stochastic neighbor embedding (t-SNE), iso-
metric mapping (Isomap), locally linear embedding (LLE), orthogonal locality preserving
projections (OLPP), local fisher discriminant analysis (LFDA), neighborhood preserving
embedding (NPE), unsupervised discriminant projection (UDP), local tangent spatial al-
gorithm (LTSA), multi-dimensional scaling (MDS), maximum variance unfolding (MVU),
etc. On this basis, Chen et al. [72] proposed a feature dimensionality reduction method
based on sparse discriminative stream projection, which can effectively extract the valu-
able low-dimensional intrinsic features hidden in the high-dimensional feature dataset.
Wang et al. [73] proposed a low-dimensional, sensitive fault feature extraction method
integrating KPCA and t-SNE, which can take into account both local and global structural
features of the sample data. Qi et al. [74] used a uniform stream shape approximation
and projection algorithm with a supervised type of Mahalanobis distance for dimensional
approximate reduction to obtain low-dimensional and sensitive fault features.

3.3. Fault Diagnosis

Most of the existing research results on the fault diagnosis of diesel engine equipment
has studied the fault diagnosis method by pre-setting the fuel supply system fault of the
diesel engine. As can be seen from the fault statistics of a type of self-propelled artillery
diesel engine shown in Figure 5, the fuel supply system fault has the highest probability of
occurring in the actual use of the diesel engine, reaching 27.0%. As shown in Figure 6, in
the process of pre-setting the fault, the cylinder can be pre-set by disconnecting the cylinder
ignition power line to pre-set the cylinder misfire fault, adding the air intake outer cover to
pre-set the air filter blockage fault, replacing the injection pump fault parts to pre-set the
injection pump fault leading to insufficient fuel supply (the internal gear of the injection
pump wears out leading to low fuel supply pressure), and replacing the injector fault parts
(the injector needle valve wears out) to pre-set the injector drip fault.
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The equipment diesel engine fault diagnosis methods include knowledge-based,
model parsing-based, signal processing-based, and machine learning-based methods.
Among them, the machine-learning based methods can be further divided into classi-
cal machine learning and deep learning. A summary of each method is shown in Table 1.

Table 1. Characteristics of fault diagnosis methods.

Methods Model Complexity

Is It Necessary to Prior
Check the Physical
Mechanism of the

Diesel Engine

Accuracy Generalizability
Amount of

Knowledge/Data
Required

Knowledge-based
method Low Yes Medium Poor Large

Model parsing-based
method High Yes Medium Poor Low

Signal processing-based
method Low No High Medium Medium

Machine learning-based
method Medium No High Strong Large

Knowledge-based methods use empirical data or expert experience fused with com-
puter science to create expert systems for knowledge-based diagnostic reasoning, which
play an important role in early fault diagnosis. Xu et al. [75] constructed an expert sys-
tem for diesel engine fault diagnosis based on belief rules. Kang et al. [76] designed a
hierarchical fault detection and diagnosis method that incorporates diesel engine domain
knowledge with advanced data analysis techniques. To obtain the entities needed to build
a knowledge graph from diesel engine fault diagnosis texts, Zhong et al. [77] proposed a
Chinese named entity recognition method that introduces a word-set-level attention mech-
anism, overcoming the shortcomings of the traditional method that ignores the different
importance of individual word sets. Chen [78] proposed a relationship extraction method
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fusing a multiscale attention mechanism with a BERT model and a non-local convolutional
embedding knowledge map complementation technique for obtaining the relationships
needed to build a knowledge map from diesel engine fault diagnosis texts as well as solving
the problem of incomplete fault knowledge maps, respectively. However, knowledge-based
methods lack the ability to self-learn, are more dependent on experience and knowledge,
are difficult to extend and correct, and are more complex to implement. Often, experi-
ence and knowledge are difficult to obtain, and incomplete or incorrect experience and
knowledge lead to low fault diagnosis accuracy.

The model-parsing-based method is applicable to component-level equipment and
requires modeling between fault data and fault types. Zhong et al. [79] proposed a sparse
kernel local Fisher discriminant analysis method to improve the performance and inter-
pretability of diesel engine fault diagnosis models. Considering the variable load and
compact structure of diesel engines, Wang et al. [80] established a mapping model between
the mean value of shaft radial vibration and misalignment value based on the shaft shape
characteristics and proposed a quantitative misalignment detection method based on this
model. To address the problem that centralized methods make it difficult to detect faults
in large-scale dynamic processes, Zhong et al. [81] proposed a distributed diesel engine
fault detection model based on variable chunking with Bayesian inference. Considering
that it is more difficult for a single supervised or unsupervised method to combine the
information of labeled and unlabeled samples, Zhong [82] constructed a semi-supervised
learning-based fault detection and diagnosis model for diesel engines. Ma [83] built a
simulation model of diesel engine piston motion, analyzed the radial motion pattern of
the piston in the cylinder and the rotation characteristics around the piston pin axis, and
studied the effect of cylinder clearance on the piston knocking force. However, building
the model requires an in-depth understanding of the fault and failure mechanisms of diesel
engines and a comprehensive consideration of the physical and chemical processes to
which the components are subjected, resulting in a more difficult modeling process that is
not applicable to system-level equipment and is less versatile.

Signal processing-based methods use signal processing techniques to process fault
signals to obtain different statistical features in the time domain, frequency domain, and
time-frequency domain for effective fault diagnosis. Such methods overcome the difficulties
of mathematical modeling and are widely used in the field of diesel engine fault diagnosis.
Ke et al. [84] proposed a method for identifying the type and degree of diesel fuel injector
faults based on multi-scale bidirectional diversity entropy. Tang [85] studied a diesel
engine fault diagnosis method based on VMD with kernel fuzzy C-mean clustering. Zhang
et al. [86] used the fourth-order accumulation of reconstructed signals from two stages of
VMD and robust ICA decomposition results as fault determination indicators and used the
Euclidean distance between each condition point and the injection fault clustering center to
distinguish the fault types of diesel engines. Cai [87] discussed a time-frequency analysis
method based on threshold filtering VMD and Margenau–Hill time-frequency distribution
(MHD) for processing vibration signals, extracting time-frequency map features using local
non-negative matrix factorization (NMF), and implementing diesel engine fault diagnosis
by improving the particle swarm optimization (PSO) support vector machine (SVM) model.
Jiang et al. [88] studied a fault diagnosis method for diesel engines based on wavelet packet
energy spectrum feature extraction and fuzzy entropy feature selection. However, such
methods require strong expertise and signal processing tools, and the extracted features
may cause loss or redundancy of the original information. In most cases, fault features also
need to be filtered, evaluated, and fused, and the process often has no unified quantitative
indicators, relying only on certain manual experience or mathematical and statistical
methods. There is a problem of losing some of the feature information, resulting in an
unsatisfactory diagnosis.

With the rapid development of artificial intelligence technology, machine learning-
based methods are the mainstream direction of current research. The method uses different
types of sensors to collect signals that can characterize the working status of a diesel engine
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and applies different feature extraction methods and pattern recognition techniques to
identify its fault types.

Classical machine learning methods rely on the manual extraction of features from
diesel engine vibration signals and use the extracted features to train machine learning
models that can automatically identify fault types. These methods can establish a direct
relationship between fault types and features based on data, mainly including SVM, extreme
learning machine (ELM), probabilistic graphical model (PGM), Bayesian network (BN),
error back propagation training (BP), probabilistic neural network (PNN), decision tree
(DT), and K-nearest neighbor (K-NN) models. Some common features of signal statistics
are listed in Table 2. In Table 2, xi(i = 1, 2, . . . , N) represents the i-th sample point of a
signal of length N. xmax represents the maximum value of the signal. xmin represents the
minimum value of the signal. xp−p represents the peak-to-peak value of the signal. x
indicates the average value of the signal. xabs represents the absolute mean value of the
signal. σ2 represents the variance of the signal. σ represents the standard deviation of the
signal. xrms denotes the root mean square of the signal. xske represents the skewness of the
signal. xkur represents the kurtosis of the signal. Sf represents the waveform factor of the
signal. Cf represents the impulse factor of the signal. Ip represents the peak factor of the
signal. Ce represents the clearance factor of the signal.

Table 2. Commonly used statistical features of signals.

Serial Number Feature Parameters Calculation
Formula Serial Number Feature Parameters Calculation

Formula

1 Maximum value xmax = max(xi) 8 Root mean square xrms =

√
1
N

N
∑

i=1
x2

i

2 Minimum value xmin = min(xi) 9 Skewness xske = 1
N

N
∑

i=1
x3

i

3 Peak-to-peak value xp−p = xmax − xmin 10 Kurtosis xkur =
1
N

N
∑

i=1
x4

i

4 Average value x = 1
N

N
∑

i=1
xi

11 Waveform factor Sf = xrms/xabs

5 Absolute average xabs =
1
N

N
∑

i=1
|xi | 12 Impulse factor Cf = xmax/xabs

6 Variance σ2 = 1
N

N
∑

i=1
(xi − x)2 13 Peak factor Ip = xmax/xrms

7 Standard deviation σ =

√
1
N

N
∑

i=1
(xi − x)2 14 Clearance factor Ce = xmax/

(
1
N

N
∑

i=1

√
|xi |
)2

Lu et al. [89] proposed a restricted Boltzmann ELM-based fault diagnosis model for
diesel engines by constructing feature mappings to recursively adjust the weights between
input neurons and hidden neurons. Yang et al. [90] discussed a fused discriminative
NMF and KNN approach for diesel engine fault diagnosis. Cai et al. [91] studied a diesel
engine fault diagnosis method based on a rule-based algorithm combined with a BN or
BP. To solve the problem of poor fault tolerance in a single model, Xu et al. [92] fused
an improved evidence inference rule model, a belief rule base inference model, and an
artificial neural network model in the decision layer, proposed a multi-classifier fusion
method for diesel engine wear fault diagnosis, and optimized the weights of each model
by a genetic algorithm (GA). Zhao et al. [93] applied pairwise extended least squares (LS)
SVM to diesel engine fault diagnosis, which has the advantage of low model complexity
and high generalization capability. Wang et al. [94] constructed a graph convolutional
network based on distance and a probabilistic topological graph model to solve the problem
of unbalanced classification in diesel engine fault diagnosis. Hou et al. [95] proposed a
diesel engine cylinder fault diagnosis model based on an improved GA with a multilayer
perceptron (MLP).

Currently, there are few methods based on knowledge and model parsing in diesel
engine fault diagnosis research. Methods based on signal processing and classical machine
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learning face the problem that manual feature extraction is prone to redundancy or loss of
raw information and cannot adequately fit the characteristics of industrial big data, which
may result in reduced diagnostic accuracy. Shallow classical machine learning models have
limited ability to learn to characterize non-linear equipment monitoring data. With the
development of industrial big data, the ability of such methods to handle massive amounts
of data is clearly inadequate.

Deep learning is a branch of machine learning that has become the most researched
area for diesel engine fault diagnosis due to its end-to-end nature and its ability to handle
big data. The main methods include deep belief networks (DBN), CNN, auto-encoding
(AE), recurrent neural networks (RNN), capsule networks (CN), generative adversarial
networks (GAN), etc. Liu et al. [96] constructed a deep neural network consisting of stacked
sparse self-encoder (SSAE) and Softmax classification layers for diesel engine fault diagno-
sis. Jiang et al. [97] proposed a digital twin-assisted diesel engine fault diagnosis method
based on adaptive sparse attention networks by embedding soft threshold filtering into the
attention layer. Huang et al. [98] proposed a model for diesel engine operating condition
identification based on graph attention networks (GAT). Bi [99] designed a DBN-based
multi-sample classifier. Li [100] revealed how CNNs work in the field of fault diagnosis,
explaining CNNs in principle in terms of class activation graphs and feature visualiza-
tion. Gao et al. [101] proposed a CNN-based misfire diagnosis method for diesel engines
and constructed a real-time fault diagnosis system based on an STM32 microcontroller.
Zhang et al. [102] proposed an improved CNN for diesel engine fault diagnosis using
exponential linear units as the activation function and global average pooling instead of
a fully connected layer, which can still maintain high recognition accuracy when dealing
with small sample data. Wang et al. [103] integrated multiple single CNNs to form a new
network architecture and proposed a random CNN-based diesel engine fault diagnosis
method to fuse the diagnosis results of each model using Dempster synthesis rules. To
solve the problem of unsatisfactory diagnosis when different timing fault characteristics
of diesel engines are unstable, Feng [104] proposed a fault diagnosis model combining
CNN and bi-directional LSTM. Zhang [105] constructed a multi-feature extraction attention
mechanism convolutional RNN diesel engine valve clearance anomaly fault diagnosis
model and used Bayesian optimization to optimize the hyperparameters in the model.
Zhang et al. [106] built a diesel engine fault diagnosis model based on an attention model
to optimize the bi-directional gating cycle unit.

The advantages and disadvantages of typical deep learning models are summarized
in Table 3, and the basic unit schematic is shown in Figure 7. Different deep learning
models have different structures and characteristics, but they are all suitable for situations
with large amounts of data and more complex tasks. Some models also have their own
unique roles, for example, AE is suitable for extracting features, generating data, and
noise reduction, RNN is good at processing time-series data; and GAN is suitable for
semi-supervised, unsupervised generative tasks.

Table 3. Characteristics of deep learning models.

Methods Features Advantages Disadvantages

CNN
Processes data with grid-like

topology better; weight sharing;
supervised learning.

Strong feature extraction capability
and fewer parameters.

Complex structure and large
amount of data required.

DBN

Multiple restricted Boltzmann
machine layers stacked;

layer-by-layer greedy learning
training model; unsupervised

pre-training, supervised
fine-tuning model.

Greedy training style and inference
easy to handle. Time consuming training.
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Table 3. Cont.

Methods Features Advantages Disadvantages

RNN
Includes feedback loops to preserve

information from previous units;
suitable for time series processing.

Variable input length and strong
modelling capability for

time-series data.

Prone to gradient loss or
explosion problems.

GAN

Consists of a discriminator and a
generator; the generator learns the

distribution of the input and creates
fake data; and the discriminator is

used to accept both real and fake data
and to identify the authenticity of

the data.

No deterministic bias was
introduced; generative model; and

no Markov chain is required.

Unstable training; need to reach
Nash equilibrium.

AE
Consists of an encoder and decoder;

reconfigurable input data;
unsupervised learning.

Input data does not need to be
labelled and is more robust

against noise.

Pre-training is required and training
may cause a gradient explosion.

CN
Addresses some of the shortcomings

of CNNs; capsules are the various
features of a particular entity.

Information such as posture and
position of features can be saved. Large calculation volume.
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However, the application of deep learning models to the fault diagnosis of equipment
powered by diesel engines still faces many challenges:

1. Deep learning models usually assume that the training data and the test data in
the deployment scenario follow independent, identical distributions. However, the
complex and variable operating conditions of diesel engine operation, such as speed
and load, often cause a drift in the distribution between training and test data, which
limits the diagnostic accuracy of deep learning models;

2. Equipment diesel engine structure is complex; fault parts have a long transmis-
sion path from the sensor installation location; fault signals often exhibit complex
failure modes, a low signal-to-noise ratio, and non-smooth characteristics; a single
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deep learning model faces the problem of a single structure and insufficient feature
extraction capability;

3. The deep learning model is a black box model; its internal mechanisms are not clear,
and it is not possible to give a basis for its judgment in engineering applications. The
model has a large number of hyperparameters; different settings have different effects;
and the number of hyperparameter combinations is exponential, making it difficult to
optimize the model.

Combining the research of scholars, the main approaches to solving the above prob-
lems can be summarized as follows:

1. Signal preprocessing can be used to reduce the drift of the data distribution due to
changes in operating conditions. Using transfer learning methods, mainly including
domain adaptation and pre-training-trimming strategies, diagnostic knowledge from
known conditions is transferred to the target condition to reduce the interference of
condition changes with the model. A deep learning fault diagnosis model with robust
and generalized condition variation will be investigated;

2. The research is based on a deep integration learning approach to fault diagnosis,
where multiple learning units are constructed and integrated with certain strategies
to complete the learning task, with the aim of “learning from all sides”;

3. Reveal the internal principles of deep learning models and study their automated
design and optimization methods.

It is a challenge for machine learning that existing models do not adapt well to new do-
mains under conditions such as small sample sizes and changing work conditions. Transfer
learning can learn common features in different but related domains. The main methods
include feature transfer, parameter transfer, and domain adaptation, and a summary of
each method is shown in Table 4. Zhao et al. [107] constructed a two-stage transfer learning
ELM diesel engine fault diagnosis model to achieve individual adaptation to the target do-
main. Xiong et al. [108] proposed a variable operating condition identification method for
diesel engines based on stacked auto-encoders and feature transfer learning. Bai et al. [109]
proposed a diesel engine fault detection method based on optimized VMD and ResNet18
transfer learning models. Xu [110] mapped the source and target domain feature sets for
different operating conditions of diesel engines using a joint geometric space and statistical
distribution alignment transfer learning algorithm. Zhao [111] proposed a transfer model
based on the ResNet50 neural network, deep adaptation network, and domain adaptation
for diesel engine misfire and valve clearance fault diagnosis under different operating
conditions, respectively. Jia [112] conducted an experiment on diesel engine fault diagnosis
based on the VGG16 transfer learning CNN structure. However, transfer learning models
at this stage still require large amounts of data for training, and their performance is poor
when the working conditions vary greatly. Although transfer learning can effectively
address the problem of domain distribution drift, it still requires obtaining data from a
specific target domain, which has limitations in engineering applications.

Table 4. Characteristics of each transfer learning method.

Methods Features Advantages Disadvantages

Feature transfer

Measure feature mapping by
finding a transfer function that
connects the source and target

domains and complete the transfer
from the source to the target

domain by learning the
feature mapping.

Feature domain adaptation still
achieves good results when
there are large differences

between domains.

Finding the right feature metric
between domains is difficult, and
the workload is relatively high.
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Table 4. Cont.

Methods Features Advantages Disadvantages

Parameter transfer

Focuses on tuning discrete models,
training model parameters in the
source domain, and fine-tuning

parameters in the target domain.

Simple method, easy to use, and
relatively short training time.

When the difference between the
source and target domain

segments is greater, the
performance is worse, requiring a
small portion of the target domain

data to be labeled.

Domain adaptive
The problem of variable working

conditions is solved by optimizing
the distribution of the domain.

Unsupervised or
semi-supervised learning,
without the need for large
amounts of labeled data to

complete the transfer.

-

3.4. Health Status Assessment

The diesel engine health status is a discrete status determined by simulating the health
of the human body from a bionic perspective, i.e., the reliability and functional performance
of the diesel engine during the degradation of its performance. The health status assessment
is based on the results of data processing, using failure models or intelligent algorithms to
assess the operational status of the diesel engine.

Diesel engine health status assessment can be broadly divided into knowledge-driven,
model-driven, and data-driven methods. Wang et al. [113] designed a method for assessing
the health status of complex equipment based on rough set theory and evidence theory.
Ding [114] used the fuzzy set value statistics method and the entropy weight method to
determine the subjective and objective weights of the assessment indexes, respectively,
and proposed a diesel engine health status assessment method based on the cloud grav-
ity judgment method. Liang et al. [115] proposed a bi-directional optimization method
for health status assessment and maintenance decision-making of electromechanical sys-
tems based on the bi-directional integration of health status assessment and maintenance
scheduling binary knowledge. Wei [116] discussed the principles of diesel engine health
class classification and health status assessment index selection methods and proposed a
single-cylinder diesel engine health status assessment method based on the improved gray
clustering method and entropy weight method, a diesel engine whole engine health status
assessment method based on the cloud gravity judgment method and combined weight
method, and a diesel engine whole engine health status assessment method based on D-S
evidence theory and cooperative game theory, respectively. Zheng [117] constructed a data
sensing system for diesel engine performance evaluation, created a prediction model for
key condition parameters of diesel engines, proposed a method for diesel engine whole
engine performance evaluation based on the hierarchical analysis method and SVM, and
developed a platform for diesel engine whole engine performance evaluation. Proportional
risk models are widely used in reliability engineering to describe the effects of life and
covariates (temperature and vibration) on time to failure. Zheng et al. [118] constructed an
iterative algorithm to approximate the health status of a system based on a proportional
risk model with Markov properties for covariate processes. Zhang [119] completed the
overall design of a data management system for diesel engine health status monitoring and
assessment. A modular approach was used to design the diesel engine embedded machine-
side control subsystem, the health status online monitoring subsystem, and the health
status offline analysis subsystem, and to determine the way of data interaction between
the subsystems. Liu et al. [120] proposed an adaptive noise reduction and multi-channel
information fusion method for diesel engine valve clearance health status assessment. Ke
et al. [121] investigated the extraction of diesel engine valve clearance degradation features
based on the fusion of CEEMDAN and discriminant correlation analysis features, and
the fused degradation features were fed into a LS SVM to achieve health status assess-
ment. Wang et al. [122] used combinatorial rules to fuse the evaluation results of multiple
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CNNs to construct an intelligent health status evaluation model for diesel engines called a
random CNN.

Unlike the status assessment of components, the health status assessment of a diesel
engine or subsystem needs to consider both its horizontal degradation (the interaction
and degradation trend of components at the same level) and its vertical degradation (the
impact of the degradation of components at lower levels on components at higher levels).
The knowledge-driven approach has the advantage of low complexity as it can model
the horizontal and vertical degradation processes of a diesel engine or subsystem based
on domain expert knowledge; however, fuzzy prior knowledge reduces the accuracy
of the health status assessment model, and a static knowledge-based assessment model
cannot characterize the dynamic degradation process of the diesel engine. The model-
driven method has a clear physical meaning but requires a high level of accuracy in the
construction of mathematical analytical models. The data-driven method requires a large
amount of condition monitoring data and has the advantages of high accuracy and no need
for expert knowledge, but the health status assessment models constructed based on the
data-driven method lack clear physical interpretation and are susceptible to interference
from noise and abnormal samples.

With the diversification of diesel engine operation scenarios and the complexity of
functional requirements, the existing research results suffer from weak transferability to
unknown working conditions and a strong reliance on complete expert experience, neglect-
ing the multi-types of knowledge in variable working condition operation scenarios, which
limits the engineering application effect of the existing results. Therefore, how to effectively
utilize multi-source knowledge, construct a retrospective correction mechanism for actual
working scenarios, and achieve multi-way optimization between different assessment
mechanisms through the intersection of multiple knowledge sources is an effective method
to break through the bottleneck of health status assessment research applications. Analyzed
from the perspective of the data sources that can be utilized, the multi-source features that
can be used for diesel engine health status assessment are shown in Figure 8.
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With the multi-source features in Figure 8, how to weight and fuse the assessment
feature information is the core and most difficult part of diesel engine health status as-
sessment. With the development of advanced technologies such as big data processing,
artificial intelligence, data mining, and information fusion, the performance of diesel engine
health status assessment will be effectively improved.

According to the multi-source characteristics of diesel engine health status assessment,
it is vital to divide the diesel engine health status classes reasonably and effectively. The clas-
sification of diesel engine health status classes should conform to the following principles:

1. Clear purpose and detailed hierarchy: the classification of the health status of diesel
engines should be combined with the purpose of health status assessment, and the
health status classification should be detailed and reasonable;

2. Concise and usable: The name of the health status classification should be simple
and concise. The health status classification should make the assessment results
highly usable;

3. Separate and easily distinguishable status: each health status should have separate
status intervals from each other, with no overlap or crossover in the range of health
status levels.

By analyzing the multi-source characteristics and classification of diesel engine health
status assessment, the aim is to provide some reference for diesel engine health status
assessment work so that diesel engine health management can be carried out effectively.

4. Challenges and Perspectives in Diesel Engine Equipment PHM

As the field of PHM for diesel engine equipment enters the era of big data, the
requirements for adaptiveness and intelligence of key technologies are increasing, and the
research on PHM theoretical methods for diesel engine equipment is increasingly developed
and improved. However, in view of the complexity of diesel engine equipment and the
specificity of the application environment, the flexible application of PHM technology to the
practical problems of diesel engine equipment engineering still faces many new challenges:

1. The existing technology for monitoring the condition of diesel engine equipment
neglects the study of sensor layout optimization. A good sensor layout is the ba-
sic guarantee for accurate measurement of diesel engine condition information. In
engineering applications, due to the limitations of experimental sites and economic
conditions, how to meet the requirements of diesel engine measurability while min-
imizing sensor cost is an urgent problem for diesel engine PHM, with a view to
obtaining the best balance between sensor distribution cost and system constraints;

2. The quality of diesel engine condition monitoring data is generally poor, including
time delay, abnormality, missing data, noise, and so on, which makes it difficult to
dig out effective condition characteristic information from low-quality monitoring
data. Diesel engine condition monitoring data has the characteristics of multi-source
heterogeneity, various forms of signal measurement point sampling, poor consistency,
and more serious interference from random factors, which makes it more difficult to
apply PHM key technologies to diesel engines;

3. Most of the existing diesel engine equipment fault diagnosis methods are based on
closed-loop assumptions, i.e., the diagnostic effect of the model can only be guar-
anteed from known data. For unknown data, the models have poor generalization
capabilities. Although transfer learning-based fault diagnosis can be performed on
common features in different but related domains, there are still requirements for
the acquisition of data in specific target domains, and there are still limitations in
engineering applications;

4. Currently, supervised machine learning models with deterministic expressions are
commonly used to assess the health status of diesel engine equipment. In engineering
applications, the problem of uncertainty in health status assessment always exists.
Due to the different service environments and operating conditions in each phase of
the diesel engine’s life, it is difficult to effectively evaluate the reliability and accuracy
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of the deterministic expression assessment model, and the uncertainty of the model
results is difficult to assess, which can easily lead to status misjudgment.

In view of the above-mentioned difficulties and challenges in the research of key
technologies for diesel engine equipment PHM, the possible future research directions are
summarized as follows:

1. Sensor multi-objective layout optimization method and multi-sensor feature fusion.
The use of wireless miniature intelligent sensors to collect information on diesel
engine equipment condition monitoring can effectively alleviate the constraints of the
experimental site and improve the efficiency of information collection. The optimal
balance between sensor distribution costs and system constraints is achieved by
studying sensor layout optimization methods. Multi-sensor feature fusion technology
is used to fuse the signal time, space, and physical features to obtain richer diesel
engine operation data;

2. Standardization of condition monitoring data and quality assurance methods for
diesel engine equipment. The establishment of a condition monitoring data quality
assurance method system can effectively improve the adaptability of PHM technology
to engineering application problems. Monitoring data quality assurance requires
comprehensive consideration of data recovery, cleaning, regularization, and other
methods. For different parts or physical quantities to be measured, data monitoring,
transmission, and storage-related standards are developed to lay a solid data founda-
tion for the efficient and reliable application of PHM technology to diesel engines;

3. A study of a fault diagnosis method for diesel engine equipment based on fusing
data-driven and knowledge-driven. By embedding the constraints formed by the
physical model and domain knowledge in the data-driven model to compensate for
the shortcomings of a single data-driven model, the model learns to conform to the
characteristics of physical rules and domain knowledge and improves the robustness
and generalizability of the model. The fusion of data-driven and knowledge-driven
models represented by physics-informed neural networks (PINN) provides a new
idea for the research of key technologies of PHM for diesel engines;

4. Highly credible diesel engine equipment health status assessment framework con-
struction. The condition level and degradation rule for diesel engines should consider
the use time and environment of diesel engines and study the dynamic health status
assessment model. Unlike the health status assessment of components, the health
status assessment of diesel engine subsystems or the whole engine needs to con-
sider both vertical and horizontal degradation. By integrating probabilistic modeling,
uncertainty quantification, and statistics to build a highly credible framework, the
reliability and generalization ability of the model will be improved, and ultimately,
highly credible intelligent assessment will be achieved.

5. Conclusions

This paper conducts a research review on the PHM of diesel engine equipment. The
development history of PHM is reviewed, the basic concept and main functions of PHM
are introduced, the PHM architecture of diesel engines is constructed, the representative
work and research status of PHM key technologies such as diesel engine condition moni-
toring, data processing, fault diagnosis, and health status assessment are sorted out and
summarized, the challenges faced when applying PHM technology flexibly to the practical
problems of diesel engine engineering are discussed, and possible future research directions
for PHM key technologies for diesel engines are foreseen. This paper can provide some ref-
erence for researchers in the field related to PHM of diesel engine equipment and promote
the research of theoretical methods of PHM of diesel engine equipment to transform them
into practical engineering applications.

Although the research in this paper has achieved certain achievements, there are still
several shortcomings that need to be improved in the following aspects:
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1. In the existing studies, most of the diesel engine pre-set failure experiments have
been conducted for a few typical failure modes in the fuel supply system, which are
relatively homogeneous. The next step should be to carry out a more comprehensive
study of each subsystem of the diesel engine;

2. Most of the existing studies have been carried out in a laboratory environment for a
single operating condition context and have not investigated the effects of complex
operating conditions (e.g., different power, speed, environment, etc.) on the diesel
engine equipment. Therefore, the next step is to carry out research on complex
working conditions;

3. The next step needs to be the study of remaining life prediction and maintenance
decisions for diesel engines and needs to be more concretely implemented into the
actual work of current diesel engine equipment maintenance support to provide a
basis for relevant maintenance decision making.
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