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Abstract: Gene expression data are usually known for having a large number of features. Usually,
some of these features are irrelevant and redundant. However, in some cases, all features, despite
being numerous, show high importance and contribute to the data analysis. In a similar fashion,
gene expression data sometimes have limited instances with a high rate of imbalance among the
classes. This can limit the exposure of a classification model to instances of different categories,
thereby influencing the performance of the model. In this study, we proposed a cancer detection
approach that utilized data preprocessing techniques such as oversampling, feature selection, and
classification models. The study used SVMSMOTE for the oversampling of the six examined datasets.
Further, we examined different techniques for feature selection using dimension reduction methods
and classifier-based feature ranking and selection. We trained six machine learning algorithms, using
repeated 5-fold cross-validation on different microarray datasets. The performance of the algorithms
differed based on the data and feature reduction technique used.

Keywords: cancer classification; gene expression; machine learning; microarray data; sampling
methods

1. Introduction

Gene expression involves the translation of information encoded in a gene into gene
products, including proteins, tRNA, rRNA, mRNA, or snRNA. With the increase in techno-
logical standards, gene expression continues to have a sporadic increase in importance for
health and life science applications [1]. Prognostic risk scores from gene expression have
shown prominent clinical values as they are promising biomarkers. They can be used for
the prediction of prognosis, including the identification of mortality and metastasis risks
in patients. They can also be used to determine the response of patients to treatment [2].
Identifying the risk of cancer recurrence or metastasis in patients can help clinicians strate-
gically recommend effective treatment. Furthermore, the determination of response to
treatment can identify the overall survival of the patients and intuitively develop novel
drugs or appropriate treatment based on each patient’s classification. In the majority of
cancer types, HLA gene expression has been shown to prolong overall survival [3]. On
the other hand, an increase in the expression of Human Endogenous Retrovirus K mRNA
in the blood is linked to the presence of breast cancer, which shows it is a biomarker [4].
BRCA2 is another gene whose expression is associated with highly proliferative and ag-
gressive breast cancer. The higher the expression of BRCA2, the more aggressiveness the
breast cancer [5]. This indicates its potential as a biomarker for breast cancer. In essence,
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biological determinants such as predictive gene expression signatures can now be used
for the effective classification of tumors according to their subgroup [6]. The profiling of
gene expression for breast cancer or other cancer types can be further improved using
clinicopathological and microenvironmental features [7–9].

The generation of data in the biomedical and health fields has increased sporadically
while yielding samples with a high number of features [10,11]. The challenge of high-
dimensional data is the difficulty associated with manual analysis and the redundancy
that comes along with some of the features. Over the years, several studies have been
carried out based on feature selection. In [12], the authors utilized a hybrid filter and
wrapper method for the selection of features in gene expression data. The authors also
used LASSO, an embedded technique, and reported that the performance of the machine
learning algorithms was better with the implementation of LASSO on the examined high
dimensional datasets. Townes et al. [13] implemented a simple multinomial method
using generalized principal component analysis and carried out feature selection using
deviance. Different combinations of methods were further compared with current methods
to show their performance. Evolutionary algorithms have also been implemented in some
studies for the improvement of feature selection. Jain et al. [14] implemented a correlation-
based feature selection method improved with binary particle swarm optimization for
the selection of genes before classifying the cancer types using Naïve Bayes algorithm.
This method improved the classifier’s performance. In the same vein, Kabir et al. [15]
compared two different dimension reduction techniques—PCA, and autoencoders for the
selection of features in a prostate cancer classification analysis. Two machine learning
methods—neural networks and SVM—were further used for classification. The study
showed that the classifiers performed better on the reduced dataset.

Prasad et al. [16] used a recursive particle swarm optimization technique with the
integration of filter-based methods for ranking. The authors also reported improved per-
formance based on five datasets. Another similar approach for gene selection involves
the hybridization of ant colony optimization and cellular learning automata. Based on the
ROC curve evaluation of three classifiers, the proposed method selected the minimum gene
needed for maximum performance of the classifiers [17]. Similarly, Alhenawi et al. [18]
proposed a hybrid feature selection technique using Hill Climbing, the Novel LS algorithm,
and Tabu search for microarray data. This is similar to the filter-wrapper and embedded
technique utilized for gene expression data in [12]. However, Keshta et al. [19] proposed a
multi-stage algorithm for the extraction and selection of features in a cancer detection study.
It was reported that despite the reduction in the number of features used for classification,
the performance of classifiers was either enhanced or unchanged. In addition, a nested
genetic algorithm consisting of an outer genetic algorithm and an inner genetic algorithm
has previously been implemented for the gene selection of a colon and lung dataset using
5-fold cross-validation [20]. A significant increase in classification accuracy was also
reported. Several other feature/gene selection techniques are being improved and im-
plemented to improve the accuracy of cancer classification. These include robust linear
discriminant analysis [21], adaptive principal component analysis [22], and the use of deep
variational autoencoders, especially in studies that involve the use of deep learning [23].

In this study, we considered the problem of imbalanced data, which is common in
health data, before using dimension reduction techniques such as principal component
analysis (PCA), truncated singular value decomposition (TSVD), and T-stochastic neighbor
embedding (TSNE) to address the high dimensionality issue peculiar to gene expression
data. We also utilized the ability of some machine learning algorithms to rank some genes
and make selections based on a specified threshold.

2. Materials and Methods
2.1. Dataset Description

The six gene expression datasets used in this study are the brain, colon, leukemia,
lymphoma, prostate, and small blue round cell tumor (SBRCT) datasets, as explained in
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our previous work [24] and shown in Table 1. Forty-two (42) patient samples make up the
brain cancer microarray dataset. The tumors include 10 medulloblastomas, 5 atypical tera-
toid/rhabdoid tumors of the central nervous system (CNS), 5 rhabdoid tumors of the renal
and extrarenal organs, 8 supratentorial primitive neuroectodermal tumors (PNETs), 10 non-
embryonal brain tumors, and 4 normal human cerebella. 6817 genes are present in the first
oligonucleotide microarrays. They underwent thresholding during pre-processing by [25].
Therefore, for the entire dataset with five distinct sample classes, there are 5597 genes.
Alon et al. [26] conducted the initial analysis of the colon cancer microarray dataset. The
raw data from the Affymetrix oligonucleotide arrays was processed by the dataset’s original
authors. Samples of both normal and tumor tissue make up the dataset. The total number
of samples is 62, and the 2000 gene numbers after pre-processing reported by earlier au-
thors [27,28] are the total gene numbers. Acute lymphoblastic leukemia and acute myeloid
leukemia are the two kinds of acute leukemia studied for gene expression, whose results
were used to create the leukemia cancer dataset. Affymetrix high-density oligonucleotide
arrays, which had 6817 genes but were reduced to 3051 genes and further analyzed by [29],
were used to determine the levels of gene expression. 47 cases of ALL (38 B-cell ALL and
9 T-cell ALL) and 25 instances of AML make up the dataset. Dudoit et al. [30] performed
more pre-processing on the dataset. The dataset can be acquired from [27,28].

Table 1. Detailed Information about the datasets.

Dataset Classes Instances Attributes

Brain 5 42 5598
Colon 2 62 2001

Leukemia 2 72 3572
Lymphoma 3 62 4027

Prostate 2 102 6034
SBRCT 4 63 2309

The dataset for the lymphoma microarray is found in [25]. It comprises 62 samples and
4026 genes. The majority of the data samples are from three distinct adult lymphoid malig-
nancies: 42 samples represent diffuse large B-cell lymphoma (DLBCL), 9 samples come from
follicular lymphoma (FL), and 11 samples come from chronic lymphocytic leukemia (CLL).
The dataset is also available can be found in the literature [27,28]. 50 of the samples in the
prostate cancer dataset are normal prostate specimens, while the remaining 52 are tumors.
The collection contains 102 patterns of gene expression. About 12,600 genes make up this
microarray dataset, which is based on an oligonucleotide microarray. The dataset still
contains 6033 genes after pre-processing [31]. There are four distinct classifications in the
Small Round Blue-Cell Tumor (SRBCT) microarray dataset, which initially had 6567 genes
and 63 samples. Whereas, 8 samples come from NHL, 12 from NB, 20 from the RMS, and
23 from EWS. The number of genes decreased to 2308 after pre-processing. This dataset
was produced using [32] and is available in [27,28].

2.2. Methods

From the information about the datasets contained in Table 1, there is a clear indication
of the high dimensionality of the datasets. This high dimensionality informs the basics of
the feature selection and dimension reduction methods used in the study. Before analysis,
we normalized the data using the min-max normalization method. The formula for min-
max normalization is given as x′ = x−xmin

xmax−xmin
, where x is the vector in a feature column,

xmin is the minimum value in the column xmax and is the maximum value in the column.
Because the analysis deals with the selection of features, it is crucial to balance the features
so that a feature does not have more contributing capacity to the analysis than another
column. For further analysis, we note the imbalance of the data.

For health-related data, it is always essential to deal with the imbalance in order to
present a false representation of the evaluation, especially using accuracy. Subsequently,
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oversampling was carried out on each of the datasets using the SVMSMOTE technique [24].
This technique uses the support vector machine to predict new and unknown samples
around the borderline. In a support vector machine, the borderline or margin is crucial for
the establishment of the decision boundary. This is why SVMSMOTE focuses on instances
of the minority class that are found along the borderline and therefore generates more
samples in such a way that new instances of the minority class will appear where there are
fewer instances of the majority class. In this study, the nearest neighbor parameter was set
to 3 and the random state to 42.

Two categories of feature reduction methods were considered in this study. The first
one entails the use of dimension reduction methods, and the second category entails the
use of classifiers for feature ranking and selection. The dimension reduction methods used
are principal component analysis (PCA), truncated singular value decomposition (TSVD),
and T-distributed stochastic neighbor embedding (TSNE). On the other hand, the classifiers
used for ranking are random forest (RF) and logistic regression (LR). PCA tries to maintain
the data variance as much as possible. Basis vectors, also known as principal components,
along with the maximum variance of the data are chosen with the goal of minimizing the
reconstruction error over all the data points. To do this, the eigenvectors with the largest
eigenvalues are selected first. TSVD uses a matrix factorization technique that is similar
to PCA. However, TSVD is performed on the data matrix, while PCA is performed on the
covariance matrix. The name “truncated” comes from the number of columns being equal
to the truncation. That is, matrices with a specified number of columns are produced. The
primary goal of TSNE is to preserve pairwise similarities as much as possible. However,
like PCA, it does not maintain inputs. This makes it useful for visualization and exploration.
It treats similarities in the original space as probabilities and finds the embedding that
preserves probability structure. TSNE uses Kullback-Leibler (KL) divergence as a measure
of the similarity between two probability distributions.

All examined models went through a 5-fold cross-validation repeated for a total of
five replicates and were evaluated based on four different metrics: accuracy, precision,
recall, and F1-score. These evaluation criteria are calculated based on Equations (1)–(4)
respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2∗Precision ∗ Recall
Precision + Recall

(4)

where TP, FP, TN, and FN are true positive, false positive, true negative, and false negative,
respectively.

We implemented all analyses in this study on a Windows 10 64-bit operating system on
a x64-based processor computer with 64 GB of RAM. The processor specification is an Intel
(R) Core (TM) i7-9700 K CPU @ 3.6 GHz. Python 3.6 and libraries, including scikit-learn,
were utilized for the analyses. Figure 1 further shows the procedure for study analysis.
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3. Results and Discussions

For all analyses, we used repeated 5-fold cross-validation. The 5-fold cross-validation
had the parameter shuffle set to true and was repeated five times to generate 25 results
per evaluation metric. The mean of each analysis is reported as the result, while a full
report of the result with the standard deviation is given in the Supplementary Material.
For this study, we examined the different feature reduction techniques using six different
classifiers, logistic regression (LR), random forest (RF), support vector machine (SVM),
gradient boosting classifier (GBC), Gaussian Naïve Bayes (GNB), and k-nearest neighbor
(KNN). These are all commonly used classifiers that behave differently, which has thus
influenced their choice for the analyses. For the logistic regression, the parameter for
maximum iteration was set to 500, and liblinear was selected as the solver. In a similar
manner, for the random forest and gradient boosting classifiers, the number of estimators
was 500. For the support vector machine, Gaussian naïve bayes, and k-nearest neighbor,
the default sklearn parameters were used.

3.1. Performance of Classification Methods after Oversampling

Firstly, we carried out the analysis on all the datasets without any prior oversampling
or reduction. The only preprocessing technique that was applied was normalization. We
further compared the result with the result generated after the SVMSMOTE oversampling
technique was used. The results from the two analyses are shown in Tables 2–5. The
better result is highlighted. From the tables, we deduce that the majority of the analysis
with oversampling has better performance than the one without oversampling. A peculiar
benefit of oversampling is that it allows the model to be exposed and trained with a
balanced number of both the majority and minority samples. For the lymphoma dataset,
there is consistency between the original dataset and the oversampled dataset using random
forest and support vector machines.

Table 2. Comparison between the accuracy of models before and after oversampling.

Method SVMSMOTE STATUS Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
0.8167 0.8872 0.9857 1.0000 0.9110 0.9846

With 0.8667 0.9000 0.9895 0.9909 0.9229 0.9889

RF
0.7444 0.8410 0.9457 1.0000 0.8910 0.9846

With 0.8444 0.9250 0.9895 1.0000 0.8943 0.9889
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Table 2. Cont.

Method SVMSMOTE STATUS Brain Colon Leukemia Lymphoma Prostate SBRCT

SVM
0.6750 0.8564 0.9857 1.0000 0.8714 0.8897

With 0.7600 0.9125 1.0000 1.0000 0.9038 0.9234

GBC
0.6383 0.7646 0.8486 0.9833 0.8818 0.8297

With 0.6111 0.8000 0.8957 0.9814 0.8762 0.8457

GNB
0.6417 0.8551 0.9724 0.9167 0.6371 0.9205

With 0.6311 0.8625 1.0000 0.9909 0.6057 0.9778

KNN
0.6972 0.7923 0.9305 0.9846 0.8614 0.7744

With 0.7800 0.8750 0.8830 0.9727 0.8552 0.8146

Table 3. Comparison between the precision of models before and after oversampling.

Method SVMSMOTE STATUS Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
0.7783 0.8737 0.9889 1.0000 0.9178 0.9929

With 0.8567 0.9056 0.9909 0.9905 0.9324 0.9929

RF
0.6433 0.8304 0.9556 1.0000 0.9053 0.9929

With 0.8567 0.9362 0.9909 1.0000 0.9013 0.9929

SVM
0.5483 0.8438 0.9889 1.0000 0.8757 0.8625

With 0.8033 0.9249 1.0000 1.0000 0.9086 0.9200

GBC
0.5615 0.7007 0.8378 0.9905 0.8920 0.7827

With 0.6340 0.8144 0.8956 0.9771 0.8836 0.8552

GNB
0.6225 0.8421 0.9746 0.9016 0.6630 0.9125

With 0.6080 0.8706 1.0000 0.9917 0.6305 0.9762

KNN
0.5258 0.7814 0.9139 0.9833 0.8669 0.8177

With 0.6367 0.9072 0.9043 0.9742 0.8545 0.7935

Table 4. Comparison between the recall of models before and after oversampling.

Method SVMSMOTE STATUS Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
0.7850 0.8873 0.9833 1.0000 0.9048 0.9750

With 0.8750 0.8978 0.9889 0.9944 0.9149 0.9833

RF
0.7150 0.8339 0.9500 1.0000 0.8923 0.9875

With 0.8617 0.9246 0.9889 1.0000 0.8918 0.9833

SVM
0.6567 0.8506 0.9833 1.0000 0.8690 0.8564

With 0.8017 0.9103 1.0000 1.0000 0.8995 0.9324

GBC
0.5473 0.7208 0.8739 0.9778 0.8784 0.7939

With 0.6283 0.8016 0.8958 0.9849 0.8733 0.8501

GNB
0.6283 0.8530 0.9722 0.8533 0.6405 0.8806

With 0.7167 0.8585 1.0000 0.9926 0.6167 0.9733

KNN
0.6400 0.7796 0.9444 0.9926 0.8606 0.8025

With 0.7567 0.8714 0.8888 0.9778 0.8474 0.8097
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Table 5. Comparison between F1 scores of models before and after oversampling.

Method SVMSMOTE STATUS Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
0.7480 0.8736 0.9850 1.0000 0.9079 0.9795

With 0.8427 0.8978 0.9894 0.9920 0.9185 0.9862

RF
0.6467 0.8228 0.9450 1.0000 0.8895 0.9890

With 0.8307 0.9232 0.9894 1.0000 0.8904 0.9862

SVM
0.5610 0.8405 0.9850 1.0000 0.8695 0.8448

With 0.7573 0.9097 1.0000 1.0000 0.8996 0.9149

GBC
0.5288 0.6944 0.8205 0.9815 0.8776 0.7674

With 0.5730 0.7979 0.8898 0.9794 0.8715 0.8394

GNB
0.5793 0.8408 0.9715 0.8608 0.6310 0.8840

With 0.6260 0.8598 1.0000 0.9916 0.5958 0.9706

KNN
0.5467 0.7700 0.9158 0.9866 0.8594 0.7650

With 0.6660 0.8665 0.8759 0.9744 0.8497 0.7711

3.2. Performance of Classification Methods Based on Dimension Reduction Techniques

Due to the better performance of the models using the oversampled data in
Tables 2–5, the same data was used for the rest of the analyses. In Tables 6–9, we com-
pared the performance of the trained models based on three-dimensional reduction meth-
ods, namely principal component analysis (PCA), truncated singular value decomposi-
tion (TSVD), and t-distributed stochastic neighbor embedding (TSNE). The parameters
of PCA and TSVD were set to make the cumulative explained variance of the chosen
principal components 0.99. For TSNE, the number of components was set at 3, and
perplexity was set at 50. From the results shown in Tables 6–9, the performance of PCA
and TSVD is relatively similar, although in many cases, PCA had better performance. In
the majority of the analyses, the performance of the PCA or TSVD dimension-reduced
analyses was better than the performance of the classifiers before reduction. TSNE, on the
other hand, had generally poor performance for all the datasets and classifiers examined.
We suppose that this can be attributed to the fact that TSNE has random probability and
attempts to retain the variance of neighboring points, that is, local variance. In many cases,
TSNE is used just for data visualization, especially for 2D or 3D visualization of images
while retaining the local variance.

Table 6. Comparison between model accuracy for PCA, TSVD, and TSNE using an oversampled
dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR

PCA 0.9111 0.9000 0.9895 0.9909 0.9229 0.9889

TSVD 0.8667 0.9000 0.9895 0.9909 0.9229 0.9889

TSNE 0.2378 0.5500 0.6497 0.6139 0.4990 0.2731

RF

PCA 0.7822 0.8250 0.8842 0.9545 0.8176 0.8591

TSVD 0.7156 0.8750 0.8842 1.0000 0.8271 0.8164

TSNE 0.2378 0.6500 0.6696 0.6229 0.4605 0.4041

SVM

PCA 0.7356 0.9250 1.0000 1.0000 0.9133 0.9012

TSVD 0.5067 0.9000 1.0000 0.9909 0.8457 0.9123

TSNE 0.2178 0.6000 0.6918 0.6961 0.4795 0.4047
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Table 6. Cont.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

GBC

PCA 0.6422 0.7850 0.8942 0.9537 0.8210 0.8668

TSVD 0.6644 0.8125 0.8731 0.9537 0.8290 0.8351

TSNE 0.2800 0.6125 0.6744 0.4667 0.4463 0.3625

GNB

PCA 0.7578 0.8250 0.8415 0.9087 0.6533 0.7281

TSVD 0.7356 0.8750 0.8520 0.9268 0.6433 0.6953

TSNE 0.2356 0.6125 0.6386 0.6043 0.4405 0.3497

KNN

PCA 0.7822 0.8750 0.9041 0.9727 0.8452 0.8041

TSVD 0.7800 0.8750 0.8830 0.9727 0.8652 0.8146

TSNE 0.2600 0.5875 0.6497 0.6697 0.4429 0.3708

Table 7. Comparison between model precision for PCA, TSVD, and TSNE using an oversampled
dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR

PCA 0.8900 0.9056 0.9909 0.9905 0.9324 0.9929

TSVD 0.8567 0.9056 0.9909 0.9905 0.9324 0.9929

TSNE 0.1660 0.5568 0.6548 0.6207 0.5084 0.2679

RF

PCA 0.8250 0.8460 0.9054 0.9744 0.8187 0.8771

TSVD 0.7283 0.8888 0.9054 1.0000 0.8234 0.8290

TSNE 0.2233 0.6658 0.6603 0.6270 0.4732 0.4012

SVM

PCA 0.7817 0.9434 1.0000 1.0000 0.9239 0.8925

TSVD 0.4844 0.9056 1.0000 0.9905 0.8468 0.9067

TSNE 0.1647 0.6076 0.6880 0.6946 0.4736 0.4241

GBC

PCA 0.6143 0.8075 0.8913 0.9619 0.8384 0.8720

TSVD 0.6407 0.8190 0.8688 0.9528 0.8563 0.8367

TSNE 0.2397 0.6213 0.6882 0.4888 0.4560 0.3752

GNB

PCA 0.7590 0.8417 0.8626 0.9331 0.6732 0.7521

TSVD 0.7123 0.8999 0.8756 0.9466 0.6646 0.7282

TSNE 0.1800 0.6484 0.6397 0.6034 0.4400 0.3502

KNN

PCA 0.6767 0.9072 0.9157 0.9742 0.8449 0.7810

TSVD 0.6367 0.9072 0.9043 0.9742 0.8658 0.7935

TSNE 0.2200 0.5889 0.6600 0.6743 0.4497 0.3923
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Table 8. Comparison between model recall for PCA, TSVD, and TSNE using an oversampled dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR

PCA 0.9083 0.8978 0.9889 0.9944 0.9149 0.9833

TSVD 0.8750 0.8978 0.9889 0.9944 0.9149 0.9833

TSNE 0.2133 0.5528 0.6648 0.5949 0.5106 0.2908

RF

PCA 0.8517 0.8274 0.8929 0.9630 0.8157 0.8844

TSVD 0.7717 0.8792 0.8929 1.0000 0.8195 0.8427

TSNE 0.2617 0.6581 0.6566 0.6036 0.4738 0.4147

SVM

PCA 0.7817 0.9214 1.0000 1.0000 0.9072 0.9074

TSVD 0.6100 0.8978 1.0000 0.9944 0.8459 0.9233

TSNE 0.2133 0.5986 0.6941 0.7038 0.4873 0.4318

GBC

PCA 0.6413 0.7848 0.8993 0.9589 0.8061 0.8849

TSVD 0.6613 0.8140 0.8771 0.9626 0.8101 0.8378

TSNE 0.2440 0.6188 0.6924 0.4256 0.4572 0.3864

GNB

PCA 0.8017 0.8242 0.8418 0.8804 0.6506 0.7124

TSVD 0.7617 0.8728 0.8518 0.9081 0.6415 0.6736

TSNE 0.2533 0.6139 0.6479 0.5776 0.4488 0.3746

KNN

PCA 0.7867 0.8714 0.9099 0.9778 0.8363 0.8035

TSVD 0.7567 0.8714 0.8888 0.9778 0.8565 0.8097

TSNE 0.2667 0.5897 0.6628 0.6759 0.4473 0.4254

Table 9. Comparison between model F1 scores for PCA, TSVD, and TSNE using an oversampled
dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR

PCA 0.8827 0.8978 0.9894 0.9920 0.9185 0.9862

TSVD 0.8427 0.8978 0.9894 0.9920 0.9185 0.9862

TSNE 0.1780 0.5457 0.6417 0.5811 0.4912 0.2504

RF

PCA 0.7923 0.8210 0.8806 0.9585 0.8131 0.8533

TSVD 0.6977 0.8740 0.8806 1.0000 0.8206 0.8076

TSNE 0.2180 0.6458 0.6488 0.5881 0.4591 0.3809

SVM

PCA 0.7373 0.9219 1.0000 1.0000 0.9092 0.8871

TSVD 0.4842 0.8978 1.0000 0.9920 0.8422 0.9042

TSNE 0.1615 0.5927 0.6809 0.6750 0.4665 0.4004

GBC

PCA 0.5804 0.7791 0.8903 0.9580 0.8110 0.8597

TSVD 0.5988 0.8110 0.8684 0.9542 0.8152 0.8278

TSNE 0.2245 0.6102 0.6666 0.4306 0.4398 0.3361

GNB

PCA 0.7522 0.8209 0.8342 0.8866 0.6387 0.7102

TSVD 0.7056 0.8699 0.8442 0.9125 0.6274 0.6859

TSNE 0.1880 0.6026 0.6297 0.5553 0.4318 0.3318

KNN

PCA 0.7003 0.8665 0.8992 0.9744 0.8389 0.7601

TSVD 0.6660 0.8665 0.8759 0.9744 0.8594 0.7711

TSNE 0.2227 0.5751 0.6376 0.6491 0.4394 0.3804
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3.3. Performance of Classification Methods Based on Classifier-Based Gene Ranking and Selection

Furthermore, we used two classifiers (random forest and logistic regression) for feature
ranking and selection. The oversampled datasets were also used for analyses. For the
feature selection based on random forest, we used 500 estimators as the parameters and
only selected features that were above the mean threshold. On the other hand, for feature
selection based on logistic regression, only features above the median threshold for each
were selected. We have employed different thresholds for the two techniques to discover
if there would be a significant difference in the performance of the classifiers based on
the threshold of the feature selection. For the Lymphoma dataset, both random forest
and logistic regression had the same performance across evaluations. This was similarly
noticed with the small blue round cell tumor (SBRCT) dataset, except with the use of
gradient boosting classifiers, and k-nearest neighbor. Overall, Tables 10–13 show that both
classifiers had good performance in the ranking and selection of features, although they
utilize different strategies for their threshold.

Table 10. Comparison between model accuracy for RF and LR using an oversampled dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
RF 0.9333 0.9000 0.9895 1.0000 0.9514 0.9889

LR 0.9556 0.9125 1.0000 1.0000 0.9610 0.9889

RF
RF 0.8889 0.9000 0.9895 1.0000 0.9324 0.9889

LR 0.8667 0.9250 1.0000 1.0000 0.9229 0.9889

SVM
RF 0.9111 0.9125 1.0000 1.0000 0.9324 0.9889

LR 0.9333 0.9375 1.0000 1.0000 0.9229 0.9889

GBC
RF 0.6289 0.8600 0.8978 0.9814 0.8686 0.8591

LR 0.5889 0.8025 0.8957 0.9814 0.8662 0.8568

GNB
RF 0.7178 0.9000 1.0000 1.0000 0.8357 0.9889

LR 0.7400 0.9250 1.0000 1.0000 0.7110 0.9889

KNN
RF 0.8667 0.9000 0.9895 0.9909 0.9229 0.9784

LR 0.9556 0.9125 0.9778 0.9909 0.8938 0.9673

Table 11. Comparison between model precision for RF and LR using an oversampled dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
RF 0.9433 0.9056 0.9909 1.0000 0.9629 0.9929

LR 0.9633 0.9249 1.0000 1.0000 0.9691 0.9929

RF
RF 0.8767 0.9056 0.9909 1.0000 0.9428 0.9929

LR 0.8767 0.9362 1.0000 1.0000 0.9324 0.9929

SVM
RF 0.8900 0.9249 1.0000 1.0000 0.9428 0.9929

LR 0.9500 0.9516 1.0000 1.0000 0.9324 0.9929

GBC
RF 0.6759 0.8754 0.8963 0.9771 0.8770 0.8685

LR 0.6270 0.8103 0.8956 0.9771 0.8758 0.8594

GNB
RF 0.7200 0.9056 1.0000 1.0000 0.8385 0.9929

LR 0.7667 0.9335 1.0000 1.0000 0.7219 0.9929

KNN
RF 0.8167 0.9056 0.9909 0.9905 0.9344 0.9804

LR 0.9633 0.9266 0.9714 0.9905 0.9012 0.9720
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Table 12. Comparison between model recall for RF and LR using an oversampled dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
RF 0.9417 0.8978 0.9889 1.0000 0.9428 0.9833

LR 0.9617 0.9103 1.0000 1.0000 0.9553 0.9833

RF
RF 0.8883 0.8978 0.9889 1.0000 0.9226 0.9833

LR 0.8750 0.9246 1.0000 1.0000 0.9149 0.9833

SVM
RF 0.9083 0.9103 1.0000 1.0000 0.9226 0.9833

LR 0.9483 0.9357 1.0000 1.0000 0.9149 0.9833

GBC
RF 0.6657 0.8560 0.8990 0.9849 0.8649 0.8611

LR 0.6117 0.8041 0.8958 0.9849 0.8603 0.8591

GNB
RF 0.7850 0.8978 1.0000 1.0000 0.8297 0.9833

LR 0.7983 0.9228 1.0000 1.0000 0.7156 0.9833

KNN
RF 0.8633 0.8978 0.9889 0.9944 0.9101 0.9762

LR 0.9617 0.9107 0.9846 0.9944 0.8819 0.9662

Table 13. Comparison between model F1 scores for RF and LR using an oversampled dataset.

Method FS Method Brain Colon Leukemia Lymphoma Prostate SBRCT

LR
RF 0.9253 0.8978 0.9894 1.0000 0.9481 0.9862

LR 0.9520 0.9097 1.0000 1.0000 0.9592 0.9862

RF
RF 0.8640 0.8978 0.9894 1.0000 0.9279 0.9862

LR 0.8493 0.9232 1.0000 1.0000 0.9185 0.9862

SVM
RF 0.8827 0.9097 1.0000 1.0000 0.9279 0.9862

LR 0.9360 0.9356 1.0000 1.0000 0.9185 0.9862

GBC
RF 0.6066 0.8570 0.8926 0.9794 0.8637 0.8515

LR 0.5470 0.8014 0.8898 0.9794 0.8591 0.8481

GNB
RF 0.7063 0.8978 1.0000 1.0000 0.8302 0.9862

LR 0.7320 0.9237 1.0000 1.0000 0.7075 0.9862

KNN
RF 0.8153 0.8978 0.9894 0.9920 0.9170 0.9752

LR 0.9520 0.9106 0.9750 0.9920 0.8879 0.9651

4. Conclusions

Data generated in the medical and bioinformatics fields are known to have a large
number of features. Analyzing these features manually is exhausting, and this is where
the utilization of machine learning tools comes in handy. Another major issue with health
data is the high rate of class imbalance. This sometimes affects the integrity and robustness
of models built using such data. Models might be unable to accurately predict the class
of unseen instances in the minority class. In this study, we have considered SVMSMOTE
for oversampling the data and thereby increasing the number of instances of each data
point. We discover that, generally, the performance of the examined models was better
after oversampling. The application of the dimension reduction techniques and feature
ranking and selection further improved the performance in many instances. Principal
component analysis and truncated singular value decomposition performed better than
t-distributed stochastic neighbor embedding. TSNE in fact had a generally bad performance,
as shown in Tables 6–9. It is advised to use TSNE primarily for dimension reduction for data
visualization. In the same vein, both random forest and logistic regression classifiers were
effective in the selection of features despite utilizing different threshold criteria. Although
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a low number of analyses with the original dataset had good performance, the majority of
the analyses with SVMSMOTE and feature reduction had better performance, saved time,
and enhanced the interpretability of models. Future works will investigate the analysis of
gene expression data and cancer classification using different oversampling and dimension
reduction methods on different microarray datasets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11071940/s1, Table S1: Comparison between performance with
original dataset and performance after oversampling. Table S2: Comparison between performance of
PCA, TSVD, and TSNE using oversampled dataset. Table S3: Comparison between performance of
RF and LR using oversampled dataset.
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