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Abstract: The proposed planer layer dynamo physical model has real-world applications, especially
in the Earth’s liquid core. Thus, in this paper, an attempt is made to understand the finite amplitude
convection when there exists a coupling between the Lorentz force and the Coriolis force. In particular,
the effect of a horizontally applied magnetic field is studied on the Rayleigh–Bénard convection
(RBC) that contains the electrically conducting fluid and rotates about its vertical axis. Free–free
boundary conditions are assumed on the geometry. Attention is focused on the nonlinear convective
flow behavior during the occurrence of cross rolls which are perpendicular to the applied magnetic
field and parallel to the rotation axis. The visualization of cross rolls is achieved using the Fourier
analysis of perturbations up to the O(ε8). The relationship of the Nusselt number (Nu) with respect
to the Rayleigh number (R), the Ekman number (E), and the Elsasser number (Λ) is investigated. It is
observed that E generates a strong damping effect on the flow velocity and on the heat transfer at
high rotation rates. Using the heatline concept, it is observed that the temperature within the central
regime is enhanced as the Λ increases. The results show that either E decreases or Λ increases, then
the heat transfer rate increases.

Keywords: nonlinear convection; earth’s liquid core; electrically conducting fluid; planar layer
dynamos; cross rolls

1. Introduction

In astrophysical and geophysical models related to the Sun, stars, and the outer core of
Earth, the convection is affected by both the Coriolis and Lorenz forces. Such a rotating mag-
netoconvection model with Boussinesq approximation has been studied by many authors,
for example, Chandrasekhar [1], Roberts [2], and Cox and Matthews [3], etc. The linear
stability analysis of this model shows the system is unstable with respect to either stationary
convection or oscillatory convection and depends on the governing physical parameters,
namely, Rayleigh number (R), Chandrasekhar number (Q), Taylor number (Ta), thermal
Prandtl number (Pr), and magnetic Prandtl number (Pm) or Roberts number. Most of the
experimental studies on Rayleigh–Bénard convection (RBC), rotating Rayleigh–Bénard
convection, magnetoconvection, and rotating magnetoconvection (RMC) have focused on
heat transfer laws. When the control parameter R exceeds its critical value, a cellular regime
of steady convection starts to appear. In addition, the motion increases its intensity but
remains laminar and steady for a large range of values of R, followed by unsteady turbulent
convection. Finite amplitude cellular convection with better approximate solutions has
been studied for RBC by Malkus and Veronis [4] and Kuo [5].
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In RBC with Ta 6= 0 and Q 6= 0, the critical R (= Rc) remains approximately a con-
stant until Q reaches a certain value. When Q increases further, Rc starts to decrease,
reaches a minimum and again starts to increase (Chandrasekhar, [1]). Braginsky [6] also
studied these rotating magnetic systems and stressed the importance of the Archimedean,
magnetic, and Coriolis forces. He revealed that these forces, together with the pressure
gradient, would determine the dynamic balance and inertial forces. Eltayeb [7] considered
the linear stability analysis to analyze the convection in the hydromagnetic rotating layer.
He observed when the principle of exchange of stabilities is valid, four different mod-
els can be classified based on the relative directions of the constant magnetic field, B0
and Ω, (B0, Ω) namely, (vertical, vertical); (horizontal, vertical); (horizontal, horizontal);
(vertical, horizontal) and also for different types of boundaries. The numerical results
indicated that the asymptotic dependence of Rc on Ta and Q are equal and independent
of the nature of the boundary conditions considered. Later, Eltayeb [8] extended his pre-
vious model [7] to study the convective motions near the onset of oscillatory convection.
He classified three different motions near the onset, namely: (i) Ta > Q, the results for the
rotating non-magnetic case, which are retained to leading order; (ii) Q > Ta, the results are
similar to those for the magnetic non-rotating case to leading order; and (iii) Ta and Q are
of same order, the minimum temperature gradient required for the instability is greatly re-
duced. When these solutions were examined in detail, it was observed that the motions that
follow the onset of instability depended primarily on the electrical conductivity rather than
on the kinematic properties of boundaries. In addition, in the leading order, the boundary
conditions to be applied to the mainstream solutions depended on the conductivity of the
boundary but not on the no-slip conditions. When either of the magnetic field or rotation
were dominant, there was a possibility of the occurrence of two-dimensional motion. In
this case, the Taylor–Proudman theorem was satisfied, while when both magnetic field and
rotation were influential, this theorem was no longer valid and the motions were essentially
of three-dimensional in nature.

The important laboratory experiments on RBC, rotating RBC and magnetoconvection
RBC using the liquid gallium (Pr = 0.025) as the working fluid have been carried out
by Aurnou and Olson [9]. The properties of liquid gallium are similar to those of the
liquid iron in the Earth core. The studies of magnetoconvection have vast industrial
applications too [10,11]. The Rc for the magnetoconvection is experimentally determined
as a function of Q and Ta. At low rotation rates, the Rc increases linearly with magnetic
field intensity. At moderate rotation rates, coherent thermal oscillations were detected by
Aurnou and Olson [9] near the onset of convection. These experimental results at the onset
were compared with the theoretical predictions of Chandrasekhar [1]. In nearly all of the
experimental results, it was mentioned that no well-defined steady convective regime was
found. Instead, unsteady or turbulent convection was detected just after onset. Later, these
experimental predictions were reproduced by using direct numerical simulations near the
onset (Rani et al. [12]). These simulations showed the occurrence of interesting cell patterns.
The most relevant geodynamo models were given by Roberts and Jones [13], who extended
the model of Braginsky [14] with two sets of boundary conditions.

The present nonlinear convection problem is studied based on the plane layer model
proposed by Roberts and Jones [13]. In astrophysics and even in planetary physics, the
model considered by Roberts and Jones [13] is yet sufficiently close to reality and is, really,
heuristic. This model is very convenient for laboratory experiments, too, which have not
yet been done. The linear planer layer dynamo model was considered by Roberts and
Jones [13] with the limiting case of Prandtl number tending to infinity. This limiting case
enabled the removal of the inertial terms and thus the resultant linearized equation of
motion filtered the fast-inertial modes and Alfven waves. The main reason for considering
this limiting case was that it simplified the analysis considerably and could able to exhibit
an amazingly rich structure. The other motivation was that it is an important limit for
geodynamo modelling, in which fast modes are believed to be relatively unimportant.
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In the linear stability analysis of the planer layer problem [13], the effect of physical
parameters such as E, Λ, R, and q have been thoroughly studied for the occurrence of
parallel rolls, cross rolls, and oblique rolls at the onset of convection. In general, E and q� 1
represent the geophysical models but with these values, it is very difficult to simulate these
models and obtain the converged results. This difficulty can be overcome by using one of
the approximate methods, such as weakly nonlinear analysis, which yields comparable
results with the experimental observations. This method of weakly nonlinear analysis
was applied for the Braginsky [14] model by Roberts and Stewartson [15] near the onset
of oscillatory convection using the small finite amplitude equations. Further, they have
analyzed the linear stability analysis of the cubic and cubic-quintic amplitude equations.
These amplitude equations are valid only when R is close to the Rc. In addition, the
nonlinear analysis proposed by Malkus and Veronis [4] is valid when the R is near the
threshold Rc. Later Kuo [5] proposed a different nonlinear approach, which is valid even
for large values of R. The advantages of this approach are that the solutions are found to be
valid even for a large range of the imposed temperature differences across the fluid layer
and also the rapid convergence of solutions. This solution provides a quantitative theory
for the convective heat transport as a function of the temperature difference in the range of
laminar flow. Using this approach by Kuo [5], Rameshwar et al., [16], have studied the finite
amplitude cellular convection in RBC under the influence of a vertical magnetic field and
analyzed the magnetohydrodynamics (MHD) of electrically conducting fluid. Linear and
nonlinear properties of thermohaline convection at the onset with the stress-free boundary
conditions were investigated using perturbation analysis relevant to oceanic water and
groundwater by Rawoof Sayeed and Rameshwar [17]. The stationary and oscillatory
finite amplitude convections of a binary mixture with a porous medium were thoroughly
investigated by Rameshwar et al., [18,19]. Baklouti et. al. [20] studied the dynamics of
incompressible homogeneous turbulence by numerical simulations. Gupta et. al. [21] have
analytically examined the effect of rotational speed modulation on the onset of magneto-
thermal convection.

The extension studies related to geodynamo models proposed by Eltayeb [7,8], Roberts
and Jones [13], and Jones and Roberts [22] have been studied by Šoltis and Brestenský [23].
The authors Šoltis and Brestenský [23] studied the influence of anisotropic diffusive coeffi-
cients (thermal diffusion and viscosity) on marginal stability of the horizontal fluid planar
layer rotating about the vertical axis and permeated by a horizontal homogeneous magnetic
field. The linear stability analysis was thoroughly investigated by the authors for two dif-
ferent types of anisotropic diffusive coefficients. This model was further extended to study
the linear stability of the model of rotating magnetoconvection in the horizontal planar
layer dynamo by Filippi et al. [24], which is influenced by three anisotropic diffusivities,
such as viscosity, thermal diffusivity, and magnetic diffusivity.

In the present study, the nonlinear analysis was employed as proposed by Kuo [5]
to study the behavior of cross rolls of electrically conducting fluid in a rotating magnetic
system, given by Roberts and Jones [13]. Thus, the objectives of the present problem were
as follows:

• Investigate theoretically the nonlinear behavior of cross rolls which occur in the
vertically rotating Rayleigh–Bénard convective system of planar layer of electrically
conducting fluid in the presence of horizontal magnetic field;

• Solve the nonlinear partial differential equations using the perturbation method pro-
posed by Kuo [5], until the O(ε8) and obtain the approximate solutions;

• Obtain the combined effect of Lorenz and Coriolis forces with stress-free boundaries;
• Find the local (NL) and average (Nu) Nusselt numbers on the hot wall to understand

the development of heat flow and the rate of heat transfer, respectively;
• Obtain the cellular pattern of the fluid flow (streamlines) and hot regions (isotherms)

from the eigenfunctions related to stream function and temperature, respectively;
• Study the heatline patterns of the flow by using the heat function.
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The novelty of the present work is the study of finite amplitude cellular convection
when the stationary convection exists as a first instability. The dynamical behavior of the
system depends on the type of instabilities that occur in that system. Interesting convective
instabilities occur near the onset of convection which is analyzed from the linear stability
analysis. At the onset of convection, the system is unstable to either stationary convection
(at least one eigenvalue vanishes) or oscillatory convection (an eigenvalue with a purely
imaginary part) as a first instability. When an eigenvalue vanishes the principle of exchange
of stabilities occurs. In other words, a new steady state replaces the stable motionless
state of the fluid. When stationary convection exists, the continuous release of potential
energy is balanced by the viscous dissipation of mechanical energy and the convection
always occurs in a fairly regular pattern. The results from the linear stability analysis
of Roberts and Jones [13] show the occurrence of the modes such as parallel rolls, cross
rolls, and oblique rolls based on the wave numbers. Only stationary convection exists as a
first instability when the parallel rolls occur, but for the modes of cross rolls and oblique
rolls, both stationary convection and oscillatory convection can occur as a first instability
depending on the physical parameters. A detailed investigation of the linear stability
analysis of the present physical model has been studied by Roberts and Jones [13]. Hence,
the nonlinear dynamical behavior of the present considered physical model is investigated
when stationary convection exists.

In Section 2, the basic governing equations that are considered by Roberts and
Jones [13] are presented. The linear stability analysis is discussed in Section 3 to ob-
tain critical Rayleigh numbers for steady cross roll modes. The nonlinear solutions for the
field variables are presented in Section 4. In Section 5, the local Nusselt number (NL) and
average Nusselt number (Nu) are discussed. The distortion of streamlines and isotherms is
discussed in Section 6. The heat flow visualization is discussed in Section 7. Finally, the
conclusions are presented in Section 8.

2. Mathematical Model

In the present study the fluid with uniform density confined in an infinite horizontal
layer was considered. It was assumed that the whole configuration rotates about the vertical
axis (OZ) with angular velocity ~Ω(= Ω~1Z) in the presence of a uniform gravitational
field ~g (= g~1Z) and the uniform magnetic field ~B(= B0~1X) applied in the horizontal
direction where~1X is the unit vector along the X-axis and~1Z is the unit vector along Z-axis.
The Prandtl number is assumed to be large, so as to ignore the inertial forces in the
momentum equation in comparison to the Coriolis force [13]:

2~Ωρ0 × ~V ′ = −∇′P′ + ~J ′ ×
~B′

µm
+~gαρ0 T

′
+ µ∇′2 ~V ′ , (1)

∂~B′

∂t′
= ∇′ × (~V ′ × ~B′) + η∇′2~B′ , (2)

∂T
′

∂t′
+ ~V ′ · (∇′T′) = κ∇′2T

′
, (3)

∇′ · ~V ′ = 0, (4)

∇′ · ~B′ = 0, (5)

where P′ includes the centrifugal force, ~J ′ = ∇′ × ~B′ is the electric current density, and
other notations are given the nomenclature.
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We non-dimensionalized the Equations (1)–(5) using the corresponding length, time,
velocity, temperature, magnetic field, and pressure scales as d, d2

η , η
d , βd, B0, and 2Ωρ0η,

respectively.
Therefore, the non-dimensional governing equations are [13]:

~1Z × ~V = −∇P + Λ~J × ~B + qR T~1Z + E∇2~V, (6)

∂~B
∂t

= ∇× (~V × ~B) +∇2~B, (7)

∂T
∂t

+ ~V · (∇T) = q∇2T, (8)

∇ · ~V = 0, (9)

∇ · ~B = 0, (10)

where R = βgαd2/2Ωk is the modified Rayleigh number, which measures the ratio of
buoyancy force to Coriolis force, E = ν/2Ωd2 is the ratio of viscous and Coriolis forces,
Λ = B2

0/2Ωηµmρ0 is the ratio of magnetic force and Coriolis force, and q = κ/η is the
ratio between the thermal and magnetic diffusivities (the Roberts number). For the static
solutions from Equations (6)–(10), we obtain

~Vs ≡~0, ~Bs =~1X , Ts = −Z. (11)

After introducing the following perturbed quantities in the above static solutions,
we obtain

~V = ~Vs + ~V∗, ~B = ~Bs +~b∗, T = Ts +
θ∗

q
. (12)

For convenience the asterisk symbols are omitted in the further analysis. The perturbed
dimensionless governing equations are given by

E∇4W − ∂ωZ
∂Z

+ R∇h
2θ + Λ

∂

∂X
∇2bZ = Λ~1Z · ∇ × {∇× [(∇×~b)×~b]}, (13)

(
∂

∂t
+ ~V · ∇

)
θ − qW − q∇2θ = 0, (14)

(
∂

∂t
−∇2

)
bZ =

∂W
∂X

+~1Z · ∇ × (~V ×~b), (15)

(
∂

∂t
−∇2

)
JZ =

∂ωZ
∂X

+~1Z · ∇ × [∇× (~V ×~b)], (16)

E∇2ωZ + Λ
∂JZ
∂X

+
∂W
∂Z

+ Λ~1Z · ∇ × [(∇×~b)×~b] = 0, (17)

where

O2
h = ∂2

∂X2 +
∂2

∂Y2 , ∇2 = ∂2

∂X2 +
∂2

∂Y2 +
∂2

∂Z2 , ~V = (U, V, W), ~b = (bX , bY, bZ), JZ =

(∇×~b) ·~1Z, ωZ = (∇× ~V) ·~1Z .
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Eliminating θ, ωZ, bZ, and JZ from the linear part of Equations (13)–(17), we obtain

LW = N , (18)

L = L1 + L2 + L3 + L4 + L5 + L6 ,

and
N = N1 +N2 +N3 +N4 +N5,

where

L1 =

(
∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2 ∂2

∂Z2 ,

L2 = E2
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2
∇6,

L3 = 2EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)(
∂2

∂X2

)
∇4,

L4 = Λ2
(

∂

∂t
− q∇2

)(
∂4

∂X4

)
∇2,

L5 = RqE
(

∂

∂t
−∇2

)2
∇2∇h

2,

L6 = RqΛ
(

∂

∂t
−∇2

)(
∂2

∂X2

)
∇h

2,

and

N1 =

[
ER
(

∂

∂t
−∇2

)2
∇2∇h

2 + RΛ
(

∂

∂t
−∇2

)(
∂2

∂X2

)
∇h

2

]
(~V · ∇)θ,

N2 = −
[

EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)
∇4 ∂

∂X
+ Λ2

(
∂

∂t
− q∇2

)(
∂3

∂X3

)
∇2
]
~1Z · ∇ × (~V ×~b),

N3 = −
[

Λ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)(
∂2

∂X∂Z

)]
~1Z · ∇ × [∇× (~V ×~b)],

N4 =

[
Λ2
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)
∂2

∂X2

]
~1Z · ∇ ×∇× [(∇×~b)×~b)]

+

[
EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2
∇2

]
~1Z · ∇ ×∇× [(∇×~b)×~b)],

N5 = −
[

Λ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2 ∂

∂Z

]
~1Z · ∇ × [(∇×~b)×~b)].

Because the surfaces are maintained at a uniform temperature,

θ = 0 on Z = 0 and 1, for all X, Y, (19)

and also normal component of the velocity should vanish on boundaries, i.e.,

W = 0 on Z = 0 and 1, for all X, Y. (20)

The conditions Equations (19) and (20) are independent of the nature of boundaries,
such as free–free or rigid–rigid, etc. In the present work, we assumed stress-free boundary
conditions [1], hence we obtain
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∂2W
∂Z2 =

∂ωZ
∂Z

= 0 on Z = 0 and 1, for all X, Y, (21)

JX = JY =
∂JZ
∂Z

= 0 on Z = 0 and 1, for all X, Y. (22)

Since the physical system is a triple diffusive system, it is unstable to either stationary
convection or oscillatory convection near the onset.

3. Linear Stability Analysis

At the onset of convection, the existing perturbations in the system are very small.
Hence, the nonlinear terms are smaller when compared to linear terms. The nonlinear
contributions are neglected from Equation (18). We obtain a linear differential equation
which is given as LW = 0. This process is called linearization. We obtain

[(
∂

∂t
− q∇2)(

∂

∂t
−∇2)2 ∂2

∂Z2 + E2(
∂

∂t
− q∇2)(

∂

∂t
−∇2)2∇6

+2EΛ(
∂

∂t
− q∇2)(

∂

∂t
−∇2)(

∂2

∂X2 )∇
4 + Λ2(

∂

∂t
− q∇2)(

∂4

∂X4 )∇
2

+R(qE(
∂

∂t
−∇2)2∇2∇h

2 + qΛ(
∂

∂t
−∇2)(

∂2

∂X2 )∇h
2)]W = 0. (23)

The resulting Equation (23) is linear. The normal mode solution was considered as
W(X, Y, Z, t) = W(Z)ei(aX+lY)+pt, where a is the wavenumber along X direction and l is
the wavenumber along Y direction. As such, a and l are real numbers and the growth rate
(p) may be constant complex number [13]. The marginal state is obtained from Re(p) = 0.
The two types of modes are classified using the eigenvalue p, namely, if Im(p) = 0, then
the steady modes exist and if Im(p) = ω 6= 0, then the oscillatory convection exists.
The preferred mode of convection depends on the physical parameters, which are relevant
to the Earth’s outer core. In Earth’s outer core, the parameters E and q are considered
as small and the Prandtl number is large. The orientation of rolls is classified based on
the wavenumber. The modes are parallel rolls, if the wavenumber a = 0 (the axis of
rolls are parallel to the applied magnetic field), if the wavenumber l = 0, gives the cross
rolls (the axis of the rolls are perpendicular to the applied magnetic field) and if both the
wavenumbers a 6= 0 and l 6= 0 give the oblique rolls. The linear and nonlinear studies of
the present physical model are based on l = 0, i.e., cross rolls.

The physical parameters E, Λ, q, and R are used to study the linear and nonlinear
behavior of the convective system. As the temperature gradient is increased, the unstable
mode may be of stationary convection or oscillatory convection near the onset. We imple-
mented the linear stability analysis using the normal mode analysis, i.e., by substituting
W(X, Y, Z, t) = W(z)e(iaX+pt) in the linearized equation LW = 0.

Stationary Convection (ω = 0)

By solving the linearized Equation (23), R = Rs value is obtained for stationary
convection and is given by

R =
πd2

2 + d2(Ed2
2 + Λa2)2

a2(Ed2
2 + Λa2)

,

where d2 = a2 + π2. The critical value of R is obtained from ∂R/∂a = 0. The critical
wavenumber is given by a2 = a2

cs = 2π2, and the critical Rayleigh number for stationary
convection is

Rcs =
9π5 + 3π2(9Eπ4 + 2Λπ2)2

2π2(9Eπ4 + 2Λπ2)
. (24)
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From the above result the marginal Rayleigh number (Rcs), E, and Λ values are
obtained for high rotation rates and weak field [13] by the linear stability analysis. The
critical values of control parameters were obtained to study the nonlinear behavior of cross
rolls. For small values of q, stationary convection occurs and for large values of q oscillatory
convection can occur. The value of Rs is free from q while the finite amplitudes depend on
q. For the nonlinear studies, a fixed q value as 0.01 was considered for which the stationary
convection occurs as a first instability near the onset. For small values of the parameters E
and Λ, the minimum value Rcs decreases as E decreases and as Λ increases. Thus, the effect
of E destabilizes the convective system when E decreases and the effect of Λ destabilizes
the convective system when Λ increases (see Figure 1).

Figure 1. The effect of Λ and E on Rcs.

The linear stability theory adopts a less ambitious objective to ascertain when a flow
is unstable to infinitesimal disturbances. It thus gives no prediction about transition
promoted by sufficiently large disturbance. The ultimate consequence of the instability
is never completely determined by linear theory. Thus, in the present study, an attempt
was made to understand the nonlinear convection in the presence of the Coriolis force and
magnetic field.

4. Method of Solution

The solutions of steady non-linear equations were obtained by following the method
proposed by Kuo [5]. These solutions converge more rapidly and are valid for larger
temperature differences. In this method, the dependent variables are first expressed as
infinite series of a set of orthogonal space functions. This approach to the solution sheds
light on the problem of transition to turbulent convection, which happens at a larger
temperature difference. An expansion parameter (ε), is defined by [5]:

ε2 =
R− Rcs

R
. (25)

Note that ε is less than one for all values of R. The solution of Equations (13)–(17) are
written as

f = ε f1 + ε2 f2 + ε3 f3 + ε4 f4 + ε5 f5 + ε6 f6 + · · · , (26)

where
f = f (U, W, θ, bX , bZ, ωZ, JZ).
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According to Equation (25), R is given by

R =
Rcs

1− ε2 , (27)

expanding Equation (27) in the power series of ε or by applying the finite formula

R = Rcs + Ros(ε
2 + ε4 + ε6 + · · ·+ ε2s), (28)

where

Ros =
Rcs

1− ε2s , s = 1, 2, 3 · · · (29)

By introducing Equations (26) and (28) in Equation (18), we obtain for the different ε
orders, a sequence of linear non homogeneous differential equations as

O(ε) : (L1 + L2 + L3 + L4)W1 + Rcs(L5 + L6)W1 = 0, (30)

O(ε2) : (L1 + L2 + L3 + L4)W2 + Rcs(L5 + L6)W2 = 0, (31)

O(ε3) : (L1 + L2 + L3 + L4)Wi + Rcs(L5 + L6)Wi + Ros(L5 + L6)Wi−2

+Ros(L5 + L6)Wi−4 = RcsN1 +N2 +N3 +N4 +N5, for i = 3. (32)

Similarly, at the orders O(ε4), O(ε5), we obtain

(L1 + L2 + L3 + L4)Wi + Rcs(L5 + L6)Wi + Ros(L5 + L6)Wi−2

+Ros(L5 + L6)Wi−4 = (Rcs + Ros)N1 +N2 +N3 +N4 +N5, for i = 4, 5. (33)

In general,
(L1 + L2 + L3 + L4)Wi + Rcs(L5 + L6)Wi + Ros(L5 + L6)Wi−2

+Ros(L5 + L6)Wi−4 = (Rcs + 2Ros)N1 +N2 +N3 +N4 +N5, for i ≥ 6. (34)

Here Li, i = 1, 2, 3, 4, 5, 6 is the linear operator and Ni, i = 1, 2, 3, 4, 5 represents the
nonlinear terms and are functions of Wi, θi, bXi, bZi, ωZi, and JZi. The auxiliary equations
for temperature field are given by(

∂

∂t
−∇2

)
θ1 = qW1, (35)

(
∂

∂t
−∇2

)
θ2 + (~V1 · ∇)θ1 = qW2. (36)

In general, (
∂

∂t
−∇2

)
θi +

i−1

∑
l=1

(~Vl · ∇)θi−l = qWi, for i ≥ 3. (37)

The auxiliary equations for the magnetic field(
∂

∂t
−∇2

)
bX1 =

∂U1

∂X
. (38)

In general,



Processes 2023, 11, 1945 10 of 30

(
∂

∂t
−∇2

)
bXi =

∂Ui
∂X

+
∂

∂Y
(
U1bYi−1 + · · ·+ Ui−1bY1 −V1bXi−1 · · ·+ Vi−1bX1

)
+

∂

∂Z
(
U1bZi−1 + · · ·+ Ui−1bZ1 −W1bXi−1 · · ·+ Wi−1bX1

)
, for i ≥ 2, (39)

and (
∂

∂t
−∇2

)
bZ1 =

∂W1

∂X
. (40)

In general written as:(
∂

∂t
−∇2

)
bZi =

∂Wi
∂X
− ∂

∂X
(
U1bZi−1 + · · ·+ Ui−1bZ1 −W1bXi−1 · · ·+ Wi−1bX1

)
− ∂

∂Y
(
V1bZi−1 + · · ·+ Vi−1bZ1 −W1bYi−1 · · ·+ Wi−1bY1

)
for i ≥ 2. (41)

Likewise, the auxiliary equations for vorticity are

E∇2ωZ1 = −∂W1

∂Z
−Λ

∂JZ1

∂X
, (42)

in general,

E∇2ωZi = −
∂Wi
∂Z
−Λ

∂JZi

∂X
−Λ

∂

∂X
bX1

(
∂bYi−1

∂X
−

∂bXi−1

∂Y

)
+ · · · −Λ

∂

∂X
bXi−1

(
∂bY1

∂X
−

∂bX1

∂Y

)
+Λ

∂

∂X
bZ1

(
∂bZi−1

∂Y
−

∂bYi−1

∂Z

)
+ · · ·+ Λ

∂

∂X
bZi−1

(
∂bZ1

∂Y
−

∂bY1

∂Z

)
+Λ

∂

∂Y
bZ1

(
∂bXi−1

∂Z
−

∂bZi−1

∂X

)
+ · · · −Λ

∂

∂Y
bZi−1

(
∂bX1

∂Z
−

∂bZ1

∂X

)
+Λ

∂

∂Y
bY1

(
∂bYi−1

∂X
−

∂bXi−1

∂Y

)
+ · · ·+ Λ

∂

∂Y
bYi−1

(
∂bY1

∂X
−

∂bX1

∂Y

)
, for i ≥ 2, (43)

and (
∂

∂t
−∇2

)
JZ1 =

∂ωZ1

∂X
, (44)

in general written as:(
∂

∂t
−∇2

)
JZi =

∂ωZi

∂X
+

∂2

∂X∂Z
(
V1bZi−1 + · · ·+ Vi−1bZ1 −Wi−1bY1 − · · · −W1bYi−1

)
+

∂2

∂Y∂Z
(
Wi−1bX1 + · · ·+ W1bX1 −U1bZi−1 − · · · −Ui−1bZ1

)
+∇2

h
(
V1bXi−1 + · · ·+ Vi−1bX1 −Ui−1bY1 − · · · −U1bYi−1

)
, for i ≥ 2. (45)

4.1. Approximate Solutions

The approximate solutions U, W, θ, bX , and bZ are attained in terms of the amplitudes
near the onset of stationary convection. The horizontal two boundaries are stress-free, all
the space functions U, W, θ, bX , and bZ are sine and cosine functions. Thus, from Equations
(30), (35), (42), and (44) we have, to the first order periodic solutions as,

W1 = A1 cos aX sin πZ,

θ1 =
qA1

π2 + a2 cos aX sin πZ,
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bX1 = − πA1

π2 + a2 cos aX cos πZ,

bZ1 = − aA1

π2 + a2 sin aX sin πZ, (46)

where the nonlinear terms are used to calculate the amplitude A1. Normally, the terms in
Equation (26) are written as

Wi = Ai cos aX sin πZ + ∑
p1,q1

W(i)
p1q1 cos p1aX sin q1πZ, (47)

Ui =
1
a2

∂2Wi
∂Z∂X

, Vi =
1
a2

∂2Wi
∂Z∂Y

, ωZi =
∂Vi
∂X

, (48)

θi =
qAi

π2 + a2 cos aX sin πZ + ∑
p1,q1

θ
(i)
p1q1 cos p1aX sin q1πZ, (49)

bXi = −
πAi

(π2 + a2)
cos aX cos πZ + ∑

p1,q1

bX
(i)
p1q1 cos p1aX cos q1πZ, (50)

bZi = −
aAi

(π2 + a2)
sin aX sin πZ + ∑

p1,q1

bZ
(i)
p1q1 sin p1aX sin q1πZ, (51)

where W(i)
p1q1 , θ

(i)
p1q1 , bX

(i)
p1q1 , and bZ

(i)
p1q1 are nonlinear functions of A1, A2, A3,. . . Ai−1.

The unknown functions W(i)
p1q1 , θ

(i)
p1q1 , bX

(i)
p1q1 , and bZ

(i)
p1q1 are calculated by substituting

the Equations (47)–(51) in Equation (18).

4.2. Evaluation of Amplitude A1

To obtain the second order solutions W2, θ2, bX2 , and bZ2 , the nonlinear term N is
solved and Equation (31) is obtained. With N = 0, LW2 = 0 and

W(2)
02 = 0, θ

(2)
02 =

qA2
1

8π(π2 + a2)
and bX

(2)
02 =

A2
1

4(π2 + a2)
, bZ

(2)
02 = 0. (52)

The unknown functions W2, θ2, bX2 , and bZ2 are obtained from Equations (31), (36),
(39), and (41), respectively, and are given by

W2 = A2 cos aX sin πZ,

θ2 =
qA2

π2 + a2 cos aX sin πZ + θ02
(2)A1

2 sin 2πZ,

bX2 = − πA2

π2 + a2 cos aX cos πZ + bX02
(2)A1

2 cos 2πZ,

bZ2 = − aA2

π2 + a2 sin aX sin πZ. (53)

From Equation (32) for i = 3 the amplitude A1 is calculated. After using the first and
second order solutions, we write Equation (32) as

(L1 + L2 + L3 + L4)W3 + Rcs(L5 + L6)W3

= −Ros[qE(π2 + a2)3a2 + qΛ(π2 + a2)a4]

A1 cos aX sin πZ− Rcs[Ed2
3a2 + Λd2a4]πθ02

(2)A1
3 cos aX sin πZ
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−[a2bX02
(2)EΛqd2

4 + a4bX02
(2)Λ2qd2

2]
A1

3

2
cos aX sin πZ

+Rcs[E(a2 + 9π2)
3
a2 + Λ(a2 + 9π2)a4]πθ02

(2)A1
3 cos aX sin 3πZ

+[a2bX02
(2)EΛq(a2 + 9π2)

4
+ a4bX02

(2)Λ2q(a2 + 9π2)
2
]
A1

3

2
cos aX sin 3πZ

−[2π2a2

d2 bX02
(2) − a2 bX02

(2)

2
]A1

3 cos aX sin πZ

+[
2π2a2

d2 bX02
(2) − a2 bX02

(2)

(2)
]A1

3 cos aX sin 3πZ, (54)

where d2 = a2 + π2. By solving the above equation, A1 is given by

A1 = −

√(
2 ΛbX02

(2) π2 −ΛbX02
(2) d2 − π Rcs θ02

(2)
)

Ros q

2 ΛbX02
(2) π2 −ΛbX02

(2) d2 − π Rcs θ02
(2)

. (55)

The unknown functions W3, θ3, bX3 , and bZ3 are obtained from Equations (32), (37),
(39), and (41), respectively,

W3 = A3 cos aX sin πZ + W13
(3)A1

3 cos aX sin 3πZ,

θ3 =

(
qA3

π2 + a2 + θ11
(3)A1

3
)

cos aX sin πZ

+ θ13
(3)A1

3 cos aX sin 3πZ,

bX3 =

(
− πA3

π2 + a2 + bX11
(3)A1

3
)

cos aX cos πZ

+ bX13
(3)A1

3 cos aX cos 3πZ,

bZ3 =

(
− aA3

π2 + a2 + bZ11
(3)A1

3
)

sin aX sin πZ

+ bZ13
(3)A1

3 sin aX sin 3πZ. (56)

where
W(3)

13 =
1

D13

(
Rcs

(
qΛd13 a4 + Eqd13

3a2
)

π θ02
(2)
)

+
1

D13

((
1
2

a2EΛqd13
4 +

1
2

a4Λ2qd13
2
)

bX02
(2) +

(
2

π2a2

d2
− 1

2
a2
)

b(2)X02

)
,

θ
(3)
11 =

π θ
(2)
02

d2
, θ

(3)
13 =

−π θ
(2)
02 + W(3)

13 q
d13

,

and

bX
(3)
11 =

π bX
(2)
02

2d2
, bX

(3)
13 = −

3π W(3)
13

d2
−

3π bX
(2)
02

2d2
,

bZ
(3)
11 =

a bX
(2)
02

2d2
, bZ

(3)
13 = −

a W(3)
13

d2
−

a bX
(2)
02

2d2
,

D13 = −9 qπ2d3
13 − E2qd6

13 − 2 EΛqa2d4
13

−Λ2q2a4d2
13 + Rcs

(
qa2Ed3

13 + qΛa4d13

)
,

where d13 = a2 + 9π2. This iterative procedure is continued to find A2 to A6 and the
equivalent Wi, θi, bXi , bZi , ωZi , and JZi , etc.
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4.3. Calculation of A2 and A3

Initially, Equation (33) is simplified for i = 4, i.e.,

(L1 + L2 + L3 + L4 + Rcs(L5 + L6))W4 + Ros(L5 + L6)W2

= (Rcs + Ros)N1 +N2 +N3 +N4 +N5. (57)

The nonlinear terms Ni, i = 1, 2, 3, 4, 5 are analyzed by using the Equations (46), (53)
and (56). Solving the above Equation (57), we obtain A2 = 0. This indicates that every
second order approximate solutions vanish except for θ

(2)
02 and b(2)X02 as shown in Equation

(52). Therefore, Equation (57) decreases to

(L1 + L2 + L3 + L4 + Rcs(L5 + L6))W4 = K1 A1
4 cos 2aX sin 4πZ

+K2 A1
4 cos 2aX sin 2πZ + K3 A1 A3 cos 2aX sin 2πZ. (58)

The approximate solutions W4, θ4, bX4 , bZ4 are evaluated by Equations (33), (37), (39)
and (41) and those are given by

W4 = A4 cos aX sin πZ + K4 A4
1 cos 2aX sin 4πZ

+K5 A4
1 cos 2aX sin 2πZ + K6 A1 A3 cos 2aX sin 2πZ,

θ4 =
q

(a2 + π2)
A4 cos aX sin πZ + K7 A1 A3 sin 2πZ

+K8 A4
1 sin 2πZ + K9 A4

1 cos 2aX sin 2πZ + K10 A4
1 cos 2aX sin 4πZ

+K11 A4
1 sin 4πZ + K12 A1 A3 cos 2aX sin 2πZ,

bX4 =
−π

(a2 + π2)
A4 cos aX cos πZ + K13 A4

1 cos 2aX cos 4πZ

+K14 A4
1 cos 2aX cos 2πZ + K15 A1 A3 cos 2aX cos 2πZ,

bZ4 =
−a

(a2 + π2)
A4 sin aX sin πZ + K16 A4

1 sin 2aX sin 4πZ

+K17 A4
1 sin 2aX sin 2πZ + K18 A1 A3 sin 2aX sin 2πZ. (59)

To determine the value of A3, Equation (33) is solved for i = 5, and is given by

(L1 + L2 + L3 + L4 + Rcs(L5 + L6))W5 + Ros(L5 + L6)(W3 + W1)

= (Rcs + Ros)N1 +N2 +N3 +N4 +N5. (60)

Evaluating A3 from Equations (46), (53), (56), (59) and (60) we obtain,

A3 =
S1

S2
, (61)

where

S1 = −A1
5
(

Λ2qd2
2a3 + EΛqd2

4a
)(−π K17

4a
+

K14

4
−

b(2)X02W3
13

2
− 3π K5

4d2

)
a

+A1
5
(

Λ2qd2
2a2 + EΛqd2

4
)(
− a(2 π K14 + 2 aK17)

4d2
− π b(2)X02 b(3)Z11 − π b(2)X02 b(3)Z13 + K17

)
π a

+A1
5a2
(

Λ2qd2
2a2 + EΛqd2

4
)( π (2 π K14 + 2 aK17)

4d2
+

b(2)X02
2

(
π b(3)X11 + ab(3)Z11

))

−A1
5a2
(

Λ2qd2
2a2 + EΛqd2

4
)( b(2)X02

2

(
3 π b(3)X13 + ab(3)Z13

)
+ π b(2)X02 b(3)X11 − π b(2)X02 b(3)X13

)
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+
(

qΛd2 a4 + Eqd2
3a2
)(

π θ
(2)
02 W(3)

13 −
3π qK5

4d2
− π

K9

4
− π K8

)
A1

5Rcs

+
(

qΛd2 a4 + Eqd2
3a2
)(

π θ
(2)
02 W(3)

13 −
3π qK5

4d2
− π K9 − π K8

)
A1

5Ros

−ΛRos a4d2 q2 − ERos a2d2
3q2 −A1

5a2
(

Λ2qd2
2a2 + EΛqd2

4
)

K14,

and

S2 = −
(

qΛd2 a4 + Eqd2
3a2
)(
−π K8 − π θ

(2)
02 − π q

3K5

4

)
A1

2Rcs

−
(

qΛd2 a4 + Eqd2
3a2
)(
−π K8 − π θ

(2)
02 − π q

3K5

4

)
A1

2Ros

+A1
2
(

Λ2qd2
2a3 + EΛqd2

4a
)( b(2)X02

2
− π K17

4a
+

K14

4
− 3π K5

4d2

)
a

−A1
2
(

Λ2qd2
2a2 + EΛqd2

4
)(
− a(2 π K14 − 2 aK17)

4d2
+

π ab(2)X02
d2

+ K17

)
π a

−A1
2
(

Λ2qd2
2a2 + EΛqd2

4
)( π (2 π K14 + 2 aK17)

4d2
−

b(2)X02
2

)
a2

−A1
2
(

Λ2qd2
2a2 + EΛqd2

4
)(π2b(2)X02

d2
− K14

)
a2 + ΛRos a4d2 q2 + ERos a2d2

3q2.

The amplitude A3 is determined by using the first, second, third and fourth order
approximate solutions. From Equations (60), (37), (39) and (41), the fifth order approximate
solutions are obtained

W5 = A5 cos aX sin π Z

+
(

K19 A1
5 + K20 A1

2A3

)
cos 3 aX sin π Z

+
(

K21 A1
3 + K22 A1

5 + K23 A1
2A3

)
cos aX sin 3 π Z

+
(

K24 A1
5 + K25 A1

2A3

)
cos 3 aX sin 3 π Z

+K26 A1
5 cos aX sin 5 π Z + K27 A1

5 cos 3 aX sin 5 π Z, (62)

θ5 =

(
qA5
d2

+ K28 A1
2A3

)
cos aX sin π Z

+
(

K29 A1
3 + K30 A1

5 + K31 A1
2A3

)
cos aX sin 3 π Z

+
(

K32 A1
5 + K33 A1

2A3

)
cos 3 aX sin π Z

+
(

K34 A1
5 + K35 A1

2A3

)
cos 3 aX sin 3 π Z

+K36 A1
5 cos aX sin 5 π Z + K37 A1

5 cos 3 aX sin 5 π Z, (63)

bX5 =

(
−π A5

d2
+ K38 A1

5
)

cos aX cos π Z

+
(

K39 A1
3 + K40 A1

5 + K41 A1
2A3

)
cos aX cos 3 π Z

+
(

K42 A1
5 + K43 A1

2A3

)
cos 3 aX cos π Z
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+
(

K44 A1
5 + K45 A1

2A3

)
cos 3 aX cos 3 π Z

+K46 A1
5 cos aX cos 5 π Z + K47 A1

5 cos 3 aX cos 5 π Z, (64)

bZ5 =

(
− aA5

d2
+ K48 A1

5 + K49 A1
2A3

)
sin aX sin π Z

+
(

K50 A1
3 + K51 A1

5 + K52 A1
2A3

)
sin aX sin 3 π Z

+
(

K53 A1
5 + K54 A1

2A3

)
sin 3 aX sin π Z

+
(

K55 A1
5 + K56 A1

2A3

)
sin 3 aX sin 3 π Z

+K57 A1
5 sin aX sin 5 π Z + K58 A1

5 sin 3 aX sin 5 π Z. (65)

Here the coefficients Ki, i = 1, 2, . . . 58 in Equations (58)–(65) are functions of a, E, Λ, and q.
The simplifications become more critical as ε order increases. Similarly, the simplification
was carried until the eighth order of Equation (34) to calculate for A4, A5, and A6. Proceed-
ing as above, it can be observed that A2 = A4 = A6 = 0.

5. Convective Heat Transport

The changes in the two-dimensional flow patterns are illustrated by the local Nusselt
number, NL, distributions over the heated plate. The heat transport coefficient in terms of
the NL is expressed as [16,25]

NL =
∂T
∂n

, (66)

here n denotes the normal direction on a plane. The heat transport is measured by the
average Nusselt number (Nu), which is independent of Z and is given by

Nu = WT − ∂T
∂Z

, (67)

here the bar indicates a horizontal mean. Using Equation (67), Nu is obtained by integrating
the expression over the boundary, Z = 0 [16].

Nu =
1
L

∫ L

0
WT − ∂T

∂Z
|z=0dX, (68)

where L is the normalized horizontal cell width.

5.1. Local Nusselt Number (NL)

Figure 2a illustrates the changes of NL for distinct values of E with respect to X.
In selected regions, the number of peaks and the location of maximum and minimum
of NL values depend on E. The maximum of NL value is constant, as X increases for
defined E. However, as E decreases, the number of peaks is increased in a selected region.
Figure 2b illustrates the variation of NL for different Λ concerning to X. The location of
the maximum NL value is independent of the dimensionless plate length but depends on
Λ. The existence of the number of peaks in the given region of X increases, as Λ increases.
Figure 2b illustrates the heat that is transported from the fluid to the boundary is increased
as Λ increase.



Processes 2023, 11, 1945 16 of 30

Figure 2. Variation of NL with respect to X. (a) Λ = 0.2 and q = 0.01 for different E, (b) E = 0.005 and
q = 0.01 for different Λ.

5.2. Average Nusselt Number (Nu)

The dependency of Nu on the control parameters was studied near and away from the
onset of stationary convection. Let Nu(2)(s = 1), Nu(4)(s = 2) and Nu(6)(s = 3), indicate
the second-, fourth- and sixth-order approximations, for Nu, respectively. The second order
approximation is given by

Nu(2) = 1 +
2qRos

2Λ(a2 − π2) + Rcs
. (69)

The approximations for Nu(4) and Nu(6) are lengthy, so it is not shown here to conserve
space. The change of Nu with respect to R is shown in Figure 3 for different values of E
and Λ. Figure 3a shows the effect of E on Nu in the R plane for fixed Λ = 0.2 and q = 0.01.
It illustrates that the rate of heat transfer is enhanced for decreasing E. Figure 3b shows
the effect of Λ on heat transfer rate for fixed E = 0.005 and q = 0.01. The enhancement of
heat transfer is observed for increasing Λ values. The small values of q are relevant to
Earth’s outer core. It is very difficult to perform numerical simulations for small values
of the physical parameters. For q < 1 stationary convection is preferred [13]. Figure 3c
shows that for q < 1 and as q increases, the Nu increase. Thus the effect of q < 1 shows, the
heat transfer rate are enhanced and accordingly the intensity of the flow rate also increase.
The change of kinetic energy with respect to R/Rcs is represented in Figure 4. Figure 4a
demonstrates the change in Nu for various E values as well as for a fixed value of Λ = 0.2.
The change in E produces small change in the potential energy, in comparison with the
kinetic energy. Thus, the total energy decreases as E increase. Figure 4b shows the energy
distribution for different Λ and for fixed E = 0.005 and q = 0.01. The amplifying values of
Λ show that the total energy is also increased.
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Figure 3. Dependence of Nussult number (Nu) on Rayleigh number (R/Rcs). (a) Λ = 0.2 and q = 0.01
for different E, (b) E = 0.005 and q = 0.01 for different Λ, (c) E = 0.005 and Λ = 0.2 for different q.

Figure 4. Dependence of kinetic energy and potential energy on Rayleigh number (R/Rcs) are
plotted. (a) Λ = 0.2 and q = 0.01 for different E, (b) E = 0.005 and q = 0.01 for different Λ.
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6. Distortion of Streamlines and Isotherms

The fluid flow behavior is visualized by the stream function (Ψ) which is obtained
from the velocity components U and W. The relation between the velocity components and
stream function (Ψ) is [26]

U = −∂Ψ
∂Z

and W =
∂Ψ
∂X

,

which produce a single equation

Ψ = ∇2Ψ = 0 for X = 0,
√

2π/a and Z = 0, 1.

The points with equal temperature connected with lines are called isotherms. The
snapshots of the heat transport and flow field near the onset of stationary convection are
expressed in terms of streamlines and isotherms.

The general attributes of the streamlines and isotherms with respect to the variation
in R, E, and Λ are shown in Figures 5–8. Figure 5 illustrates the pattern of streamlines
and isotherms near the onset of convection (R ' Rcs). Figure 5a, shows the pattern of
streamlines for E = 0.005, Λ = 0.2, q = 0.01. The absolute maximum and the absolute
minimum values of circular strengths are 0.11215 and −0.11216, respectively. Figure 5c
shows the pattern of streamlines for E = 0.01, Λ = 0.2. This figure shows the absolute
maximum and the absolute minimum values of circular strengths as 0.11243 and −0.11243,
respectively. From Figure 5a,c the maximum strength of rolls at R ' Rcs are decreased as
E increases. Thus, as E increases, Rcs also increases, accordingly Nu decreases and hence
the absolute maximum of circulation strength decreases. Figure 5e illustrate the pattern
of streamlines with E = 0.005 and Λ = 0.4. These streamlines have the absolute minimum
and maximum values with the circular strengths as −0.12116 and 0.121117, respectively.
By comparing Figure 5a,e, the periodic rectangular rolls are observed near the R ' Rcs, but
as Λ increases the maximum strength of rolls is increased and the minimum strength of
roll decreases. Thus, as Λ increases, Rcs decreases, accordingly Nu increases, and hence the
absolute maximum of circulation strength increases. Figure 5a–f are plotted for the values
of R ' Rcs and the flow pattern are rectangular rolls and follows the symmetric nature
over the range of 0 ≤ X ≤ 1. Since the stream function equations show the symmetric
property. Similarly, for the same values of E and Λ, the isotherms formed as horizontal lines
near R ' Rcs, as shown in Figure 5b,d,f. At R ' Rcs, the strength of isotherms is of small
magnitude, representing the conduction dominant heat transport inside the considered
region. These isotherms are smooth lines that span over the whole region.
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Figure 5. The Effect of E and Λ near Rcs, streamlines (a) for E = 0.005, Λ = 0.2, and q = 0.01,
(c) E = 0.01, Λ = 0.2, and q = 0.01, (e) E = 0.005, Λ = 0.4, and q = 0.01 and isotherms (b) E = 0.005,
Λ = 0.2, and q = 0.01, (d) E = 0.01, Λ = 0.2, and q = 0.01, (f) E = 0.005, Λ = 0.4, and q = 0.01
are plotted.

Figure 6. Cont.
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Figure 6. The Effect of R = 10Rcs, 20Rcs, 30Rcs and 80Rcs, streamlines (a,c,e,g) and isotherms (b,d,f,h)
are plotted for E = 0.005, Λ = 0.2, and q = 0.01.
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Figure 7. The Effect of E = 0.01 and 0.015, streamlines (a,c) and isotherms (b,d) are plotted for Λ = 0.2,
R = 20Rcs, and q = 0.01.

The snapshot of streamlines and isotherms for different values of R and for fixed
values of E = 0.005, Λ = 0.2, and q = 0.01 are displayed in Figure 6a–h. It is observed
that for R = 10Rcs and for the cell lying between 0 ≤ X ≤ 1, the absolute minimum and
maximum values are with the circulation strengths −43.4965 and 43.4965, respectively,
as shown in Figure 6a. As R increases from Rcs to 10Rcs, the basic cells become more
deformed due to the growth of two vortices B and B′ located at the top right and bottom
left boundaries with the circulation strength−16.315. The basic cell with two vortices A and
A′ has circulation strength 38.059. The temperature profiles in terms of isotherms are illus-
trated in Figure 6b for same values of physical parameters that are considered in Figure 6a.
The isotherms are of nearly in wavy shape with the absolute maximum and minimum
values of −0.00212 and −1.00271, respectively. It indicates the maximum of heat transfer
process is occurred by convection. Figure 6c,d illustrate the streamlines and isotherms for
R = 20Rcs. The temperature gradient and the gravitational buoyancy force act together
and changes the flow structure as shown in Figure 6c. The bicellular patterns of streamlines
turn out to be multicellular models and these cells divide the field of motion at the core
for a cell lies between 0 ≤ X ≤ 1 with the absolute maximum and minimum values of
circulation strengths 220.829 and−220.845, respectively. The vortices B and B′ showed their
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presence with−82.822 as the circulation strength in the opposite direction of an original cell.
For these considered values of physical parameters, the behavior of isotherms is shown
in Figure 6d, which exhibit the mode of convective heat transport inside the fluid layer.
In the fluid layer, the absolute maximum and minimum values of isotherms are respectively,
−0.00275 and −1.0052. When R is increased from 20Rcs to 30Rcs, the small vortices B and
B′ shown in Figure 6c are increased with circulation strength −398.740. Thus, the basic cell
encountered more deformation (Figure 6e) and has the absolute maximum and minimum
values at 638.172 and −638.027, respectively. Accordingly, the isotherm curves develop
more deformation. The absolute maximum and minimum values of isotherms in the layer
are, respectively, −0.00449 and −1.01101. As R is increased from 30Rcs to 80Rcs (Figure 6g),
the two vortices B and B′ grow in size and split the basic cell into two vortices located
on either side of the secondary cell with the absolute maximum (9976.78) and minimum
(−9977.74) strengths. The heat flow pattern becomes chaotic, which is shown in Figure 6h
when R increases to 80Rcs. The absolute maximum and minimum values of isotherms in
the layer are, respectively, 8.75285 and −9.67347. From Figure 6, it is observed that as R
increases from Rcs to 80Rcs, the onset of turbulent flows are producible.

Figure 8. The Effect of Λ = 0.4 and 0.6, streamlines (a,c) and isotherms (b,d) are plotted for E = 0.005,
R = 20Rcs and q = 0.01.

Figure 7a–d, illustrate the streamlines and isotherms for different values of E and for a
fixed set of other parameters R = 20Rcs, Λ = 0.2, and q = 0.01. The behavior of the flow
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field was investigated by considering the flow pattern in the region 0 ≤ X ≤ 1, as shown in
Figure 6a–d (E = 0.005) and Figure 7a–d (E = 0.01 and 0.015). Figure 7a shows streamlines
for E = 0.01 in the considered range of X. The absolute maximum and minimum values
of circulation strengths are 162.15 and −162.149, respectively. There exist two vortices B
and B′ outside the basic cell with the circulation strength −82.806 as shown in Figure 7a.
The basic cell also contains two vortices namely A and A′ with a circulation strength of
141.881. Figure 7c is plotted for E = 0.015, which has the absolute maximum and absolute
minimum values of circulation strength as 140.453 and −140.471, respectively. The flow
pattern in the region 0 ≤ X ≤ 1 contains a deformed basic cell due to the growth of two
vortices B and B′ that exist at either side of the basic cell and are located at the top and
bottom boundaries with circulation strength −60.81. The basic cell also has two vortices
A and A′ with a circulation strength value of 122.90. Finally from Figures 6c and 7a,c it is
observed that the strength of the basic cell and pattern deformation decrease as E increases.
This implies that the effect of E stabilizes the convective system. The flow of heat transfer
is shown in Figure 7b,d for E = 0.01 and 0.015, respectively.

Figure 8a–d show the streamlines and isotherms for different Λ values and for
E = 0.005, R = 20Rcs, and q = 0.01. The effect of Λ was studied from Figures 6c,d
and 8a–d. In Figure 8a the streamlines are plotted for Λ = 0.4. By considering the flow pat-
tern in the range of 0 ≤ X ≤ 1, the absolute maximum and minimum values of circulation
strengths are 436.721 and −436.747, respectively. In this range, the basic cell is deformed by
two vortices B and B′, which are located at the top right and bottom left of the layer and on
either side of the basic cell with circulation strength −272.97. The basic cell also encloses
two vortices A and A′ with strength 382.13. Figure 8c shows the streamlines for Λ = 0.6 in
the considered range of 0 ≤ X ≤ 1, with the absolute maximum and minimum values of
circulation strength 663.595 and −663.555, respectively. In addition, there exist two vortices
B and B′ with circulation strength −414.71. The basic cell also enclosed two vortices A and
A′ with circulation strength 580.65. As Λ increases from 0.4 to 0.6 the deformation and
circulation strength of cells (A, A′) increase. This implies that the effect of Λ destabilizes the
convective system. The isotherms are plotted in Figures 6d and 8b,d for distinct values of
Λ = 0.2, 0.4 and 0.6. The lines of isotherms change to a more circular form as Λ increases.
Thus, the incremental values of Λ destabilize the convective system.

Topology of Flow

The topology constraint is based on the Euler number (ζ
′
) of the flow. As described by

Jana et al. [27], ζ
′

on the surface is defined as the sum of the Poincare indices of the critical
points on the surface and is given by

NE− (NH +
1
2

NP) = ζ
′
, (70)

here the NE represents the number of elliptic points, NH is the number of hyperbolic
points, and NP is the number of parabolic points [28,29]. In Figure 9a, the vorticity
contours are exhibited for R ' Rcs, E= 0.005, Λ= 0.2 and q = 0.01. The present simulated
flow fulfils the topological rule given in Equation (70) with NP = 0 , NH = 2, and NE = 2.
For R = 20Rcs, an equivalent investigation has been done for vorticity contours in Figure 9b
and Equation (70) is satisfied with NP = 0, NE = 8, and NH = 8.
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Figure 9. Vorticity lines for (a) R ' Rcs, E = 0.005, Λ = 0.2, and q = 0.01, (b) R = 20Rcs, E = 0.005,
Λ = 0.2, and q = 0.01.

7. Heat Function

Heatlines depict the convective heat transport phenomenon, whereas the isotherms
are mainly useful for visualizing heat transfer in the domain of conduction. The heat
function and heatline analyzes were developed by Kimura and Bejan [30] to visualize
heat transmission through the fluid flow, later Morega and Bejan [31] successfully used
the concept of heatlines. Different researchers [32–35] used this concept for dissimilar
applications of natural convective systems. The heat function (H∗) is defined as

∂H∗

∂X
= WT − ∂T

∂Z
, (71)

−∂H∗

∂Z
= UT − ∂T

∂X
, (72)

where T = Ts + θ and Ts = T0−Z. The Equations (71) and (72) do not exhibit the symmetric
property. Differentiating Equations (71) and (72) with respect to X and Z, respectively, and
subtracting the resulting equations yields

∂2H∗

∂X2 +
∂2H∗

∂Z2 =
∂(WT)

∂X
− ∂(UT)

∂Z
. (73)

From the definition of heat function, Equations (71) and (72), the boundary conditions
on H∗ follow [16]:

H∗(X, 0) = H∗(0, 0) +
∫ X

0
(WT − ∂T

∂Z
)dX, at Z = 0 and 0 ≤ X ≤

√
2π/a, (74)

H∗(X, 1) = H∗(0, 1) +
∫ X

0
(WT − ∂T

∂Z
)dX, at Z = 1 and 0 ≤ X ≤

√
2π/a, (75)

H∗(0, Z) = H∗(0, 0)−
∫ Z

0
(UT − ∂T

∂Z
)dZ, at X = 0 and 0 ≤ Z ≤ 1, (76)

H∗(
√

2π/a, Z) = H∗(
√

2π/a, 0)−
∫ Z

0
(UT − ∂T

∂Z
)dZ, at X =

√
2π/a and 0 ≤ Z ≤ 1. (77)
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Results and Discussion for Heatlines

Figure 10a–d, illustrate the pattern of heatlines for different Rayleigh number values,
R ' Rcs, R = 1.05Rcs, 1.15Rcs and 1.25Rcs, respectively, for fixed values of E = 0.005,
Λ = 0.2, and q = 0.01. When the system is at a conduction state (R < Rcs) heat-
lines are always parallel to Z-axis and perpendicular to isotherms. Figure 10a illustrates
the heatlines for R ' Rcs. It is observed that the heatline contours within the domain
are normal to the Z = 0 and Z = 1 lines due to conduction dominant heat transfer.
For R ' Rcs, the absolute maximum and minimum values of heatlines are 10.2224
and 0.0241, respectively, in the considered range 0 ≤ X ≤ 5. In the neighborhood of
X = 0, the heatlines at the center of the system depict the structure which is similar to the
parabolic structure. The curvature at the central part of the system increases as X increases.
This shows that the nonlinear propagation of heat transfer occurs when R ' Rcs.
Hence, the transition takes place from the conduction state to the convection state at
R ' Rcs. Figure 10b is plotted for R = 1.05Rcs. The absolute maximum and mini-
mum values of heatlines are 10.3081 and −0.2774, respectively, in the considered range
0 ≤ X ≤ 5. The heatline with a strength of −0.18 exist near the line X = 0 and the
heatline with strength 9.69 exist at X = 5. The strength of heatlines increases as X increases.
Some heatlines occurred in the form of a closed path. As R increases from Rcs the heatlines
with same strength are changed to a closed path as shown in Figure 10a,b. For higher
values, this indicates that the convective heat flow is more intense at the center. Figure
10c shows heatlines at R = 1.15Rcs and having the absolute maximum and minimum
values of heatlines 10.3666 and −0.62655, respectively. In this figure, the number of closed
paths of heatlines at the center is increased for R = 1.15Rcs. The size of closed path of
heatlines for R = 1.15Rcs is more than that for R = 1.05Rcs. Figure 10d shows the heat-
lines for R = 1.25Rcs with the absolute maximum and minimum values of 10.3972 and
−0.88096, respectively. The number of closed paths of heatlines increases at the center for
R = 1.25Rcs. The size of closed path of heatlines for R = 1.25Rcs is increased in comparison
with that of the heatlines for R = 1.15Rcs. For large R, the convective heat transmission
is more intense. It is observed that the heatlines become denser with the increase in R.
Figure 10a–d indicate that the heat transfer across the layer is increased as R increases. Heat-
lines will not exhibit periodic patterns due to the non-symmetry nature of Equations (71)
and (72).

Figures 10b and 11a,b are plotted with the same strength of heatlines so as to analyze
the influence of E on heat flow for the fixed values of Λ, R, and q. In the considered range
of 0 ≤ X ≤ 5, for E = 0.01, (Figure 11a) the absolute maximum and minimum values of
heatlines are noted to be 8.4264 and −0.18554, respectively, and for E = 0.015 (Figure 11b)
these values are 7.51142 and −0.11574, respectively. In both of these Figure 11a,b, the
heatlines intensity decays with E. The size of the closed path and the number of closed
paths with the same strength decreased as E increases. From Figures 10b and 11a,b it is
fascinating to observe the inhibition of temperature in the central regime as E increases.

Figures 10b and 12a,b are plotted with the same strength of heatlines to analyze the
effect of Λ on heat flow for the fixed values of E, R, and q. In the considered range of
0 ≤ X ≤ 5 for Λ = 0.4 (Figure 12a) with the absolute maximum and minimum values
of heatlines as 8.55642 and −0.23723, respectively. These values for Λ = 0.6 (Figure 12b)
are 7.74043 and −0.18296, respectively. In both Figure 12a,b, the heatlines are dominated
by convection and form closed loops. The size and the number of closed loops with the
same strength increase as Λ increases. From Figures 10b and 12a,b it is observed that the
temperature within the central regime is enhanced as Λ increase by observing heatlines.
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Figure 10. The effect of R ' Rcs, R = 1.05Rcs, 1.15Rcs and 1.25Rcs, heatlines (a–d) are plotted for
E = 0.005, Λ = 0.2, T0 = 1, and q = 0.01, respectively.
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Figure 11. The effect of E = 0.01 and 0.015, heatlines (a,b) are plotted for Λ = 0.2, R = 1.05Rcs, T0 = 1,
and q = 0.01.
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Figure 12. The effect of Λ = 0.4 and 0.6, heatlines (a,b) are plotted for E = 0.005, R = 1.05 Rcs, T0 = 1,
and q = 0.01.

8. Conclusions

The nonlinear natural convection was studied in a planer layer of electrically con-
ducting fluid that rotates about the vertical axis in the presence of a uniform horizontal
magnetic field and vertical temperature gradient. This problem has applications in Earth’s
liquid core. The present results help to enhance understanding of the finite amplitude
convection when the coupling between the Lorentz force and the Coriolis force present in
nonlinear planar layer convection-driven dynamos.

• Linear stability analysis showed that as the small values of E keep decreasing or
Λ increasing, the Rcs decreases, i.e., the effect of E stabilizes and Λ destabilizes
the system.

• Theoretically investigated the nonlinear behavior of cross rolls that occur in the
Rayleigh–Bénard convective system of a planar layer dynamo of electrically conduct-
ing fluid rotating about the vertical axis in the presence of a horizontal magnetic field.

• The nonlinear partial differential equations was solved using the perturbation method,
until O(ε8) and obtained the approximate solutions.

• Computed the local Nusselt number (NL) and averaged Nusselt number (Nu) on the hot
wall to understand the development of heat flow and the rate of heat transfer, respectively.

• The number of peaks is fixed for a given E while the value of the peak is independent
of X for a given E. The absolute peak values of NL increase as E increases. The number
of peaks is fixed for a given Λ. The value of the peak is independent of X for a given
Λ. The absolute peak value of NL increases as Λ decrease. From the NL results, it is
noted that the heat flux is high for decreasing E or increasing Λ.

• It is observed that the Ekman number (E) generates a strong damping effect on heat
transfer at high rotation rates but the heat transport enhances as Λ increases. The
Roberts number (q) < 1, enhances the heat transfer rate and accordingly the intensity
of the flow rate also increases. Similarly, the total energy decays as E increases. The
increment in the values of Λ show, the increase in the total energy.

• Obtained the cellular pattern of fluid flow (streamlines) and the hot regions (isotherms)
from the eigenfunctions related to the stream function and temperature, respectively.
From the streamlines and isotherms trajectories, it is observed that, for the lower
values of E the deformation of the fluid pattern is enhanced and more transfer of heat
in the flow occurs due to the presence of lesser viscous force in comparison with the
Coriolis force. Similarly, for the amplifying values of Λ, there is more deformation in
the streamlines and isotherms. This result shows, in the presence of Coriolis force, the
magnetic field destabilizes the system.
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• Studied the heatline patterns of the flow by using the heat function. The results show
that the deformation in the trajectories of heatlines are enhanced as E decreases. A
similar trend of deforming heatlines is observed with increasing Λ.
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Nomenclature
A Amplitude
~B Magnetic field
~Bs Static magnetic field
B0 Characteristic field strength
a Wavenumber
P Modified pressure
E Ekman number
~1Z Unit vector along Z-axis
~1X Unit vector along X-axis
q Ratio of thermal and magnetic diffusivities
d The convective zone depth
~g Gravitational field
Nu Nusselt number
H* Heat function
R Modified Rayleigh number
Rc Critical Rayleigh number
Rcs Critical Rayleigh number for stationary convection
T0 Reference temperature
T Temperature field
Ts Static temperature
∆T Temperature difference between top and bottom layers
~V Velocity field
~Vs Static velocity
U, V, W Velocity components
X, Y, Z Cartesian coordinates
t Time
RBC Rayleigh–Bénard Convection

Greek symbol
Λ Elsasser number
β Adverse temperature gradient
θ Perturbed temperature
η Magnetic diffusivity
ρ Density
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ρ0 Reference density
κ Coefficient of thermal diffusivity
ν Kinematic viscosity
α Thermal expansion coefficient
µ Dynamic viscosity
µm Magnetic permeability
~ω Vorticity field
Ω Angular velocity
ω Frequency of oscillations

Superscript
′ Dimensional form
* Perturbed quantities

References
1. Chandrasekar, S. Hydrodynamic and Hydromagnetic Stability; Oxford Clarendon Press: Oxford, UK, 1961.
2. Robert, P.H. An Introduction to Magnetohydrodynamics; American Elsevier: New York, NY, USA, 1967.
3. Cox, S.M.; Mathews, P.C. New instabilities in two-dimensional rotating convection and magnetoconvection. Phys. D 2001,

149, 210. [CrossRef]
4. Malkus, W.V.R.; Veronis, G. Finite Amplitude Cellular Convection. J. Fluid Mech. 1958, 4, 225–260. [CrossRef]
5. Kuo, H.L. Solution of the non-linear equations of the cellular convection and heat transport. J. Fluid Mech. 1960, 10, 611–630.

[CrossRef]
6. Braginsky, S.I. Magnetohydrodynamics of the Earth’s core. Geomagn. Aeron. 1964, 4, 698–712.
7. Eltayeb, I.A. Hydromagnetic convection in a rapidly rotating fluid layer. Proc. R. Soc. Lond. A 1972, 326, 229–254.
8. Eltayeb, I.A. Overstable hydromagnetic convection in a rotating fluid layer. J. Fluid Mech. 1975, 71, 161–179. [CrossRef]
9. Aurnou, J.M.; Olson, P.L. Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in

liquid gallium. J. Fluid Mech. 2000, 430, 283–307. [CrossRef]
10. Raju, C.S.K.; Ameer Ahammad, N.; Sajjan, K.; Shah, N.A.; Yook, S.; Dinesh Kumar, M. Nonlinear movements of axisymmetric

ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls with different shapes and
densities: Simple linear regression. Int. Commun. Heat Mass Trans. 2022, 135, 106110. [CrossRef]

11. Kumar, M.D.; Raju, C.S.K.; Sajjan, K.; El-Zahar, E.R.; Shah, N.A. Linear and quadratic convection on 3D flow with transpiration
and hybrid nanoparticles. Int. Commun. Heat Mass Trans. 2022, 134, 105995. [CrossRef]

12. Rani, H.P.; Rameshwar, Y.; Brestensky, J. Topology of Rayleigh-Bénard convection and magnetoconvection in plane layer. Geophys.
Astrophys. Fluid Dyn. 2019, 113, 208–221. [CrossRef]

13. Roberts, P.H.; Jones, C.A. The onset of magnetoconvection at large Prandtl number in a rotating layer 1. Finite magnetic diffusion.
Geophys. Astrophys. Fluid Dyn. 2000, 92, 289–325. [CrossRef]

14. Braginsky, S.I. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in the day length. Geomagn. Aeron.
1970, 10, 3–12.

15. Robert, P.H.; Stewartson, K. On Finite Amplitude Convection in a Rotaiting Magnetic System. Philos. Trans. R. Soc. Lond. Ser.
Math. Phys. Sci. 1974, 277, 287–315.

16. Rameshwar, Y.; Rawoof Sayeed, M.A.; Rani, H.P.; Laroze, D. Finite amplitude cellular convection under the influence of a vertical
magnetic field. Int. J. Heat Mass Transf. 2017, 114, 559–577. [CrossRef]

17. Rawoof Sayeed, M.A.; Rameshwar, Y. Finite Amplitude Cellular Thermohaline Convection. J. Heat Transf. 2022, 114, 112602.
[CrossRef]

18. Rameshwar, Y.; Srinivas, G.; Laroze, D.; Rawoof Sayeed, M.A.; Rani, H.P. Convective instabilities in binary mixture 3He-4He in
porous media. Chin. J. Phys. 2022, 77, 773–803. [CrossRef]

19. Rameshwar, Y.; Srinivas, G.; Laroze, D. Finite amplitude oscillatory convection of binary mixture kept in a porous medium.
Processes 2023, 11, 664. [CrossRef]

20. Baklouti, F.S.; Khlifi, A.; Salhi, A.; Godeferd, F.; Cambon, C.; Lehner, T. Kinetic-magnetic energy exchanges in rotating magnetohy-
drodynamic turbulence. J. Turbul. 2019, 20, 263–284. [CrossRef]

21. Gupta, V.K.; Keshri, O.P.; Kumar, A. Effect of rotational speed modulation on weakly nonlinear magneto convective heat transfer
with temperature-dependent viscosity. Chin. J. Phys. 2021, 72, 487–498. [CrossRef]

22. Jones, C.A.; Roberts, P.H. The onset of magnetoconvection at large Prandtl number in a rotating layer. II. Small magnetic diffusion.
Geophys. Astrophys. Fluid Dyn. 2000, 93, 173–226. [CrossRef]
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