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Abstract: A cylindrical plunge grinding process was modeled to investigate nonlinear regenerative
chatter vibration. The rotating workpiece was a slender Euler–Bernoulli beam, and the grinding
wheel was a rigid body moving towards the workpiece at a very low feed speed. A numerical method
was proposed to provide the critical boundaries for chatter-free grinding. It was demonstrated
that the intersection set surrounded by these critical boundaries was the chatter-free region for the
considered parameters. When these parameters were outside of the chatter-free region, the stable
grinding process underwent a supercritical Hopf bifurcation, resulting in the loss of the chatter-free
behavior and the emergence of periodic chatter motions. Then, the periodic motions of both the
grinding wheel and the workpiece were predicted analytically using the method of multiple scales,
showing the effect of the regenerative force on the grinding process. We demonstrated that the
analytical prediction was valid since it agreed with the numerical simulation. The results showed that
there exist three kinds of nonlinear chatter motion, with different amplitudes and mode frequencies.

Keywords: plunge grinding slender parts; time-delayed regenerative chatter; continuation algorithm;
almost-asynchronized nonlinear chatter

1. Introduction

Grinding plays a significant role in the manufacturing industry, especially for surface
finishing. Due to the increasing automotive applications in the industry, the adoption of
high-efficiency grinding technologies is facing many new challenges [1]. Regenerative
chatter, as a kind of vibration with a small amplitude and high frequency, exists widely
in all kinds of machining processes [2,3]. To design a chatter-free grinding process with
maximum workpiece quality, a minimum machining time, and high economic efficiency,
the complex relationships between the system parameters and the dynamical behaviors
of the process should be shown explicitly [2]. Starting with Altintas [3], many scholars
have shown interest in both externally and internally excited vibration in the grinding
process. Externally excited vibration is mainly caused by the imbalance or eccentricity of the
grinding wheel, and it can be easily eliminated by removing the excitation source derived
from the imbalance or eccentricity of the grinding wheel. Internally excited vibration, also
called regenerative chatter, is induced by the regenerative effects on the surfaces of both
the workpiece and the grinding wheel [4], which result from certain physical parameters
of the grinding system. Since regenerative chatter vibration always induces poor surface
quality [5], it is necessary to study the relationship between the dynamical behaviors and
the physical parameters of the grinding system in order to eliminate such vibrations.

It has been realized that the occurrence of grinding chatter is a kind of doubly regen-
erative vibration [5,6]. Unlike the turning [7,8] or milling [9,10] processes, which involve
a single time delay from the regeneration of the workpiece, the dynamic behavior of
the grinding process is affected by two distinct time delays induced by the regenerative
effects on the surfaces of both the workpiece and the wheel. An experimental analysis
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of grinding chatter with a single delay representing wheel regeneration was presented
by Jiang, Guo, and Li [11], revealing high-frequency tool–workpiece chatter in grinding
operations. Alternatively, time-domain simulations involving geometrical interactions
between the grinding wheel and the workpiece were used by Yuan, Järvenpää, Keskinen,
and Cotsaftis [12], as well as Li and Shin [13], to investigate many critical characteristics,
including chatter regions.

Besides experimental and numerical studies, some constructive theoretical works
have also been developed for regenerative chatter analysis. Instead of Laplace transform,
Thompson [14] proposed an alternative method to analyze the stability of the steady-state
response of the plunge grinding process with wear on both the grinding wheel and the
workpiece. The exponential growth in the grinding force was regarded as an index of
chatter, and the effects of the grinding wheel speed, workpiece speed, contact stiffness, and
wave filtering on the grinding stability were discussed. For a case in which the contact
force between the grinding wheel and the workpiece was time-varying, the grinding
process was modeled by Yuan, Järvenpää, Keskinen, and Cotsaftis in a system of functional
differential equations [12], since Thompson’s consideration failed to produce a model.
In this work, the regenerative force was represented as a function of the cutting depth
determined by the differences in the current and previous relative positions between the
workpiece and the wheel, resulting in time-delayed regenerative force. This dynamic
model was then simplified by Liu [15], given the two delays introduced by the double
regenerative effects, with the stability information obtained by numerically calculating
eigenvalues. When the delayed system under consideration lost its stability, the onset of
the chatter vibration in the grinding process was the major concern of these researchers.
Such chatter is related not only to the nonlinearity of the beam, but also to the differences
in the current and previous relative positions, i.e., the time delay. To predict the nonlinear
chatter motions, many analytical methods, such as an incremental perturbation scheme [16],
central manifold reduction [17], and the method of multiple scales [18], are applicable.
For example, Chung and Liu [19] studied the cylindrical transverse grinding chatter with
nonlinear contact force using an incremental perturbation scheme (IPS), while Nayfeh,
Chin, and Pratt [20] studied nonlinear turning chatter using the method of multiple scales.

To investigate the effects of regeneration on the stability of a cylindrical plunge grind-
ing process, the contact stiffness and the rotation speeds of both the workpiece and the
grinding wheel, which lead to the delays mentioned above, were considered as design
parameters in this paper. Based on the aforementioned regenerative force models, we
first proposed a dynamic model of the cylindrical plunge grinding process, where the
workpiece was taken as a damped hinged–hinged slender Euler–Bernoulli beam and the
grinding wheel a damped spring–mass system. Then, the Galerkin technique was applied
to decompose the workpiece modes, with only the first-order mode kept to represent the
major property of the regenerative chatter. The model was then linearized in the vicinity of
the system’s equilibrium in order to study the cutting stability. With the Newton–Raphson
method employed for the numerical calculation of the eigenvalues, a parametric continua-
tion algorithm was also proposed to automatically generate initial guesses for parameter
iteration [21,22]. As a result, critical boundaries for marginal stability in the parameter
space were obtained, the union of which determined the stability boundaries dividing
the chatter and chatter-free regions. For the parameters located outside of the chatter-free
region, regenerative chatter vibration occurred during the grinding process. To predict the
nonlinear chatter motions of the grinding process, the method of multiple scales was then
employed to express the relationship between the chatter and the parameters mentioned
above in an analytical form. It was found that the analytical prediction agreed well with
the numerical simulation, which verified the theoretical investigations. The results showed
that a soft grinding wheel should always be the primary choice in most work conditions
for chatter avoidance. Nonetheless, the rotation speeds of the workpiece and the grind-
ing wheel can be alternated as well for chatter-free motion when the contact stiffness is
too great.
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The primary motivation of this study is to propose a full algorithm for the study
of stability and nonlinear chatter in the grinding processes, which involves two distinct
time delays. Since the eigen equations are transcendental, without analytical solutions, a
continuation algorithm with a procedure generating an initial guess is proposed. Moreover,
the method of multiple scales in vector form is adopted for the analysis of grinding chatter
once the stability has been lost. As a result, the motions of both of the wheel and the
workpiece can be revealed to present the dynamic characteristic of grinding chatter, which
yields various chatter frequencies and almost asynchronized motions.

2. Materials and Methods
2.1. Dynamic Model of the Cylindrical Plunge Grinding Process

Grinding operation is a kind of machining process which is usually adopted as a
finishing process to achieve fine surface quality. In a cylindrical grinding process, the
workpiece surface is abraded by a rotating grinding wheel, while the part is rotating and
the wheel is moving toward the workpiece for feeding [23]. Unlike the turning or milling
processes, in which only the part surface is regenerated, the surface of the grinding wheel
is also renewed when the machine works due to the special structure of the wheel, which is
a combination of abrasive grains and bond material [24].

A cylindrical plunge grinding process is modeled as a hinged–hinged slender Euler–
Bernoulli beam coupled with a damped spring–mass system where the beam represents
the workpiece being processed and the grinder fixed to a grinding machine, as shown
in Figure 1. The workpiece rotates for a constant angular speed ωw, and the grinding
wheel rotates as well for another constant angular speed ωg while it is plunged into the
workpiece in its radial direction for a low feed speed f . Therefore, the workpiece and wheel
displacements, xg and xw, are governed by the following equation [25,26].

mg
..
xg + cg

.
xg + kgxg = N,

ρA ∂2xw
∂t2 − EAP(t) ∂2xw

∂s2 + EI ∂4xw
∂s4 − EA

2L
∂2xw
∂s2

∫ L
0

(
∂xw
∂s

)2
ds = −Nδ(s− l),

(1)

where P(t) = 0 is due to the hinged–hinged workpiece constraints; δ(s) is a Dirac function;
and N is the regenerative force, explained in detail in Figure 2.
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Figure 1. Schematic of a cylindrical plunge grinding process.
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Figure 2. Regenerative effects on the surfaces of both the workpiece and the grinding wheel.

It can be seen that the instantaneous chip thickness for cutting involves the feed f τg
and the regeneration of both workpiece and wheel surfaces. The corresponding cutting
force is regarded as proportional to the depth of the cut, so the force involving surface
regeneration is called regenerative force. For the wheel regeneration εg, it is related not only
to the current position xg(t), but also to the previous position xg

(
t− τg

)
. This is similar to

the workpiece regeneration εw. Thus, the regenerative force is modeled by the following
equation [27].

N = kc
(
εw + εg

)
= kc

[
(xw(t)− xw(t− τw)) +

(
xg
(
t− τg, l

)
− xg(t, l)

)]
, (2)

where kc is the contact stiffness and τw and τg are the time delays for the workpiece and
the grinding wheel rotating once, respectively. Letting ωw and ωg represent the angular
speeds of the workpiece and grinding wheel, the time delays are given by τw = 2π/ωw
and τg = 2π/ωg [6–10].

The model in Figure 1 has simply-supported boundary conditions, given as follows: xw(t, 0) = 0, ∂2xw
∂s2 (t, 0) = 0,

xw(t, L) = 0, ∂2xw
∂s2 (t, L) = 0.

(3)

In general, the dynamical behavior of the first mode for the beam is the most important.
To this end, the displacement of the workpiece is expressed as:

xg(t, s) = x1(t) sin
(πs

L

)
(4)

for the boundary condition. Substituting Equations (2) and (4) into Equation (1) and
applying Galerkin projection, one obtains the following:

mg
..
xg + cg

.
xg + kgxg = kc

[
(x1(t)− x1(t− τw)) sin

(
lπ
L

)
+
(
xg
(
t− τg

)
− xg(t)

)]
,

ρAL
2

..
x1 + cw

.
x1 +

EIπ4

2L3 x1 − EAπ4

8L3 x1
3 =

−kc

[
(x1(t)− x1(t− τw)) sin

(
lπ
L

)
+
(

xg
(
t− τg

)
− xg(t)

)]
sin
(

lπ
L

)
,

(5)

where the linear viscous damping term is added with cw as the damping coefficient [28].
As a special case, we consider a situation in which the grinding wheel is located at the

middle of the workpiece l = L/2. By defining a state vector given by

y(t) = (y1(t), y2(t), y3(t), y4(t))
T =

(
xg(t), x1(t),

dxg(t)
dt

,
dx1(t)

dt

)T

, (6)
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choosing the characteristic length H = 0.01m and time T =
√

mg/kg, and inducing the
nondimensional parameters

ξ1 =
cg
mg

√mg
kg

, κ1 = kc
kg

, τ1 =
τg
T , γ =

2mg
LρA ,

ξ2 = 2cw
LρA

√mg
kg

, κ2 =
EIπ4mg
L4ρAkg

, τ2 = τw
T , µ = 1

ε
EAH2π4mg

4L4ρAkg
,

(7)

one transforms Equation (5) into a dimensionless matrix form, given by

dy(t)
dt

= Ay(t) + D1y(t− τ1) + D2y(t− τ2) + f, (8)

where

A =


0 0 1 0
0 0 0 1

−1− κ1 κ1 −ξ1 0
γκ1 −γκ1 − κ2 0 −ξ2

, f =


0
0
0

−εµx2
3

,

D1 =


0 0 0 0
0 0 0 0
κ1 0 0 0
−γκ1 0 0 0

, D2 =


0 0 0 0
0 0 0 0
0 −κ1 0 0
0 γκ1 0 0

,

(9)

and ε is a small dimensionless coefficient. This is a typical multi-dimensional nonlinear
dynamic system [28–30].

Now, the mathematical model can be obtained as shown in Equation (8). We intend
to study the effect of regenerative force on grinding stability by considering the relations
between the stability of the trivial equilibrium and physical parameters such as kc, τg, and
τw, which are related to regenerative force, as described in the following section.

2.2. A Continuation Algorithm for Chatter Boundaries

Chatter vibration is induced by regenerative force, and a chatter-free grinding process
is always required to ensure high surface quality [5]. It is necessary to predict the chatter-
free regions in the physical parameter space. The chatter-free grinding process requires
the stable trivial equilibrium of Equation (8), which is determined by the signs of the real
parts of eigenvalues. It is a critical situation for marginal stability when the real parts are
equal to zero. However, it is difficult to obtain the eigenvalues of Equation (8), since it is a
delayed differential equation with infinite eigenvalues.

2.2.1. Algebraic Equations of Boundaries

To determine the eigenvalues of Equation (8), one uses the following characteristic
matrix [31]

M = λI−A−D1Exp(−λτ1)−D2Exp(−λτ2), (10)

and the corresponding characteristic equation

detM = 0, (11)

where det M is the determinant of M. Substituting Equations (9) and (10) into Equation (11)
yields:

λ4 + λ3(ξ1 + ξ2) + λ2(1 + κ1 + γκ1 + κ2 + ξ1ξ2 − e−λτ1 κ1 − e−λτ2 γκ1
)

+λ
(
γκ1ξ1 + κ2ξ1 + ξ2 + κ1ξ2 − e−λτ1 κ1ξ2 − e−λτ2 γκ1ξ1

)
+
(
γκ1 + κ2 + κ1κ2 − e−λτ1 κ1κ2 − e−λτ2 γκ1

)
= 0,

(12)



Processes 2023, 11, 1967 6 of 19

where λ = σ± iω (ω > 0) represents the eigenvalues of Equation (8) [32,33]. As mentioned
above, the chatter boundary may be determined by σ = 0. Substituting λ = ±iω into
Equation (11) and separating the real and imaginary parts, one obtains:

ω4 + ω2(γκ1 cos(τ2ω)− γκ1 + κ1 cos(τ1ω)− κ1 − κ2 − ξ1ξ2 − 1)

+ω(−γκ1ξ1 sin(τ2ω)− κ1ξ2 sin(τ1ω))

−(γκ1 cos(τ2ω) + γκ1 − κ1κ2 cos(τ1ω) + κ1κ2 + κ2) = 0,

(13)

and

ω3(−ξ1 − ξ2) + ω2(κ1(− sin(τ1ω))− γκ1 sin(τ2ω))

+(γκ1 sin(τ2ω) + κ1κ2 sin(τ1ω))

+ω(−γκ1ξ1 cos(τ2ω) + γκ1ξ1 − κ1ξ2 cos(τ1ω) + κ2ξ1 + κ1ξ2 + ξ2) = 0.

(14)

It is impossible to determine the roots of Equations (13) and (14) analytically, since they
are transcendent equations. Thus, a numerical method will be employed to successively
obtain the roots of Equations (13) and (14) with varying parameters.

2.2.2. Continuation Algorithm

In this subsection, the Newton–Rapson method (NRM) is considered as a basic tool
for the computation of eigenvalues. Meanwhile, a continuation algorithm (CA) is given
to locate the critical boundaries by obtaining the critical values successively with the
parameter varying. This is key to giving an initial guess when one uses the NRM in
searching for numerical solutions. With the parameter varying, one will always be faced
with a choice of the initial values for the parameter iteration at each step. To give a proper
initial guess so that the parameters can be iterated, the CA is established and schemed
in Figure 3.
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If one of the roots of Equations (13) and (14) is obtained at step i, denoted as
(ωi, κ1,i, τ1,i, τ2,i), then the initial guess of the root of Equation (13) and (14) at step i + 1 is
assumed to be(

ω∗
i+1

, κ∗
1,i+1

, τ∗
1,i+1

, τ∗
2,i+1

)
= (ωi + ∆ωi, κ1,i + ∆κ1,i, τ1,i + ∆τ1,i, τ2,i + ∆τ2,i), (15)

where ∆ωi, ∆κ1,i, ∆τ1,i, and ∆τ2,i are small increments for each parameter. Substituting
Equation (15) into Equations (13) and (14), expanding them in Taylor’s series in the vicinity
of zero, and keeping only the linear parts yield the following:

c1∆κ1,i + c2∆τ1,i + c3∆τ2,i + c4∆ωi = 0,
c5∆κ1,i + c6∆τ1,i + c7∆τ2,i + c8∆ωi = 0,

(16)

where ci (i = 1, 2, . . . , 8) are represented in Equations (A1)–(A8) of the Appendix A. Then,
it follows from Equation (16) that the other two increments can be solved numerically to
obtain any small increments. This procedure is then repeated for a series of roots, which
are located at the critical boundaries.

2.3. Analytical Prediction for Nonlinear Chatter with Period

As will be mentioned later, two regions (labeled Regions I and II) of Figure 4 were
selected as typical cases with which to analyze the chatter motions due to the boundaries
in Regions I and II being distinct. It can be seen that the time delays will lead to crossing
different boundaries so that the chatter motions occur in different frequencies for a fixed
value of contact stiffness, for example, κ1 = 0.9, and two different values at τ1 = 14.0
and τ1 = 11.6 correspond to two different wheel speeds at ωw = 141.92 rad/s and
ωw = 171.29 rad/s. To gain a deep understanding of the origin of nonlinear grinding
chatter, the method of multiple scales (MMS) [34,35] can be employed to obtain an analytical
description of the chatter responses. This demonstrates the relation between κ1, τ1, τ2 and
the chatter motion of the grinding process, where τ2 is considered to be a variable parameter.

Processes 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Chatter boundaries for different fixed values of 1τ  . (a) 1 14τ =  ; (b) 1 11.81τ =  ; (c) 

1 11.6τ = . 

2.3.1. Analytical Preliminary 

For Equation (8), if two time scales are introduced and given by 0T t= , and 1T tε=
, then one has 

0 1

d ,
d t T T

ε∂ ∂= +
∂ ∂

y y y
 (17)

and 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1 1 1 1

10 1 1 10 1 1 1

2 2 2 2 2

20 2 2 0

0 1 0 1 0 1

0 1

1 0 1

2

0

1 2

1

0 1 21

,
,

, , ,
,

, , .

, , ,t T T T T T T

T T

T T

y t y

y y

T

y t

T T

T T

T T T

y

y y

τ τ ετ

τ ετ ε τ ετ
τ τ ετ

τ ετ ε τ ετ

ε
− = − −

= − − + − −

− = − −

+

= − − − −

= =

+

0 1y y y y

 (18)

As mentioned above, 2τ  is considered to be a variable parameter. Thus, perturbing 

2τ  in 22ετ  from the boundary yields  

2 2 22 ,cτ τ ετ= +  (19)

where 2cτ  corresponds the value at the boundary and 22τ  is called the detuning param-
eter. The delayed terms in Equation (18) can be expanded as  

Region 
I

1.0

0.9
0.8
0.7
0.6
0.5
0.4

14 16 18 20 22 24 26 28

1κ

1.0

0.9
0.8
0.7
0.6
0.5
0.4

14 16 18 20 22 24 26 28

1κ

1.0

0.9
0.8
0.7
0.6
0.5
0.4

14 16 18 20 22 24 26 28

1κ

2τ

Region 
II

(a)

(b)

(c)

Figure 4. Chatter boundaries for different fixed values of τ1. (a) τ1 = 14; (b) τ1 = 11.81; (c) τ1 = 11.6.
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2.3.1. Analytical Preliminary

For Equation (8), if two time scales are introduced and given by T0 = t, and T1 = εt,
then one has

dy
dt

=
∂y
∂T0

+ ε
∂y
∂T1

, (17)

and
y(t) = y(T0, T1) = y0(T0, T1) + εy1(T0, T1) ,
y1(t− τ1) = y1(T0 − τ1, T1 − ετ1)

= y10(T0 − τ1, T1 − ετ1) + εy11(T0 − τ1, T1 − ετ1),

y2(t− τ2) = y2(T0 − τ2, T1 − ετ2)

= y20(T0 − τ2, T1 − ετ2) + εy21(T0 − τ2, T1 − ετ2).

(18)

As mentioned above, τ2 is considered to be a variable parameter. Thus, perturbing τ2
in ετ22 from the boundary yields

τ2 = τ2c + ετ22, (19)

where τ2c corresponds the value at the boundary and τ22 is called the detuning parameter.
The delayed terms in Equation (18) can be expanded as

y1(t− τ1) = y10(T0 − τ1, T1) + εy11(T0 − τ1, T1)

−ετ1
∂

∂T2
y10(T0 − τ1, T1) + o(ε),

y2(t− τ2) = y20(T0 − τ2c, T1) + εy21(T0 − τ2c, T1)

−ετ2c
∂

∂T2
y20(T0 − τ2c, T1)− ετ22

∂
∂T1

y20(T0 − τ2c, T1) + o(ε).

(20)

Substituting Equations (18)–(20) into Equation (8), and collecting the coefficients of ε0

and ε1, one has

∂y10
∂T0

(T0, T1)− y30(T0, T1) = 0,

∂y20
∂T0

(T0, T1)− y40(T0, T1) = 0,

∂y30
∂T0

(T0, T1) + κ1y20(T0 − τ2c, T1) + ξ1y30(T0, T1)− κ1y10(T0 − τ1, T1)

+κ1y10(T0, T1) + (1− κ1)y10(T0, T1) = 0,
∂y40
∂T0

(T0, T1)− γκ1y20(T0 − τ2c, T1) + ξ2y40(T0, T1)

+γκ1y10(T0 − τ1, T1)− γκ1y10(T0, T1) + (γκ1 + κ2)y20(T0, T1) = 0,

(21)

and

∂y11
∂T0

(T0, T1)− y31(T0, T1) = − ∂y10
∂T1

(T0, T1),

∂y21
∂T0

(T0, T1)− y41(T0, T1) = − ∂y20
∂T1

(T0, T1),

∂y31
∂T0

(T0, T1) + κ1y21(T0 − τ2c, T1) + ξ1y31(T0, T1)− κ1y11(T0 − τ1, T1)

+κ1y11(T0, T1) + (1− κ1)y11(T0, T1) = κ1τ2c
∂x20
∂T1

(T0 − τ2c, T1)

+κ1τ22
∂x20
∂T0

(T0 − τ2c, T1)− ∂y30
∂T1

(T0, T1)− κ1τ1
∂x10
∂T1

(T0 − τ1, T1),

∂y41
∂T0

(T0, T1)− γκ1y21(T0 − τ2c, T1) + ξ2y41(T0, T1) + γκ1y11(T0 − τ1, T1)

−γκ1y11(T0, T1) + (γκ1 + κ2)y21(T0, T1) = −γκ1τ2c
∂y20
∂T1

(T0 − τ2c, T1)

−γκ1τ22
∂y20
∂T0

(T0 − τ2c, T1)− ∂y40
∂T1

(T0, T1) + γκ1τ1
∂y10
∂T1

(T0 − τ1, T1)− εµy20(T0, T1)
3.

(22)
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For any values of the fixed parameters except for τ2 = τ2c, the nontrivial solution to
Equation (21) can be written as

y0(T0, T1) =


y10(T0, T1)
y20(T0, T1)
y30(T0, T1)
y40(T0, T1)

 = B(T1)Exp(iωT0)


1
r2
r3
r4

+ cc, (23)

where B(T1) is the slow-time-domain variable for the chatter amplitude, cc stands for the
complex conjugation of the preceding terms, and ω is the frequency of the critical chatter
motion corresponding to τ2 = τ2c. The eigen vector

(
1 r2 r3 r4

)T can be determined
by solving the following equation:

(iωI−A−D1Exp(−iωτ1)−D2Exp(−iωτ2c))


1
r2
r3
r4

 = 0. (24)

Here, the undetermined eigenvector is determined by fixing the value of the first
element as 1.

2.3.2. Analytical Expression

Substituting Equation (23) into Equation (22) yields

∂y1
∂T0
− (A + D1Exp(−iωτ1) + D2Exp(−iωτ2c))y1 = ST + NST, (25)

where NST stands for the terms that do not produce secular terms and ST the terms that
do lead to secular terms, given by

ST =

(
B(T1)V1 +

dB(T1)

dT1
V2 + B2(T1)B(T1)V3

)
Exp(iωT0), (26)

with

V1 =


0
0

iωκ1τ22r2Exp(−iωτ2c)
iωκ1τ22r2Exp(−iωτ2c)γ

, V2 =


−1
−r2

−r3 − κ1τ1Exp(−iωτ1) + r2τ2cκ1Exp(−iωτ2c)
−r4 + γκ1τ1Exp(−iωτ1)− γr2τ2cκ1Exp(−iωτ2c)

,

V3 =


0
0
0

−3µr2
2r2

.

To eliminate the terms noted as ST, we can seek a particular solution to Equation (25)
in the following form [31]

y1
∗ = φ(T1)Exp(iωT0), (27)

so that
∂y1
∗

∂T0
− (A + D1Exp(−iωτ1) + D2Exp(−iωτ2c))y1

∗ = ST. (28)

Based on the Fredholm alternative, there exists a solution of Equation (28) if and
only if

b · ST = 0, (29)
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where b =
(
1 l2 l3 l4

)
is determined by

b · (iωI−A−D1Exp(−iωτ1)−D2Exp(−iωτ2c)) = 0. (30)

Substituting Equation (26) into Equation (29) with Equation (30) yields the solvability
condition, given by

dB(T1)

dT1
= τ22Λ1B(T1) + µΛ2B2(T1)B(T1), (31)

where
Λ1 = i(l4γ−l3)r2κ1ωe−iωτ2c

(l3−l4γ)(r2κ1τ2ce−iωτ2c−κ1τ1e−iωτ1)−(l2r2+l3r3+l4r4+1)
,

Λ2 =
3µl4r2

2r2

(l3−l4γ)(r2κ1τ2ce−iωτ2c−κ1τ1e−iωτ1)−(l2r2+l3r3+l4r4+1)
.

(32)

To obtain the amplitude and frequency of the chatter motion, we can transform
Equation (31) in terms of polar coordinates:

B(T1) =
1
2

α(T1)Exp(iβ(T1)), (33)

and substituting Equation (33) into Equation (31) and separating the real and imaginary
parts yield

α′(T1) = τ22Re(Λ1)α(T1) +
1
4 µRe(Λ2)α(T1)

3,

α(T1)β′(T1) = τ22Im(Λ1)α(T1) +
1
4 µIm(Λ2)α(T1)

3,
(34)

where Re() and Im() are the real and imaginary parts, respectively. It follows from
Equation (34) that there are two steady-state solutions when τ22Re(Λ1) and µRe(Λ2) have
different signs, where one of them is the trivial solution α(T1) = 0 and another the periodic

solution given by α(T1) =

√
− 4τ22Re(Λ1)

µRe(Λ2)
. It is well known that the trivial solution is stable,

but the periodic one locally unstable, for negative τ22Re(Λ1) and positive µRe(Λ2) [32,33].
Similarly, the trivial solution loses its stability so that the period solution becomes stable
for positive τ22Re(Λ1) and negative µRe(Λ2). Physically, the regenerative force leads to
chatter motion in the grinding process. Correspondingly, the solution of Equation (8) can
be expressed as

y(t) =


y1
y2
y3
y4

 ≈ y0(T0, T1) = B(T1)Exp(iωT0)


1
r2
r3
r4

+ cc

=


α(εt) sin(ωt + β(εt))

α2(εt) sin(ωt + β(εt) + φ2)
α3(εt) sin(ωt + β(εt) + φ3)
α4(εt) sin(ωt + β(εt) + φ4)

,

(35)

where α(εt) and β(εt) are the nontrivial equilibrium solutions of Equation (34),
αi(εt) = |ri|α(εt), and φi = Arg(ri) (i = 2, 3, 4.). Moreover, the periodic solution rep-
resented in Equation (35) is stable for τ22Re(Λ1) > 0 and µRe(Λ2) < 0, where α(εt) is the
nonlinear chatter amplitude and ω + β(εt)

t the nonlinear chatter frequency. This implies that
the grinding process undergoes a supercritical Hopf bifurcation so that the stable periodic
chatter occurs in the system under consideration. It will be seen that the amplitudes of those
periodic chatters are quantitatively distinct and the corresponding frequencies perform
different modes when τ2 crosses those boundaries. This is shown using different colors
in Figure 4.
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3. Results
3.1. Chatter Boundaries

As stated in Table 1, some physical parameters of the grinding process formulated in
Equation (1) can be fixed to obtain the critical boundaries. These parameters are derived
from real engineering. Correspondingly, those dimensionless parameters can be computed
by Equation (7), and are displayed in Table 2. The restricted ranges of the undetermined
physical and corresponding dimensionless parameters with respect to the regenerative
effect are stated in Table 3.

Table 1. Fixed physical parameters of the grinding process.

Mass of the grinder mg 30 [kg]

Damping coefficient of the grinder cg 0.45 × 104 [N s/m]

Stiffness of the grinder kg 3.0 × 106 [N/m]

Density of the workpiece ρ 7850 [kg/m2]

Elastic modulus of the workpiece E 2.06 × 1011 [Pa]

Equivalent damping coefficient of the workpiece c1 0.98 × 104 [N s/m]

Length of the workpiece L 2 [m]

Cross-section area of the workpiece A 7.85 × 10−3 [m2]

Table 2. Fixed dimensionless parameters of the grinding process.

ξ1 0.474342

ξ2 0.502651

γ 0.486588

κ2 0.998521

εµ 0.03994

Table 3. The optional physical and corresponding nondimensional parameters of the
grinding process.

kc 0~3 × 106 [N/m] κ1 0~1

ωw 69.64~139.28 [rad/s] τ1 11.35~14.19

ωg 140.01~174.99 [r/min] τ2 14.27~28.53

To obtain the continuation algorithm for the roots of Equations (13) and (14), an initial
guess of the values of ω, τ2, κ1, and τ1 is required for iteration. To this end, κ1 and τ1 are
fixed, and ω and τ2 are solved from Equations (13) and (14). Defining

F(ω) = sin2(ωτ2) + cos2(ωτ2)− 1. (36)

and using F(ω) = 0, one can eliminate τ2 from Equations (13) and (14), resulting in an
equation governed by F(ω) = 0, where ω is a unique unknown variable. As shown in
Figure 5, ω can be solved from F(ω) for κ1 = 1 and two distinct values of τ1. It can be seen
from Figure 5 that there exist multiple solutions of ω, which can be considered as the initial
guesses to be substituted into Equations (13) and (14). Then, a series of true solutions can
be obtained via the NRM. For example, if ω = 1.1 is taken into account in an initial guess,
to be substituted into F(ω) = 0 when τ1 = 11.3, then one can obtain the true solutions of ω
given by ω = 1.099. Substituting ω = 1.099 into Equation (13), one can obtain a series of
the valid solutions given by τ2 = 16.304, τ2 = 22.023, and τ2 = 27.742, which are located
in the valid region of τ2. The other cases were computed in a similar way, and all of the
results are represented in Table 4.
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Table 4. Starting points of the continuation algorithm.

κ1 τ1 τ2 ω

1.0

11.3

16.304

1.09922.023

27.742

9.837

1.572

13.832

17.828

21.824

25.819

14.3

12.931

1.304

17.750

22.570

27.389

32.209

15.734

1.605
19.649

23.564

27.479

Following the CA mentioned above, the critical boundaries displayed on some surfaces
were obtained and are shown in Figure 6, where the blue surfaces are the critical boundaries
starting from the initial guesses given by ω = 1.099. The orange ones represent those starting
from ω = 1.605. It should be noted that the surfaces derived from ω = 1.572 and ω = 1.304
are connected smoothly, and both of the surfaces are plotted in a purple color. It follows
from Figure 6 that a low value of κ1 does not induce chatter vibration for any values of
τ1 or τ2. This implies that the effects of regenerative force on the stability of the grinding
system are not apparent when the contact stiffness is low. The flexibility of the grinding
wheel and the workpiece, the contact width, and the processing temperature will affect the
contact stiffness. The regenerative force will induce regenerative chatter, along with the
contact stiffness increasing. To illustrate the effects of the significant contact stiffness and
the relation between the critical and chatter boundaries, some cross sections by κ1 and τ1
are shown in Figures 4 and 7, respectively. The critical curves correspond with Figure 6 in
terms of color. Thus, the chatter boundary surrounding the grey region can be seen clearly.
In Figure 7, the chatter-free region, in grey, is related to τ1 and τ2 when the value of the
contact stiffness is greater than κ1c ≈ 0.4. It can be seen from Figure 7 that some rotation
speed of both the wheel and the workpiece persists so that the system remains chatter-free.
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Such situations are referred to as “safe harbors” for the grinding process. All of the results
mentioned above can also be seen in Figure 4.
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Figure 7. Chatter boundaries surrounding the grey region for some fixed values of κ1. (a) κ1 = 0.5;
(b) κ1 = 0.6; (c) κ1 = 0.8; (d) κ1 = 1.0.

It is should be noted that the critical boundary is different from the chatter one. The
intersection surrounded by all critical boundaries shows the stable region of the trivial
equilibrium. Its boundary is the chatter one. This implies that the grinding process is
chatter-free when κ1, τ1, and τ2 are located within the region in grey. Various chatter
motions may occur during the grinding process for κ1, τ1, and τ2, being located within the
white regions. To classify these chatter motions, two regions (labeled Regions I and II) in
Figure 4 were selected for further nonlinear analysis, as represented in the following section.
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3.2. Chatter Prediction

Letting τ1 = 14.0 and τ1 = 11.6 respectively, Regions I and II in Figure 4 are redis-
played in Figure 8, and the critical values of the relative parameters are represented in
Tables 5 and 6. We can observe chatter motions with τ2 varying along the directions labeled
A, B, and C for κ1 = 0.9, respectively.
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Table 5. Critical values of τ2 and ω.

Cases κ1 τ1 τ2c ωA

A 0.9 14 16.732 1.678

B 0.9 11.6 17.638 1.0485

C 0.9 11.6 18.391 1.531

Table 6. Corresponding eigenvectors.

Cases r2 r3 r4 l2 l3 l4

A −0.48−0.01i 1.68i 0.017−0.81i −0.89−1.02i 0.16−0.552i −0.71 + 0.31i

B −0.46−0.0037i 1.05i 0.0039−0.48i −0.84 + 0.03i 0.36−0.792i −0.29 + 0.66i

C −0.48−0.012i 1.53i 0.018−0.73i −0.88−1.69i 0.19−0.596i −1.17 + 0.19i

When τ2 crosses the dot-dashed orange boundary along the direction of Label A,
using Equations (34) and (35) yields the chatter motion derived from supercritical Hopf
bifurcation [36–38].


y1
y2
y3
y4

 =


56.466

√
τ2 − 16.732 sin(1.678t + 0.576(τ2 − 16.732)t)

−25.969
√

τ − 16.732 sin(−1.678t− 0.576(τ2 − 16.732)t+2.083)

59.205
√

τ2 − 16.732 sin(1.678t + 0.576t(τ2 − 16.732) + 2.621)

−27.229
√

τ2 − 16.732 sin(−1.678t− 0.576t(τ2 − 16.732) + 0.513)

. (37)
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Similarly, for cases crossing through the dashed blue and solid purple boundaries
along Labels B and C, respectively, one can obtain two distinct periodic chatter motions,
given by


y1
y2
y3
y4

 =


5.695

√
17.638− τ2 sin(1.0485t + 0.024t(17.638− τ2))

−2.731
√

17.638− τ2 sin(−1.0485t− 0.024t(17.638− τ2) + 3.117)

8.719
√

17.638− τ2 sin(−1.0485t− 0.024t(17.638− τ2) + 1.571)

−4.181
√

17.638− τ2 sin(1.0485t + 0.024t(17.638− τ2) + 1.547)

 (38)

and 
y1
y2
y3
y4

 =


21.62

√
τ2 − 18.391 sin(1.53t + 0.003t(τ2 − 18.39))

−10.41
√

τ2 − 18.391 sin(1.53t− 0.024t(τ2 − 18.39) + 3.12)

36.29
√

τ2 − 18.391 sin(1.53t− 0.024t(τ2 − 18.39) + 1.57)

−17.47
√

τ2 − 18.391 sin(1.53t + 0.024t(τ2 − 18.39) + 1.55)

 (39)

It follows from Equations (37)–(39) that the chatter motions are different, both quali-
tatively and quantitatively. On one hand, there exist significant differences in amplitude
among the three types of chatter motion. On the other hand, the corresponding modes
are also different when τ2 is perturbed near different boundaries. Moreover, the almost-
asynchronized chatter yields a significant fluctuation in the grinding depth for high chatter
amplitude, because the workpiece and wheel always move opposite to each other. Thus,
the largest vibration given in Equation (37) indicates the worst surface finish compared
with the other two. Therefore, Region I in Figure 8 is a worse choice for grinding a part
when compared with Region II. This implies that it is necessary to study the dynamic
motions of the grinding process near different chatter boundaries such that one can further
understand the relations between the chatter motions and the designed parameters.

An interesting phenomenon can also be seen: high chatter is related to high frequency.
Physically, both high frequency and high amplitude indicate high chatter energy. Thus we
conclude that a suitable choice of the designed parameter, i.e., the rotational workpiece
speed for τ2, may decrease the chatter energy or even eliminate the chatter. Similarly,
changing the speed of the grinding wheel can also achieve the same goal.

To verify the validity of the present prediction, we compared the analytical results with
those from the numerical simulation, as shown in Figure 9. Figure 9 shows the bifurcation
diagrams (left column), the time histories (center column), and the corresponding phase
diagrams (right column), with τ2 varying along the directions of the different labels for
Labels A, B, and C, where the solid lines represent the results from Equations (37), (38),
and (39) and the dots stand for the results from the numerical simulation of Equation (8).
It can be seen from Figure 9 that the analytical prediction is in agreement with the result
of the simulation. To observe the chatter motions of both the workpiece and the wheel,
the relations between y1 and y2 are also plotted in Figure 9g–i, which show that the
chatter motions of the workpiece and the wheel are in opposite directions with small
phase differences. This suggests that the periodic motions of the two devices are almost
asynchronized. In addition, it has not been found that the chatter motions of the grinding
wheel and the workpiece occur in the same direction for any of the allowed parameters.
We conclude that the mathematical equation under consideration herein may not model
this phenomenon.
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Figure 9. Chatter motions: bifurcation diagrams (left column), time histories (center column), and the
corresponding phase diagrams (right column), with τ2 varying along the directions of the different
labels. The solid lines are the results from Equations (37)–(39), and the dots stand for those from the
numerical computation for Equation (8). (a) Bifurcation diagrams along with Label A; (b) bifurcation
diagrams along with Label B; (c) bifurcation diagrams along with Label C; (d) time history of y1 with
τ1 = 14 and τ2 = 16.733; (e) time history of y1 with τ1 = 11.6 and τ2 = 17.6; (f) time history of y1

with τ1 = 11.6 and τ2 = 18.4; (g) phase diagram of y1 and y2 with τ1 = 14 and τ2 = 16.733; (h) phase
diagram of y1 and y2 with τ1 = 11.6 and τ2 = 17.6; (i) phase diagram of y1 and y2 with τ1 = 11.6 and
τ2 = 18.4.

4. Discussion

This paper proposes a full procedure for the analysis of nonlinear grinding chatter. Due
to the doubly regenerative effects of both the wheel and workpiece surfaces, the dynamic
model has two distinct time delays with transcendence eigen equations. Therefore, a
continuation algorithm for both the path following iteration and the generation of initial
guesses has been proposed. Compared with our previous works, in which we randomly
generated seeds for the initial guess, this procedure does not miss any initial guesses for
the boundaries. Moreover, this work used the method of multiple scales in vector form,
which yielded a periodic responses for each variable. Thus the dynamic characteristics of
chatter motion can be studied, for the first time unveiling the almost-asynchronous motion
of workpiece and wheel displacements.

The rotating workpiece is regarded as a slender Euler–Bernoulli beam, and the grind-
ing wheel at an angular speed as a rigid body with which to model a cylindrical plunge
grinding process. This model is employed to predict the stability of the process and the
nonlinear chatter motion.

Three chatter motions corresponding to three mode frequencies were analytically
predicted for when the grinding process loses its stability. The prediction provided two
interesting phenomena: that chatter vibration with high amplitude is always related to high
frequency, and that the chatter motions are almost asynchronous, with a small difference in
phase. This also suggests that it is necessary to predict the nonlinear chatter motions, since
high chatter energy is more dangerous in the grinding process.

The synchronous and other nonlinear chatter motions of the workpiece and the grind-
ing wheel have not been found for these parameters. This suggests that the present
mathematical equation cannot model these phenomena. It is necessary to propose a new
model, which will be discussed in our future research. Moreover, this study focused only on
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the grinding dynamics, which are one of various concerns in designing a grinding process.
Other factors influencing the grinding process include the material removal rate, heat
dissipation, etc., which should be systematically considered for high-efficiency grinding.

5. Conclusions

Regenerative force is not strong enough to induce chatter vibration during the grinding
process as long as the contact stiffness between the workpiece and the wheel is small. When
the contact stiffness exceeds a critical value, the stability of the grinding process becomes
related to the rotation speeds of the workpiece and the wheel. Thus, we can conclude that
the regenerative force has a qualitative effect on the grinding stability. Furthermore, based
on the chatter boundaries obtained through CA, we suggest that a softer grinding wheel
and suitable rotation speeds of the workpiece and the wheel should be chosen to avoid
chatter vibrations. According to a nonlinear dynamic analysis, various periodic chatter
born from supercritical Hopf bifurcation have been found. They all presented almost
asynchronized vibration between the motion of the workpiece and that of the wheel.
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Appendix A

The coefficients in Equation (16) are given by

c1 =
(
ω2

i − κ2
)

cos(ωiτ1,i)− ξ2ωi sin(ωiτ1,i)− γξ1ωi sin(ωiτ2,i)

+
(
γω2

i − γ
)

cos(ωiτ2,i)− γω2
i −ω2

i + γ + κ2,
(A1)

c2 = −ξ2ω2
i κ1,i cos(ωiτ1,i)−ω3

i κ1,i sin(ωiτ1,i) + κ2ωiκ1,i sin(ωiτ1,i), (A2)

c3 = −γξ1ω2
i κ1,i cos(ωiτ2,i)− γω3

i κ1,i sin(ωiτ2,i) + γωiκ1,i sin(ωiτ2,i), (A3)

c4 = (2ωiκ1,i − ξ2ωiκ1,iτ1,i) cos(ωiτ1,i) +
(
κ2κ1,iτ1,i −ω2

i κ1,iτ1,i − ξ2κ1,i
)

sin(ωiτ1,i)

+
(
γκ1,iτ2,i − γω2

i κ1,iτ2,i − γξ1κ1,i
)

sin(ωiτ2,i) + (2γωiκ1,i − γξ1ωiκ1,iτ2,i cos(ωiτ2,i))

−2ωiκ1,i − 2κ2ωi − 2ξ1ξ2ωi + 4ω3
i − 2ωi − 2γωiκ1,i,

(A4)

c5 =
(
κ2 −ω2

i
)

sin(ωiτ1,i)− ξ2ωi cos(ωiτ1,i)

−γξ1ωi cos(ωiτ2,i) +
(
γ− γω2

i
)

sin(ωiτ2,i) + γξ1ωi + ξ2ωi,
(A5)

c6 = ξ2ω2
i κ1,i sin(ωiτ1,i) +

(
κ2ωiκ1,i −ω3

i κ1,i

)
cos(ωiτ1,i), (A6)

c7 = −γξ1ω2
i κ1,i cos(ωiτ2,i) +

(
γωiκ1,i − γω3

i κ1,i

)
sin(ωiτ2,i), (A7)

and
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c8 = (ξ2ωiκ1,iτ1,i − 2ωiκ1,i) sin(ωiτ1,i) +
(
κ2κ1,iτ1,i −ω2

i κ1,iτ1,i − ξ2κ1,i
)

cos(ωiτ1,i)

+(γξ1ωiκ1,iτ2,i − 2γωiκ1,i) sin(ωiτ2,i) +
(
γκ1,iτ2,i − γξ1κ1,i − γω2

i κ1,iτ2,i
)

cos(ωiτ2,i)

−3ξ1ω2
i − 3ξ2ω2

i + κ2ξ1 + ξ2 + ξ2κ1,i + γξ1κ1,i.

(A8)
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