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Abstract: With the rapid popularization and development of renewable energy, solar photovoltaic
power generation systems have become an important energy choice. Convolutional neural network
(CNN) models have been widely used in photovoltaic power forecasting, with research focused
on problems such as long training times, forecasting accuracy and insufficient speed, etc. Using
the advantages of swarm intelligence algorithms such as global optimization, strong adaptability
and fast convergence, the improved Aquila optimization algorithm (AO) is used to optimize the
structure of neural networks, and the optimal solution is chosen as the structure of neural networks
used for subsequent prediction. However, its performance in processing sequence data with time
characteristics is not good, so this paper introduces a Long Short-Term Memory (LSTM) neural
network which has obvious advantages in time-series analysis. The Cauchy variational strategy is
used to improve the model, and then the improved Aquila optimization algorithm (IAO) is used to
optimize the parameters of the LSTM neural network to establish a model for predicting the actual
photovoltaic power. The experimental results show that the proposed IAO-LSTM photovoltaic power
prediction model has less error, and its overall quality and performance are significantly improved
compared with the previously proposed AO-CNN model.

Keywords: Aquila optimization algorithm; PV power prediction; neural networks

1. Introduction

With global energy demand increasing and the problem of climate change worsening,
photovoltaic power generation as an environmentally friendly, renewable and reliable new
energy source, is increasingly applied on a global scale. It is well known that photovoltaic
power generation systems are greatly affected by environmental conditions, such as light
intensity, temperature, wind speed, and so on. They also have impacts and challenges for
the power system and bring greater security risks. Therefore, how to accurately predict the
power generation of photovoltaic power generation systems is the key to ensuring their
stable operation. At the same time, it can also help power system operators make real-time
dispatch decisions, reduce the security risk of power grids, improve the quality of power
supply and provide economic benefits [1–3].

By predicting the output power of photovoltaic power generation, the optimal dis-
patching of power grids can be realized, the stability level of power systems can be effec-
tively improved, and the potential safety problems in power systems can be eliminated.
It can also effectively reduce the output limit of photovoltaic power generation systems
and increase the rate of return on investment, thus increasing the economic benefits and
operation management level of photovoltaic power generation systems. At present, the
commonly used methods for PV power prediction include physical methods [3], statistical
methods [4–6], meta-heuristic learning methods [7,8] and combination methods [9], etc.

Swarm intelligence algorithms are a kind of intelligent optimization method that solve
practical problems by simulating the swarm intelligence behaviors of natural organisms.
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Neural networks are a network structure composed of many neurons, which can learn
complex nonlinear relationships adaptively, and have good performance in prediction
and classification. In recent years, more and more scholars combine swarm intelligence
algorithms with neural networks for PV power prediction. For example, Wang et al.
proposed a deterministic and probabilistic prediction of photovoltaic power based on deep
convolutional neural networks, which can improve prediction accuracy [10]. In [11], an
artificial neural network is used to reduce the complexity of a PV power prediction model
and improve its prediction accuracy. The advantage of a hybrid method is that it can make
full use of the advantages of both methods and improve prediction accuracy and efficiency.

Various artificial intelligence technologies with adaptive and self-learning abilities
have been developed and are gradually becoming more widely used in the field of electric
power. Through a comparative study of various methods, this paper adopts the method
combining LSTM and optimization methods to realize photovoltaic output power pre-
diction. Compared with regular CNN networks, an LSTM network is more suitable for
processing classification or prediction of time-series data. By introducing a gate structure,
an LSTM neural network has greater selectivity compared with traditional recursive neural
networks [12–23]. In this paper, a neural network model based on the Aquila optimization
algorithm combined with a neural network prediction model is proposed to speed up the
prediction speed of the neural network and improve the prediction accuracy and speed
of photovoltaic power systems. Then, the Aquila optimization algorithm (IAO) is used to
optimize the parameters of the LSTM neural network to establish a model for predicting
the actual photovoltaic power. The proposed IAO-LSTM photovoltaic power prediction
model reduces error and its overall quality and performance are significantly improved
compared with AO-CNN models.

2. Photovoltaic Power Data Preprocessing

Domestic and foreign research studies generally choose irradiance, temperature, wind
direction and wind speed as the main influencing factors of photovoltaic power generation.
In different distributed photovoltaic power stations, considering that the direct installation
angle and position of the photovoltaic array are not exactly the same, different effects will
gradually form. However, according to the connection between meteorological factors
and the rated output power of photovoltaic new energy, determining more reasonable
meteorological factors will help to further improve the accuracy of power prediction. For
specific analysis of relevant data, the internal relationship between different functions
can be used to judge the correlation between different functions through a curve, so as to
understand the degree of correlation of independent variables and dependent variables
according to the data. The correlation coefficient refers to the correlation between the
variable and parameters of the function. If the value is regular, it is considered as positive
correlation, and if the value is less than zero, it is considered a negative correlation. From
the correlation analysis, it can be found that for photovoltaic arrays, it is reasonable to
select the influence of irradiance, temperature, wind speed and wind direction.

The problem of missing or abnormal data caused by abnormal local function is in-
evitable, and photovoltaic power generation and various meteorological factors, such as
light intensity, ambient temperature, wind speed and other unit function relationships are
not the same. Therefore, the original data must be preprocessed to obtain data that can be
directly applied in model training and prediction. In the data preprocessing, data outliers
are corrected, missing data are completed, and the data are normalized.

(1) There is a strong correlation between PV power and meteorological data. Missing
values are replaced with the mean of values before and after the missing value. If a
large amount of data are missing during the day, the data for that day are deleted to
prevent human influence. Replacement of missing data can be performed using the
following formula:



Processes 2023, 11, 1957 3 of 18

dataj =
dataj−5 + dataj−4 + . . . dataj−1 + dataj+1 + dataj+4 − dataj+5

10
(1)

The data between five moments before and after the missing data are selected to
calculate the mean value to supplement the missing data, and Formula (1) shows the value
between the left and right five moments of the missing data, respectively, as can be seen
from (1).

(2) If there is no significant change in radiance or other meteorological data but the data
on photovoltaic power generation have changed significantly, this value needs to be
removed. In addition, if the photoelectric energy is negative, then in the case of very
low radiation or zero, 0 is used instead of the negative value.

(3) The resolution frame rate of the database data is changed. The data interval needed to
predict actual PV power over a short period of time is between 15 min and 1 h. Given
the short time span of minute-level database data, the application of the original 1 min
resolution data is not common and even less in production practice. The data collected
are, therefore, converted into 15 min resolution.

(4) Data normalization is necessary. Because meteorological factors such as solar radiation
have different dimensions, directly introducing them into the model reduces the
accuracy of power prediction. Normalization of data can speed up model training
and improve prediction accuracy. In general, maximum and minimum principles are
used in combination for data normalization, and the formula is as follows:

datai =
datai − datamax

datamin − datamax
(2)

where datai represents the value to be normalized, datamin and datamax represent the
minimum value and the maximum value, respectively.

3. Principle of Convolutional Neural Networks

A convolutional neural network (CNN) is a relatively simple neural network used
to solve prediction and classification problems. However, this algorithm requires much
data to predict the model and its structural parameters directly affect the accuracy
and generalization ability of the model, which also makes it difficult to determine the
parameters. In order to obtain better results, the accuracy of CNN prediction models
must be further improved.

In a CNN, the neural model refers to the convolutional nucleus (also known as a filter)
in the convolutional layer. The filter is a small two-dimensional weight matrix, usually
much smaller than the input image. In a CNN, the filter performs convolutional operations
on different local regions of the input data to extract local features of the image. Each filter
has a set of learnable weight parameters that are gradually adjusted by backpropagation
and gradient-descent optimization. In forward propagation, the convolutional core sliding
window scans different positions of the input image, convolves each position and generates
a new feature map. In this process, each weight of the convolutional nucleus is equivalent to
the weight of the neuron, which is used to control the response of the different information
in the input data to the convolutional nucleus.

The neural network model is the basic structure of a deep neural network and has
wide applicability. The advantage of this method is that it can effectively extract the external
resources needed for global reinforcement training and complete the final classification
task by using the external features of the local organization of the database data. The CNN
architecture comprises a multi-layered feedforward neural network of convolutional layers,
pooled layers, and fully connected layers. After a series of convolutional operations on
the input data, the neural network extracts information from the simplest features and
gradually becomes more complex until it can uniquely define the target’s eigenvalues.

As shown in Figure 1, in the CNN model, the input layer is the point layer, which
preprocesses the input display image. Preprocessing standardizes the display image,
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maintains its balance, rotates and moves it in parallel, converts the image into a mirror
file, and converts perspective. Then, the input image data are transformed into a digital
vector, and the image range is reduced to a numerical region suitable for the activation
function. A hidden layer is a convolutional layer that includes one or more convolutional
layers and one or more fully connected layers. The convolutional layer is the CNN core
layer that performs most of the calculations. This layer convolves the input data with the
filter and passes the result to the next layer. Convolution is a linear operation, similar
to traditional neural networks. he operation is ordered, multiplying the input data one
by one with the filter, and calculating the sum of the products at each spatial location.
The convolution layer contains a set of filters, each convolving the input matrix. In
this operation, the filter slides along the vertical and horizontal directions of the input
matrix to compute the sum of the products at each spatial position. The green region is
the region corresponding to the filter selected from the input data. The yellow area is
the filter, and the blue area is the output data corresponding to the selected filter. The
convolution process is shown in Figure 2.
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Figure 1. Schematic diagram of convolutional neural network model. 
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Figure 2. Schematic diagram of convolutional calculation. 
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Figure 1. Schematic diagram of convolutional neural network model.
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In the training process, the weight in the filter is adjusted by back propagation and
gradient descent to minimize the model’s loss function. The convolution calculation process
is given by the formula below. The mathematical expression of neurons in the convolution
layer is as follows:

xy
m = f ( ∑

n∈X
xy−1

n ∗ ky
mn + by

m) (3)

where xy
m is the eigen graph matrix corresponding to the n-th feature graph of the (y − 1)

layer, ky
mn is the weight matrix corresponding to the mn-th feature graph of the y layer, * is

the convolution operator, by
m is the deviation value of the m feature graph of the n layer,

and f is the activation function. After convolution, the Eigen map matrix xy
m is composed

of the neurons of the m eigen map of the y layer.

xy
m = f1( ∑

n∈X
xy−1

n ∗ ky
mn + by

m) (4)
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There are two common pooling methods in the pooling layer. One is the maximum
function pool, the other is the average function pool. Maximum pooling selects the max-
imum value of an area as the output of the response, and average pooling selects the
arithmetic mean of an area as the output response. The mathematical expression for the
pool layer is:

xy
m = f1(a

y
m pool(xy−1

m ) + by
m) (5)

where pool is the pooling function, and a and b are the deviation values of each feature
graph, respectively. Excitation function convolution is performed on the linear transforma-
tion layer. Therefore, when joining several hidden layers, the input and output show linear
correlation. As a result, its performance is limited by a certain level of approximation. In
practice, convolutional neural networks are not just linear operations.

4. Aquila Optimization Algorithm

The Aquila optimization algorithm is a new intelligent optimization algorithm [20–23].
It is mainly used to solve real number optimization problems. This algorithm has many
exploration and development strategies. Compared with other meta-heuristic algorithms,
the Aquila optimization algorithm has obvious advantages. The algorithm was inspired by
four swarm behaviors of Northern Aquila birds during predation: (1) expanding the search
area by soaring vertically and hunting birds in flight; (2) flying by contours of short gliding
attacks and attacking prey in low-level air near the ground; (3) attacking prey gradually by
low-flying and slow descent; and (4) walking and catching prey on land by diving. The
initialization process is as follows: first, it randomly initializes the population position
matrix as follows:

Xij = rand× (UBj − LBj) + LBj, i = 1, 2, . . . , Dim (6)

where rand is a random vector, LBj represents the j-th lower bound for a given problem,
and UBj represents the j-th upper bound for a given problem.

(1) Expand the exploration is the first stage when the Aquila is hunting birds in the
air. The birds use vertical glide height to expand the search scope. Its mathematical
formula is:

X1(t + 1) = Xbest(t)× (1− t
T
) + (XM(t)− Xbest(t)× rand) (7)

XM(t) =
1
N

N

∑
i=1

Xi(t), ∀j = 1, 2, . . . , Dim (8)

where X(t) and X(t + 1) represent the individual position of the AO algorithm in the t
iteration and the t + 1 iteration, respectively, Xbest(t) represents the optimal individual
position obtained by the algorithm at the t iteration, XM(t) is the average position of the
population in the t iteration, and T is the maximum number of iterations.

(2) Downsizing is the second stage when the Aquila flock finds its prey from high in
the air. It chooses to spiral over the target, prepares to land, and then attacks. The
mathematical expression can be shown as:

X2(t + 1) = Xbest(t)× Levy(D) + XR(t) + (y− x)× rand (9)

where Levy (D) is the Levis strategy, s is a constant with the value 0.01, and u and v are
random numbers between 0 and 1.

Levy(D)= s× u× σ

|v |
1
p

(10)
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σ =

[
τ(1 + β)× sin e(πβ

2 )

τ( 1+β
2 )× β× 2( β−1

2 )

]
(11)

Here, τ(x) is a Gamma function and β is a constant with a fixed value of 1.5. x and y
represent the shape of a spiral flight. r is the search step, the radius of the helix. D1 is the
integer matrix from 1 to the length of the search space. θ is the helix angle, and θ1 is the
initial helix angle.

y = r× cos(θ) (12)

x = r× sin(θ) (13)

r = r1+U× D1 (14)

θ = −ω×D1 + θ1 (15)

θ1 =
3× π

2
(16)

where r1 ranges from 1 to 20, U takes the value 0.00565, and ω takes the value 0.005.

(3) To expand the development phase in the third stage, when the Aquila birds are in
the hunting area, ready for landing and attack, they generally adopt the vertical drop
method. The mathematical formula is:

X3(t + 1) = (Xbest(t)− XM(t))× α-rand + ((UB− LB)× rand + LB)× σ (17)

In the formula, α and β represent the development adjustment parameters, which are
smaller than 0.1.

(4) To reduce the development in this stage when the Aquila bird is close to its prey, there
is a certain randomness due to attack on the prey, and walking and capturing the prey.
This is expressed in the mathematical formula:

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1 (18)

where QF represents the average search strategy of the mass function, G1 represents the
various trajectories of the movement of the Aquila bird during the escape of the prey, and
G2 represents the decreasing value from 2 to 0 during the escape of the prey when the
Aquila bird follows the slope of the prey from the first position to the final position.

QF(t) = t
2× rand()− 1

(1− T)2 (19)

G1 = 2× rand()− 1 (20)

G2 = 2× (1− t
T
) (21)

The Aquila optimization algorithm is a method that can obtain the best result for a
complex multi-objective problem. First, each index is evaluated by an initial group. At this
stage, the algorithm, based on the existing best results, generates a new group, and each
individual is given a new parameter. On this basis, the algorithm continuously searches
for new optimal solutions according to the best individuals in the current population. In
the current population, it makes a series of choices based on the best individual. When the
number of optimal solutions is insufficient, the optimal strategy can be chosen by means of
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a rotary table. By solving a new group, the method updates all groups, and updates the
existing optimization scheme according to the status of the existing groups. After finding
the optimal solution, the method terminates the search and returns to the initial stage.
Finally, the algorithm sorts the best schemes and selects the best schemes from them. In
this way, we can find the optimal solutions, and then put the optimal solutions in a certain
order so as to achieve better results.

5. AO-CNN Short-Term Photovoltaic Power Prediction Model

CNN is a common method of automatically learning PV power prediction. The filter,
as an important parameter of the CNN, directly affects its accuracy and generalization
ability. Improving the filter selection to improve model performance has become the focus
of many researchers. In order to optimize the prediction performance of the CNN, the
convolutional step size is inputted into the AO algorithm to optimize the convolutional
kernel of the convolutional neural network.

In order to verify which prediction model is better, the measurement error evaluation
index system of the prediction model is used. The evaluation mechanisms used in this
paper are root mean square error (RMSE), absolute mean error (MAE) and average absolute
error rate (MAPE). The mathematical formulas for RMSE, MAE and MAPE are as follows:

RMSE =

√
1
M

M

∑
i=1

(Pj −
∧
Pj)

2

(22)

MAE =
1
M

M

∑
j=1

∣∣∣∣Pj −
∧
Pj

∣∣∣∣ (23)

MAPE =
100%

M

M

∑
j=1

∣∣∣∣∣∣Pj −
∧
Pj

∧
Pj

∣∣∣∣∣∣ (24)

where Pj is the estimated photovoltaic output power at j-time,
∧
Pj is the actual photovoltaic

output power at j-time, and M is the length of the PV power data series.
After training and testing the deep learning model, simulation tests can predict the

actual photovoltaic power. The rated output power of PV is predicted by the AO-CNN and
its CNN comparison chart, and the prediction effect is reflected by the chart. The smaller
the error value, the better the prediction model.

Figure 3 shows the spring model of the fitting graph, which is used to show the fitting
effect of the CNN and AO-CNN models. The vertical axis on the left shows the difference
between the true and predicted values. The horizontal axis represents photovoltaic power
data in hours. The blue dotted line represents the predicted value of the AO-CNN model.
The green dotted line represents the predicted value of the original CNN model, and the
red line represents the true value. As can be seen from the figure, the two models are
less affected by spring weather and both models fit the real value well, but the predicted
value of the AO-CNN model is closer to the real value, and the difference is smaller. The
AO-CNN model has a large deviation in the prediction value from the sample time of 8–9
h, which may be caused by data abnormality or model inadequacy.

The summer model fitting diagram can be seen in Figure 4. It can be seen that the
curve fluctuates greatly, and the two models are greatly affected by the weather in summer,
which eventually leads to the green curve. The line deviates significantly from the original
data, and the CNN model cannot properly match the true value. The purple curve basically
coincides with the red curve. That is, the predicted value of the AO-CNN model proposed
in this paper has a better fitting effect than that of the CNN model. The value is smaller.
The predicted value of the AO-CNN model has a large deviation from 6–9 h in the sample
time, which may be the actual number. It is also possible that the model was in error or did
not fit, but overall, it is a better predictor of real data as there is better precision.
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Figure 4. Summer forecast fit plot for each model with traditional methods.

Figure 5 shows the fitting diagram of the model in the fall. It can be observed that the
weather in autumn has less effect. The two models discussed in this paper closely fit the
real values. Blue is the AO-CNN prediction curve, which is similar to the original data.
That is, the curve of the red line is fitted more comprehensively, and the predicted value of
the proposed AO-CNN model is higher than that of the CNN model, indicating that the
fitting effect is better.
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Figure 6 shows the winter fit of the model. It can be seen from the figure that the two
models are affected by the winter weather, with the result that the CNN model does not
match the real values well, but the forecast value of the AO-CNN model proposed in this
paper is closer to the real values, with smaller differences. The predicted values of the
AO-CNN model show a large deviation at the sample time from 8 to 9 h, which may be
due to data anomalies or model underfitting.
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Table 1 shows the differences between CNN and AO-CNN. It can be seen that the
PV power prediction error of AO-CNN is smaller. Overall, the AO-CNN model performs
better than the CNN model, demonstrating that the accuracy requirements of computer
models can be further improved after the basic structure parameters of CNN model graphs
are cleared by the deep learning algorithm based on group intelligence. The prediction
effect of AO-CNN is better than that of the CNN model.

Table 1. Season forecast error table for each model with traditional methods.

Season Error Type CNN AO-CNN

Spring
RMSE (%) 2.14 1.83
MAE (%) 4.95 2.90
MAPE(%) 1.25 3.84

Summer
RMSE (%) 2.00 1.75
MAE (%) 3.07 2.68
MAPE(%) 5.02 5.11

Autumn
RMSE (%) 1.49 1.25
MAE (%) 2.76 2.24
MAPE(%) 6.56 6.88

Winter
RMSE (%) 1.20 0.89
MAE (%) 2.72 1.60
MAPE(%) 6.91 8.39

6. Photovoltaic Power Prediction Based on the IAO-LSTM Network
6.1. LSTM Neural Network

Although CNN is often used in actual photovoltaic power prediction, its performance
in processing sequence data with time characteristics is not advantageous, and the accuracy
of photovoltaic power prediction still needs to be further improved. Therefore, a neural
network called Long Short-Term Memory (LSTM) was introduced, which has obvious
superiority in time-series analysis. At the same time, because the Aquila optimization
algorithm appearing in the global index search process is insufficient, a new improved
Aquila optimization algorithm (IAO) is proposed. This algorithm is used to optimize the
parameters of LSTM neural networks, and finally, the photovoltaic power prediction model
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of IAO-LSTM network is constructed. It is then verified with the database-related data
mentioned above.

The LSTM LAN comprises several LSTM units, and the neurons in each layer are the
same as those in BP deep neural network. The LSTM network is similar to the training
of many neural networks in that its learning mode is also a backward propagation of
error calculation law. Since the LSTM network is a network with a repetitive structure, its
learning algorithm is also called backward propagation algorithm. Its learning process
mainly includes two aspects: forward transfer and backward transfer. In LSTM neural
network learning, the optimal solution has a great influence, and the most common one is
the gradient descent method.

6.2. Improved Aquila Optimization Algorithm

In view of the problems of the existing standard AO algorithm, such as insufficient
overall search ability and the tendency to fall into local extreme values, we attempt to
improve the standard AO algorithm with the Cauchy mutation and other methods, and
test it using four standard functions.

In the particle swarm optimization, the Cauchy variation coefficient is added. Specif-
ically, the Cauchy variation method is proposed for the first specific iteration process to
ensure that the algorithm can jump out of the optimal solution of local organization and try
to find an optimal algorithm. The complex density function of the Cauchy distribution in
standard three-dimensional space is shown as follows:

f (x) =
1
π
· 1

1 + x2 −∞ < x < ∞ (25)

Since the characteristic of the density function of the Cauchy distribution is that it does
not cross the X axis, the random numbers produced may leave the origin. The formula for
generating random numbers using the Cauchy distribution is as follows:

Cauchy(0, 1) = tan[π · (ξ − 1
2
)] (26)

where ξ is random, less than 1 and greater than 0. The formula for updating the individual
position of the Aquila by Cauchy mutation method is as follows:

→
Xq+1 =

→
Xq · (1 + Cauchy(0, 1)) (27)

where
→
Xq is the individual before the mutation, and

→
Xq+1 is the individual after the muta-

tion. Using the principle of survival of the fittest, the fittest values before and after mutation
are compared to update the individual position.

Time complexity analysis usually includes three aspects: population initialization
calculation fitness function, and updating the solution. It is assumed that the population
number is N, the computational complexity of population initialization is O(N), and the
computational complexity of solution updating process is O(T × N) + O(T × N × D),
where T is the total number of iterations and D is the dimension of the problem.

Therefore, the total time complexity of the standard AO algorithm is O(N × (T × (D + 1))).
However, only the T distribution strategy O(T × N) is added to the IAO algorithm, without
increasing the computational complexity, because the total time-interval complexity of the
IAO algorithm is O(N× (T× (D + 1) + 1)). The IAO algorithm has the same complexity as
the traditional AO algorithm and does not add any additional level of operation.

Four standard functions were selected, of which two were unimodal and two were
multimodal, and their results were used to test the IAO performance. Table 2 presents
the standard functions: F1 describes four standard functions, F1 to F2 are single mode
functions, and F3 to F4 are multi-mode functions. For a single mode function, its search
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capability can be tested because it has a unique global optimal solution. The other part of
the test composite function curve is shown in Figure 7.

Table 2. Four benchmark functional test functions.

Functions Expression Search Space Dimension Optimal
Solution

F1 F(x) = ∑D
k=1 x4

k + rand(0, 1) [−200,200] 30 0

F2 F(x) = ∑D
k=1 x2

k [−2.28,2.28] 30 0

F3 F(x) = ∑D
k=2 (106)

(k−1)(D−1) · x2
k

[−22,22] 30 0

F4 F(x) = ∑11
k=1 [ak −

x1(b2
k+bk x2)

b2
k+bk x3+x4

]
2

[−40,40] 30 0

Figure 7 shows a portion of the two-dimensional plane display images of the com-
pound test function and the contraction change curves of various algorithms. Figure 7a–d
display the digital F1, F2, F3 and F4 plane display images, respectively. In addition, F1 and
F2 are single-peak composite functions, and there are only two optimal choices. F3 and F4
are complex multimodal functions with multiple optimal local fabric choices. It should be
noted that the composite function of the selected cell is semicircular, but the smaller the
final convergence, the faster the specific requirements are met.

The deep learning algorithm is used to compare the test results of each test compound
function including the weighted average, probability distribution, optimal solution value,
and difference value. The test results for the four benchmark functions are shown in Table 2.
For all the combined F1-F2 functions of a single neural network, the AO algorithm performs
better than the CPSO algorithm. The global optimal choice of the composite function for
calculating F1-F2 elements is 0, but the optimal solution and weighted average of the
AO and Marine Predators Algorithm (MPA) are not 0. The optimal solution values and
weighted average of F1 and F2 are 0. For the composite function of a single neural network
model, the test results of the F1-F2 test composite function all verify that the quality and
performance of the proposed IAO are more competitive.

For composite functions F3 and F4, the final linear distance test of the CPSO algorithm
is expected to have a large final large gap. When testing the composite function F4, IAO’s
optimal solution value is the best choice for calculating the closest test composite function
in the deep learning algorithm. In both algorithms, the final value of IAO is closer to the
expected value. Through the testing of F3 and F4, it is found that the optimization potential
of IAO is relatively better than other specific methods. In general, often according to the
above analysis, most single neural network model composite functions are still composite
functions of natural language understanding. Compared with AO and its improved MPA,
IAO is more competitive, stable and secure. Finally, it is shown that after the improvement
of the computing unit AO with the help of the Cauchy mutation and other operational
strategies, IAO has relatively effective computing and development potential, and IAO has
stronger global optimization potential.

6.3. The Short-Term Photovoltaic Power Prediction Model of the IAO-LSTM Network

The LSTM network has a good ability to predict time series. However, the structure
and modeling accuracy of LSTM networks depend on the selection of their hyperparam-
eters, which directly affect the prediction effect of LSTM networks. At present, hyperpa-
rameter selection in the LSTM network mainly relies on prediction and many experiments.
This is not only inefficient, but it is also difficult to obtain reasonable hyperparameter
values. Here, in the context of machine learning, hyperparameters are parameters whose
values are set before the learning begins, rather than parameter data obtained through
training. Under normal circumstances, hyperparameters are optimized to select a group
of optimal hyperparameters for the learning machine to improve the performance and
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effect of learning. Therefore, hyperparameters are derived from human experience and are
subject to hardware constraints. On this basis, the IAO method is proposed to optimize
the key parameters in the LSTM network and improve the accuracy of LSTM network
modeling. Hyperparameters have a great influence on the prediction ability of LSTM
networks. Improper selection leads to a decline in the prediction capacity of the LSTM
network. In LSTM, the number of hidden layer neurons and the interval of reinforcement
training batches are two indispensable related parameters which hinder the overall quality
and performance of LSTM. Increasing the number of hidden layer neurons in LSTM neural
networks can improve their fitting performance and prediction accuracy.
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As the number of neural networks increases, the need for computation also increases,
and the learning speed of neural networks is affected to some extent. Each neural network
can be used to describe the training batch and time interval of intensive training, but
further improving the training batch time interval of neural network intensive training
can effectively further improve computing power. It can also further improve the memory
utilization efficiency of the operating system and shorten the product iteration cycle. How-
ever, in specific cases where the same training batch has improved significantly, database
overflows, software program crashes, and so on can occur. If the appropriate parameters
are selected, not only can the learning speed of motion be accelerated, but also the accuracy
of 3D images can be further improved to avoid the possibility of generalization ability and
other problems being difficult to solve.

In this paper, a new and improved IAO algorithm for Aquila deep learning is
adopted. By testing the composite function, the aim was to verify the quality and
performance of the IAO cell, thereby enabling the continuous improvement of the
two new and current effective algorithm models. This testing indicates that IAO has
good optimization potential. IAO was selected to optimize LSTM local area network
(LAN) connectivity parameters, the number of hidden layer neurons, and the time
interval of connection reinforcement training batches, in order to promote IAO automatic
convergence in hyperparameters and optimize LSTM connectivity correlation. Thus,
IAO can optimize the LSTM connection parameters.

Determining the number of hidden layer neurons enables us to optimize the LSTM
LAN connection and further enhance the training batch time interval. The overall optimal
choice is to allow the target compound function to obtain the corresponding value range of
Aquila-related parameters, where the Aquila position in the vector space of the number
of neurons in the time interval between the hidden layer and the reinforcement training
batch corresponding to the LSTM neural network prediction model error is less than one.
With IAO, the LSTM connection parameters can be automatically optimized to avoid
measurement errors caused by manual selection of relevant parameters. IAO-LSTM makes
basic connections based on LSTM neural networks. The optimal number of hidden layer
neurons and the interval of intensive training batches were used as parameters for LSTM
neural network connection.

The basic steps of the IAO-LSTM network model optimization process are:
Step 1: The relevant LSTM connection parameters are initialized. Then, the basic

framework of LSTM connectivity and its related parameters are preliminarily preprocessed
and inputted into the IAO-LSTM connectivity training set.

Step 2: The optimal IAO parameters are initialized. The population number, iteration
times and other parameters are set. We then take the optimal LSTM network model as the
optimal Skyhawk individual, and take the error function in the algorithm network model
as the optimal fitness.
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Step 3: Based on the number of training batches of the LSTM network and the
number of neurons in the hidden layer, each Aquila is positioned and trained with the
initial parameters to obtain the adaptive value of the Aquila (training error of the LSTM
network), and then compared with the adaptive value of each individual to find the
optimal search subject.

Step 4: The IAO correction formula is used to correct and determine the Aquila’s
position. On this basis, genetic algorithms are used to solve the algorithm. Otherwise, the
number of optimal individuals and the size of the optimal adaptation value are maintained.

Step 5: When the maximum number of iterations is reached, the iteration is terminated
to obtain the optimal solution. Otherwise, the model returns to step 4 and continues looking
for the best individual.

Step 6: The relevant parameters in the IAO from the optimal individual scheme
location are decoded. Then the relevant parameters considered most suitable for the LSTM
connection are decoded.

Step 7: After garbage file cleaning, the LSTM neural network is intensively trained
using the deep learning model. Then the test data set is selected to predict the nominal
photovoltaic output power, and finally the prediction is recorded.

Through the construction and optimization of the IAO-LSTM network model, the
photovoltaic power prediction mechanism is further understood. However, the existing
IAO-LSTM neural network model cannot train and predict the entire system. Specifically,
the actual photovoltaic power generation has a certain seasonal variation so it needs to be
pretreated. According to the actual situation, the prediction model suitable for the data
set is established. The distributed PV active power database data and their corresponding
meteorological database data are determined. Then, the deep learning model is further
divided into four parts. The deep learning model can be divided into spring, summer,
autumn, and winter according to the physical characteristics of spring and autumn. After
the deep learning model is preprocessed, the number of selected parameters in the IAO-
LSTM sub-deep learning model is cleaned with the help of the enhanced training set,
and then the actual power output data of photovoltaic power generation is predicted by
continuing to select the test set.

6.4. Model Verification

The model evaluation indices used in this paper were the mean root square error
(RMSE) and mean absolute error (MAE). When using the same database data as the AO-
CNN prediction model above for model verification, the selected database data had to be
relatively stable. Only on this basis could the results be compared. In order to make com-
parisons and draw differences, the predictive power of the proposed PV statistical model
needs to be verified and the LSTM and AO-LSTM of the computing element compared.

The interval of intensive training for all images was set to 200 times. The image of
LAN connection uses MSE as the activation function. The value of genetic diversity of
the deep learning algorithms was set to 30, and the product iteration interval of deep
learning algorithms was 20 times. Through the deep learning models and tests, the actual
photovoltaic power could be predicted. Finally, AO-CNN and its comparison graphs were
used to predict the rated photovoltaic output power, and the different prediction effects
are shown in Figure 8a–d. The figure shows the prediction effects of the LSTM, AO-LSTM,
and IAO-LSTM models after fitting the data for four seasons. The left vertical axis shows
the difference between the true and predicted values, and the horizontal axis shows the
PV power data time in hours. The green dotted line represents the prediction result of the
LSTM model, the blue dotted line represents the prediction result of the original AO-LSTM
model, the black dotted line represents the prediction result of the IAO-LSTM model, and
the red solid line represents the true value.



Processes 2023, 11, 1957 15 of 18

Processes 2023, 11, x FOR PEER REVIEW  9  of  10 
 

 

6.4. Model Verification 

The model evaluation  indices used  in  this paper were  the mean root square error 

(RMSE) and mean absolute error (MAE). When using the same database data as the AO‐

CNN prediction model above for model verification, the selected database data had to be 

relatively stable. Only on this basis could the results be compared. In order to make com‐

parisons and draw differences, the predictive power of the proposed PV statistical model 

needs to be verified and the LSTM and AO‐LSTM of the computing element compared. 

 

 
(a) Spring forecast fit plot for each model 

 
(b) Summer forecast fit plot for each model 

 
(c) Autumn forecast fit plot for each model 

Figure 8. Cont.



Processes 2023, 11, 1957 16 of 18Processes 2023, 11, x FOR PEER REVIEW  10  of  10 
 

 

(d) Winter forecast fit plot for each model 

Figure 8. Season forecast fit plot of each model. 

 

Figure 8. Season forecast fit plot of each model.

As can be seen in Figure 8, the red and black lines tend to be more similar. Compared
with the LSTM model and the AO-LSTM model, the IAO-LSTM model can better fit the
true values, and the difference is small. There is a large deviation in the predicted values of
the LSTM model in the 8–10 h of sample time range, which may be caused by abnormal
data processing. Simply comparing the calculated PV active power curve with the reference
curve cannot quantify the chart quality or visually evaluate its relative effect, so the error
values are used to assess the results. Table 3 lists the values of the LSTM model, AO-LSTM
model, and IAO-LSTM comparison model in terms of RMSE and MAE in four seasons.
Comparing the error values of the LSTM, AO-LSTM and IAO-LSTM models in Table 3, it is
clear that IAO-LSTM has higher accuracy in photovoltaic power prediction.

Table 3. Season forecast error table for each model.

Season Error Type LSTM AO-LSTM IAO-LSTM

Spring
RMSE (%) 1.87 1.48 1.38
MAE (%) 2.67 1.76 1.91

MAPE (%) 1.32 3.84 6.56

Summer
RMSE (%) 1.84 1.08 0.91
MAE (%) 2.92 1.66 1.29

MAPE (%) 4.61 6.38 6.31

Autumn
RMSE (%) 0.90 0.84 0.71
MAE (%) 1.13 1.26 0.84

MAPE (%) 7.76 6.88 7.47

Winter
RMSE (%) 1.01 0.71 0.61
MAE (%) 1.43 1.15 0.91

MAPE (%) 6.91 8.39 5.02

In conclusion, the experimental results show that the IAO-LSTM photovoltaic power
prediction model proposed in this paper has smaller errors in all four seasons, and its
overall quality and performance are better than that of LSTM and AO-LSTM. Compared
with the AO-CNN model mentioned above, the performance of the IAO-LSTM model is
also a significant improvement.

7. Conclusions

With the increase in the penetration rate of new energy, it is necessary to improve the
ability of new energy to participate in the frequency regulation and voltage regulation of
the power grid. However, the current energy storage technology is not mature in terms of
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safety, and the cost performance is low. To enable its participation in frequency regulation
and voltage regulation of the power grid, it is necessary to accurately predict the output
of the new energy field. This paper analyzes and studies the common methods of photo-
voltaic electric field output power prediction models, such as the CNN and AO algorithms,
and the AO-CNN, LSTM and AO-LSTM models, etc. After comparing and analyzing the
advantages and disadvantages of these models, we propose using IAO to optimize LSTM
neural network parameters and establish a model for predicting actual photovoltaic power.
The proposed IAO-LSTM model was applied in the field of photovoltaic power prediction.
The experimental results show that the IAO-LSTM photovoltaic power prediction model
has less error and that its overall quality and performance are better than the other above-
mentioned prediction models. In the future, if the proposed method can be combined with
load forecasting, it will be able to accurately determine the frequency modulation region
and adopt frequency modulation means to realize a supporting role in the power grid.
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