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Abstract: Orthonormal subspace analysis (OSA) is proposed for handling the subspace decomposition
issue and the principal component selection issue in traditional key performance indicator (KPI)-
related process monitoring methods such as partial least squares (PLS) and canonical correlation
analysis (CCA). However, it is not appropriate to apply the static OSA algorithm to a dynamic process
since OSA pays no attention to the auto-correlation relationships in variables. Therefore, a novel
dynamic OSA (DOSA) algorithm is proposed to capture the auto-correlative behavior of process
variables on the basis of monitoring KPIs accurately. This study also discusses whether it is necessary
to expand the dimension of both the process variables matrix and the KPI matrix in DOSA. The
test results in a mathematical model and the Tennessee Eastman (TE) process show that DOSA can
address the dynamic issue and retain the advantages of OSA.

Keywords: process monitoring; key performance indicators; orthonormal subspace analysis;
dynamic process

1. Introduction

Process monitoring and fault detection are two important aspects of process systems
engineering because they are the key issues to address in order to ensure the safety and the
normal operation of industrial processes [1].As such, traditional data-driven algorithms
such as principal components analysis (PCA) [2] and independent components analysis
(ICA) [3] have been proposed to monitor processes and to improve the product quality.
PCA and ICA can effectively detect faults in a process. However, in the actual production
process at a modern industrial plant, there are a large number of controllers, sensors and
actuators distributed widely, and not all data need to be analyzed [4,5]. That is to say, not
all process variables directly affect the safety and the product quality. The information
highly relevant to the product quality and economic benefits are called key performance
indicators (KPIs), and their role should be emphasized in process monitoring [6,7]. It
is worth mentioning that both PCA and ICA monitor KPI-related and KPI-unrelated
components simultaneously, and they perform poorly in detecting faults in KPI-related
components because the fault information might be submersed in the disturbances of
numerous KPI-unrelated components. As such, KPI-related process monitoring such as
partial least squares (PLS) [8] and canonical correlation analysis (CCA) [9] algorithms
have developed rapidly in recent decades, and this development is essential for ensuring
production safety and obtaining superior operation performance.

However, there are still some drawbacks to these traditional KPI algorithms. First,
the residual subspace calculated by the PLS algorithm is non-orthogonal to the principal
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components (PCs) subspace, which means that some KPI-related information may leak into
the residual spaces [10,11]. Second, the CCA algorithm requires KPIs to be available during
both offline training and online monitoring stages as it uses KPI variables to construct
indices [12,13]. Third, both PLS and CCA algorithms are unable to extract PCs [14,15].

To address the above issues in traditional KPI-related algorithms, Lou et al. proposed
orthonormal subspace analysis (OSA) [16]. OSA can divide the process data and KPIs into
three orthonormal subspaces, namely, subspaces of KPI-related components, KPI-unrelated
components in process data, and process-unrelated components in KPIs. Furthermore,
the cumulative percent variance method is used to select the number of PCs in an OSA
algorithm. Due to the ability of the OSA algorithm to independently monitor each subspace,
the OSA algorithm is not limited by KPIs during the offline and online stages.

The original OSA was proposed for addressing the monitoring issues in static process
problems, so it assumes that the observations are time-independent. However, dynamic fea-
tures widely exist in most industrial processes, and, hence, the auto-correlation relationships
in variables interfere with the extraction of the KPI-related information [17,18]. Therefore,
the subspaces obtained by the OSA algorithm are not orthonormal in dynamic processes.

The “time lag shift” method, which lists the historical data as additional variables
to the original variable set, is an effective measure for handling the dynamic issue, and
it has been adopted in the PLS and CCA algorithms, i.e., the dynamic PLS (DPLS) and
dynamic CCA (DCCA) algorithms. Therefore, in this paper, the “time lag shift” method is
also combined with the OSA algorithm, named the dynamic OSA (DOSA) algorithm, and
is applied to the Tennessee Eastman (TE) process to illustrate its efficiency.

The contributions of this study are as follows. First, this study proposes DOSA for
dealing with the low detection rate problem caused by the dynamics processes. DOSA
can determine whether the fault in a dynamics process originates from KPI-related or
KPI-unrelated process variables or the measurement of KPIs. Second, this study discusses
whether it is necessary to expand the dimension of both the process variables matrix and
the KPI matrix in order to reduce the computation. At the same time, a new method to
select the time lag number in the “time lag shift” structure is proposed. Additionally, we
analyze the impact of the sampling period on DOSA. Third, we place an emphasis on the
real-time nature of information and design new monitoring indices. Finally, this study
compares the detection rates of the OSA, DOSA, DPLS, and DCCA algorithms.

The remainder of this paper is organized into five sections. Section 2 discusses the
classical OSA algorithm and the “time lag shift” method. Section 3 proposes DOSA for
dynamics process monitoring. Section 4 compares the DOSA algorithm with other KPI-
related algorithms based on TE process testing. Section 5 reviews the contributions of
this work.

2. Methods
2.1. Orthonormal Subspace Analysis

Here, we take X ∈ Rn×s as the process variables matrix (where n is the number of
samples, and s is the number of process variables), and the standard PLS identification
technique introduces the KPI matrix as Y ∈ Rn×r (where r is the number of KPIs). OSA
decomposes both X and Y into the following bilinear terms:{

X = TcomΞT
X + EOSA

Y = TcomΞT
Y + FOSA

, (1)

where Tcom ∈ Rn×φ (φ is the number of principal components) is the common latent
variables shared by X and Y; ΞX ∈ Rs×φ and ΞY ∈ Rr×φ are the transformation matrices;
and EOSA ∈ Rn×s and FOSA ∈ Rn×r are the residual matrices.

Then, OSA, along with PLS and CCA, is called ‘KPI-related algorithm’. As opposed to
PLS and CCA, the extracted subspaces of OSA are proved to be orthogonal [16]. That is to
say, Tcom, EOSA, and FOSA are orthogonal in Equation (1), and, most importantly, they can
be monitored independently.
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2.2. The “Time Lag Shift” Method

The proposed OSA algorithm in Section 2.1 implicitly assumes that the current ob-
servations are statistically independent to the historical observations [19,20]. That is to
say, OSA only considers the correlation between variables at the same time but does not
consider the mutual influence of variables at different times. However, most data from
industrial processes show degrees of dynamic characteristics; that is, the sampling data at
different times are correlated. For such a process, the static OSA algorithm is not applicable.

The most common method to address such a problem is to use an autoregressive
(AR) model to describe the dynamic characteristics. Similarly, the OSA algorithm can be
extended to take into account the serial correlations by augmenting each observation vector,
X(t) ∈ R1×s or Y(t) ∈ R1×r, at the current time t with the previous lx or ly observations in
the following manner [21]:{

X̃(t) = [X(t), X(t− 1), . . . , X(t− lx)] ∈ R1×[(lx+1)×s]

Ỹ(t) =
[
Y(t), Y(t− 1), . . . , Y(t− ly)

]
∈ R1×[(ly+1)×s] , (2)

As known in Equation (2), the first s columns of X̃(t) and the first r columns of Ỹ(t)
represent the data at the current time, and the rest represent the data at the past time.
For n sampling times, one can obtain the augmented matrices X̃ ∈ Rn×[(lx+1)×s] and
Ỹ ∈ Rn×[(ly+1)×s].

By performing dimension expansion on the data matrix in Equation (2), the static
OSA methods can be used to analyze the autocorrelation, cross-correlation, and hysteresis
correlation among the data synchronously. That is to say, X̃ and Ỹ will be decomposed by
OSA. More details can be found in Section 3.

3. Dynamics Orthonormal Subspace Analysis
3.1. Determination of the Lag Number

As the traditional lag determination methods, such as the Akaike information criterion
(AIC) [22] and the Bayesian information criterion (BIC) [23], are only suitable for a steady
state, a new lag determination method should be proposed for DOSA.

Suppose the relationship between the data at the current time and the past time is
as follows:{

X(t) = X(t− 1)A1 + X(t− 2)A2 + . . . + X(t− lx)Alx + Dx(t) = X(t)A + Dx(t)
Y(t) = Y(t− 1)B1 + Y(t− 2)B2 + . . . + Y(t− ly)Bly + Dy(t) = Y(t)B + Dy(t)

, (3)

where X(t) = [X(t− 1), X(t− 2), . . . , X(t− lx)] ∈ R1×(lx×s),Y(t) = [Y(t− 1), Y(t− 2), . . . ,
Y(t − ly)] ∈ R1×(ly×r), A = [A1, A2, . . . , Alx ] ∈ Rn×(lx×s), and B =

[
B1, B2, . . . , Bly

]
∈

Rn×(ly×r). Dx(t) ∈ R1×s and Dy(t) ∈ R1×s denote the disturbance introduced at each time,
and it is statistically independent of the past data. The coefficient matrices A and B can
be estimated from the least square method as follows: A = [XT

(t)X(t)]
−1

XT
(t)X(t)

B = [YT
(t)Y(t)]

−1
YT

(t)Y(t)
. (4)

Therefore, Dx(t) and Dy(t) can be estimated as follows: Dx(t) = X(t)−X(t)A = X(t)−X(t)[XT
(t)X(t)]

−1
XT

(t)X(t)

Dy(t) = Y(t)− Y(t)B = Y(t)− Y(t)[YT
(t)Y(t)]

−1
YT

(t)Y(t)
. (5)
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Then, the optimal number of time lag will be the one that creates the following indices:
Lagx = ‖

n
∑

t=1
Dx(t)‖

2
= ‖X−X[XTX]

−1
XTX‖

2

Lagy = ‖
n
∑

t=1
Dy(t)‖

2
= ‖Y− Y[YTY]

−1
YTY‖

2 (6)

the minimum and the indices will not change significantly if we continue increasing the
time lag.

As opposed to X(t) and Y(t), Dx(t) and Dy(t) are time-uncorrelated and independent
of the initial states of X(t) and Y(t), so they can be adopted to the dynamic process in both
steady and unsteady states.

Additionally, we also set up an index to describe ‘the value of Lagx or Lagy would not
change significantly’ as shown in Equation (7):

RC% =
|Lagi−1 − Lagi|

Lagi−1
× 100%, (7)

where Lagi represents the value of Lagx or Lagy when the lag number is lx(lx > 1) or
ly(ly > 1), and Lagi−1 represents the value of Lagx or Lagy when the lag number is lx − 1 or
ly − 1. If the value of RC% begins to be less than 5%, we will say that ‘the value of Lagx or
Lagy would not change significantly’.

3.2. DOSA Procedure

Step 1. The “Time Lag Shift” method mentioned in Section 2.2. Calculate the lag number
of lx and ly in Equation (6). Then, augment X(t) and Y(t) with the previous observations
shown in Equation (2). In doing so, we can obtain the augmented matrix X̃ and Ỹ with
n samples.
Step 2. Traditional OSA mentioned in Section 2.1.

(a) Calculate the Y-related component XOSA ∈ Rn×[(lx+1)×s] and the X-related component
YOSA ∈ Rn×[(ly+1)×s] using Equation (8). XOSA and YOSA are both called ‘the common
component’ and are shown to be equal in reference [16], as shown below: XOSA = Ỹ(Ỹ

T
Ỹ)
−1

Ỹ
T

X̃

YOSA = X̃(X̃
T

X̃)
−1

X̃
T

Ỹ
. (8)

We tend to focus on process variables related to KPIs in industrial processes. By
extracting common components and monitoring them (Step 3), one can know whether
there are faults in the variables related to KPIs.

(b) Calculate the non-Y-related component EOSA ∈ Rn×[(lx+1)×s] and the non-X-related
component FOSA ∈ Rn×[(ly+1)×s] as{

EOSA = X̃−XOSA
FOSA = Ỹ− YOSA

, (9)

where EOSA and FOSA are both called ‘the unique component’. By extracting and
monitoring the unique components (Step 3), one can know whether there are faults in
the variables unrelated to KPIs.

(c) Extract the PCs in XOSA using the PCA decomposition method because the variables
in XOSA might be highly correlated:{

XOSA = TcomxPT
com + E f

Tcomx = XOSAPcom
, (10)
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where Tcomx ∈ Rn×k represents the score matrix of the common component; Pcom ∈
R[(lx+1)×s]×k is the loading matrix of the common component; E f ∈ Rn×[(lx+1)×s] is
the residual matrix; and k is the number of PCs. In this step, the PCs are selected by
using the CPV method, and the threshold value follows the PCA criterion, e.g., 85%.

In theory, the score matrices of the common components XOSA and YOSA are equal
unless there is something wrong with the relationship between X and Y. We use the sum of
squares of the score matrices to monitor whether there are faults in the relationship between
X and Y (Step 3). Similarly to Equation (10), the score matrix of the common component is
Tcomy = YOSAPcom.

Step 3. Monitoring indices calculation.

Taking into account the real-time nature of the information, PCA monitoring is not
directly performed for XOSA, EOSA, and FOSA because these components contain a great
amount of information at the past time. The calculation of the indices if as follows:

(a) The first s columns of XOSA are monitored by the PCA approach and can then be used
to generate the T2

C and SPEC indices. That is to say, we only monitor the data at the
current time.

(b) Similarly, the first s columns of EOSA and the first r columns of FOSA can be monitored
by the PCA approach and can then be used to generate the indices T2

E, T2
F , SPEE,

and SPEF.
(c) Furthermore, if there is something wrong with the relationship between X and Y, there

will be significant differences between the score matrices Tcomx and Tcomy. Therefore,
the following index can be used to test the abnormal relationship:

SPEXY = (Tcomx − Tcomy)(Tcomx − Tcomy)
T. (11)

Figure 1 summarizes the procedure presented below.
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3.3. A Dynamics Model Analyzed with DOSA
3.3.1. Dynamics Model

To analyze the characteristics of the DOSA method and compare its performance with
the OSA algorithm, we use a simplistic simulation process in illustrating the monitoring
performances of them. Consider a large-scale process in which each single subprocess can
be expressed using a time-invariant, state-space model as follows:{

X(t) = C[X(t− 1), X(t− 2), X(t− 3)] + D[s1, s2] + ξ
Y(t) = E[Y(t− 1), Y(t− 2), Y(t− 3)] + F[s1, s2] + ζ

, (12)

where s1, s2, and s3 are independent Gaussian distributed vectors; ξ and ζ are the noisy
components, which are independent of the process measurements; and C and E and D
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and F are the coefficient matrices of the dynamic and static parts, respectively. Here, we
take three algorithms into consideration: OSA; the DOSA that expands the dimension of
X, which is denoted as DOSA-X; the DOSA that expands the dimension of both X and Y,
which is denoted as DOSA-XY.

3.3.2. The Optimal Numbers of Time Lag

To determine the number of time lag, the dynamics model with several numbers of
lags that are different from the normal data are fitted. Here, lx and ly are the numbers of
lags in matrix X and Y, respectively. In this work, we set lx ∈ [0.1 . . . , 6] and ly ∈ [0.1 . . . 6],
and several values of Lagx and Lagy are shown in Figures 2 and 3.
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From the analyses shown in Figures 2 and 3, the values of Lagx(lx = 3) would be
lowest if lx was less than or equal to 3, and the values of Lagy(ly = 3) tended to be lowest
if ly was less than or equal to 3. At this time, the values of both Lagx and Lagy would not
decrease significantly if we continued increasing the values of lx and ly. Therefore, the
optimal lag numbers were lx = 3 and ly = 3, and this can be seen intuitively in the diagram.
Furthermore, the several values of Lagx, Lagy, and RC% are listed in Tables 1 and 2.

Table 1. The values of Lagx under different lx values.

lx = 0 lx = 1 lx = 2 lx = 3 lx = 4 lx = 5 lx = 6

Lagx 8000.4 5489.7 3620.8 1540.9 1540 1539.7 1538.6

RC% / 31.38% 34.04% 57.44% 0.06% 0.19% 0.71%
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Table 2. The values of Lagy under different ly values.

ly = 0 ly = 1 ly = 2 ly = 3 ly = 4 ly = 5 ly = 6

Lagy 7999.1 6327.2 5864.1 5276.4 5275 5274.3 5270.1

RC% / 20.9% 7.32% 10.02% 0.03% 0.01% 0.08%

From the data presented in Tables 1 and 2, the values of RC% were less than 5% when
lx and ly gradually increased from 3. This also means that the optimal numbers of lags were
lx = 3 and ly = 3, which is consistent with the true value.

Here, we take the traditional BIC method, which has a larger penalty than the AIC, as
an example to calculate the optimal number of this model. When selecting the best model
from a set of alternative models, the model with the lowest BIC should be chosen.

From the data presented in Tables 3 and 4, the optimal numbers of lags were lx = 2
and ly = 3. However, we introduced a third-order lag as Section 3.3.1 mentioned. Therefore,
instead of the BIC, the original method of this work was applied to test the algorithm.

Table 3. The values of BIC under different lx values.

lx = 0 lx = 1 lx = 2 lx = 3 lx = 4 lx = 5 lx = 6

BIC −11,427.54 −11,423.19 −11,453.90 −11,447.21 −11,442.30 −11,439.81 −11,433.15

Table 4. The values of BIC under different ly values.

ly = 0 ly = 1 ly = 2 ly = 3 ly = 4 ly = 5 ly = 6

BIC −9208.71 −9214.21 −9237.06 −9237.20 −9230.39 −9223.74 −9218.98

3.3.3. Testing Results

(a) Fault 1: a step change with an amplitude of 3 in s1. Certainly, the static parameter
s1 is the unique part of X. The detection rates and false alarm rates of three algorithms
are shown in Table 5. In Table 5, the detection rate of T2

E was extremely high, so we could
correctly infer that the fault occurred in the unique part of X. In other words, it is possible
that there was a fault in the process variables instead of in the measurement of the KPIs. It
is more important that the detection rates of the two dynamics monitoring methods were
higher than the detection rate of the OSA. Thus, the dynamics problem could be solved by
DOSA in this case. Furthermore, the effect of the dimension expansion for both X and Y was
better than the dimension expansion for X alone. It can be hypothesized that expanding
the dimension of the matrix can improve the sensitivity of the algorithm to the fault.

(b) Fault 2: a step change with an amplitude of 3 in s3. It is obvious that the static
parameter s3 is the unique part of Y. The results are shown in Table 6. As can be seen in
Table 6, we had already expanded the dimension of X, but the detection rates of all of the
indices were extremely low. Then, we found that the index T2

F performed better while
expanding the dimension of both X and Y. This means that the fault occurred in the unique
part of Y. That is to say, there was a fault in the measurement of the KPIs instead of the
process variables. In addition, the detection rate of DOSA-XY was extremely higher than
the other two algorithms. Thus, an algorithm for the dimension expansion of data matrices
with dynamic processes performs well while also solving the dynamics issue.
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Table 5. Fault 1 detection rates and false alarm rates of three algorithms.

Methods OSA

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 1.2 2.4 61.68 15.17 1.8 1 14.97

False alarm rate 1.6 0.6 0.8 0.8 1 0.4 1

Methods DOSA-X

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 1.6 2.2 87.62 55.69 2 1.2 2.4

False alarm rate 1.8 0.6 1.2 2.2 0.8 0.4 0.8

Methods DOSA-XY

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 0.8 1.8 93.21 53.29 2.2 1.2 10.58

False alarm rate 0.8 0.4 2.4 1.2 0.4 0.8 0.2

Table 6. Fault 2 detection rates and false alarm rates of three algorithms.

Methods OSA

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 0.6 1 1 0.2 42.91 8.58 32.73

False alarm rate 1 0.8 1.6 1 0.8 1.2 2

Methods DOSA-X

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 0.4 0.8 1 0.8 44.31 5.6 44.71

False alarm rate 1 1.6 1.2 2 1.2 1.2 1

Methods DOSA-XY

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 0.6 0.2 2.4 0.4 91.82 9.58 62.48

False alarm rate 2.81 0.6 3.61 1.4 1.6 1.6 1

(c) Fault 3: a step change with an amplitude of 3 in s2. Certainly, the static parameter
s2 is the common part of both X and Y. The results are shown in Table 7. As can be seen in
Table 7, we could not judge the location of the fault if we did not expand the dimension
of Y because the detection rates of most of the indices were about 50%. Then, the index
T2

C performed better while expanding the dimension of both X and Y. This means that the
fault occurred in the common part of both X and Y. That is to say, there was a fault in both
the process variables and in the measurement of the KPIs. In addition, the detection rate of
DOSA-XY was extremely higher than that of the other two algorithms. Thus, an algorithm
for the dimension expansion of data matrices with dynamic processes performs well while
dealing with the dynamics issue.
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Table 7. Fault 3 detection rates and false alarm rates of three algorithms.

Methods OSA

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 45.51 29.34 30.94 30.94 45.51 12.38 16.97

False alarm rate 1.4 1 2.61 1.6 1.4 1.2 0.8

Methods DOSA-X

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 45.51 15.17 50.7 52.5 45.51 25.55 1.4

False alarm rate 1.4 1.6 1.2 2 1.4 2.4 1.6

Methods DOSA-XY

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 90.82 65.67 7.19 37.72 49.1 52.5 11.98

False alarm rate 3.41 1.4 0.8 2.61 2.2 1.6 1.2

(d) Fault 4: the matrix D changed to D f :
D =

[
0.1
0.1

0.1
0

0.2
0.1

0
0.1

]
D f =

[
0.1
0.1

0.3
0

0.2
0.1

0
0.1

] . (13)

Generally, the coefficient matrix D affects the relationship of X and Y. The results are
shown in Table 8. In Table 8, the index SPEXY that specifically detects the relationship of X
and Y performed well. We could infer that there was a high probability of a fault in D or
F. Then, the detection rate of DOSA-XY was extremely higher than that of the other two
algorithms. Thus, an algorithm for the dimension expansion of both X and Y performs well
while also solving the dynamics issue.

Table 8. Fault 4 detection rates and false alarm rates of three algorithms.

Methods OSA

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 1.2 1.8 1.4 2 1.2 0.2 64.27

False alarm rate 1.2 0.6 1.2 1.2 1.2 0.8 0.4

Methods DOSA-X

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 1.2 1 0.6 1 1.2 1.6 77.45

False alarm rate 1.2 1.2 1.2 1.8 1.2 1.2 1

Methods DOSA-XY

Indices T2
C SPEC T2

E SPEE T2
F SPEF SPEXY

Detection rate 0.4 1.6 1 0.6 1 0.8 99.6

False alarm rate 0.4 1.4 2.81 0.4 1.2 1 1.6

3.3.4. The Influence of Sampling Period on DOSA

In sum, it is necessary to expand the dimension of both X and Y. In this section, we
will take the effect of the sampling rate on the DOSA algorithm into account. The dynamics
models and faults in Sections 3.3.1 and 3.3.3 still apply to this section.
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Firstly, the section will discuss the effect of doubling the sampling period on the
selection of the lag number. We still set lx ∈ [0.1 . . . , 6] and ly ∈ [0.1 . . . , 6], followed
by several values of Lagx and Lagy, and the corresponding changes in rate are listed in
Tables 9 and 10.

Table 9. The values of Lagx for doubling the sampling period.

lx = 0 lx = 1 lx = 2 lx = 3 lx = 4 lx = 5 lx = 6

Lagx 501 202.26 194.27 186.8 183.66 179.02 176.04

RC% / 59.63% 3.95% 3.84% 1.68% 2.53% 1.66%

Table 10. The values of Lagy for doubling the sampling period.

ly = 0 ly = 1 ly = 2 ly = 3 ly = 4 ly = 5 ly = 6

Lagy 501 472.91 468.78 468.64 466.8 465.47 464.08

RC% / 5.61% 0.87% 0.03% 0.39% 0.28% 0.30%

As shown in Tables 9 and 10, the optimal lag numbers were lx = 1 and ly = 1 because
the values of RC% were less than 5% when lx and ly gradually increased from 1. That is to
say, the optimal lag numbers were affected by the sampling period. Thus, the effect of the
sampling period on the detection rates of the DOSA was also a concern.

(a) Fault 1: the fault occurs in the unique part of X. The experimental comparison of the
primitive and doubled sampling periods is shown in Table 11. As also shown in the
table, the detection rate of T2

E decreased by about 9%, and the detection rate of SPEE
decreased by about 4%.

Table 11. Comparison of primitive and doubled sampling periods (Fault 1).

Condition Primitive sampling period

Indices T2
E SPEE

Detection rate 93.21 53.29

False alarm rate 2.4 1.2

Condition Doubled sampling period

Indices T2
E SPEE

Detection rate 84.6 49.36

False alarm rate 1.6 1.2

(b) Fault 2: the fault occurs in the unique part of Y. The experimental comparison of the
primitive and doubled sampling periods is shown in Table 12. As also shown in the
table, the detection rate of T2

F decreased by about 8%, and the detection rate of SPEF
decreased by about 3%.

(c) Fault 3: the fault occurs in the common part of X and Y. The experimental comparison
of the primitive and doubled sampling periods is shown in Table 13. As also shown
in the table, the detection rate of T2

C decreased by about 8%, and the detection rate of
SPEC decreased by about 5%.
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Table 12. Comparison of primitive and doubled sampling periods (Fault 2).

Condition Primitive sampling period

Indices T2
F SPEF

Detection rate 91.82 9.58

False alarm rate 1.6 1.6

Condition Doubled sampling period

Indices T2
F SPEF

Detection rate 83.13 6.43

False alarm rate 1.6 1.2

Table 13. Comparison of primitive and doubled sampling periods (Fault 3).

Condition Primitive sampling period

Indices T2
C SPEC

Detection rate 90.82 65.67

False alarm rate 3.41 1.4

Condition Doubled sampling period

Indices T2
C SPEC

Detection rate 82.33 60.84

False alarm rate 2 1.6

(d) Fault 4: the fault occurs in the coefficient matrix D, which affects the relationship of X
and Y. The experimental comparison of the primitive and doubled sampling periods
is shown in Table 14. As can be seen in Table 14, there was no significant change in
the detection rate of SPEXY.

Table 14. Comparison of primitive and doubled sampling periods (Fault 4).

Condition Primitive sampling period

Indices SPEXY

Detection rate 99.6

False alarm rate 1.6

Condition Doubled sampling period

Indices SPEXY

Detection rate 98.39

False alarm rate 2.4

Based on the above testing results, we can see that the change in sampling period
affected the determination of the lag numbers. The detection rates were also slightly
affected. That is to say, the DOSA algorithm is sensitive to the change in sampling period
because the AR model, which is constructed by the DOSA, will be different with the change
in sampling period. We hope to solve this problem as we continue our improvement of this
project in the future.

3.4. Conclusion

As shown by the above results, we can conclude the following:

(1) It is necessary to expand the dimension of both X and Y.
(2) DOSA could adequately solve the dynamics issue.
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(3) DOSA is able to directly analyze the location of the fault. Thus, we can know whether a
fault actually occurs in KPI-related process variables, KPI-unrelated process variables,
and the measurement of the KPIs.

(4) DOSA is sensitive to the change in sampling period.

4. Comparison Study Based on Tennessee Eastman Process
4.1. Tennessee Eastman Process

In this section, we would like to briefly introduce an industrial benchmark of the
Tennessee Eastman (TE) process [24,25]. All the discussed methods will be further applied
to demonstrate their efficiencies. The TE process model is a realistic simulation program
of a chemical plant, which is widely accepted as a benchmark for control and monitoring
studies [26]. The flow diagram of the process is described in [27,28], and the FORTRAN
code of the process is available on the Internet. The process has two products from four
reactants as shown in Equation (14):

A(g) + C(g) + D(g)→ G(liq)
A(g) + C(g) + E(g)→ H(liq)
A(g) + E(g)→ F(liq)
3D(g)→ 2F(liq)

, (14)

The TE process has 52 variables, including 41 process variables and 11 manipulated
variables. Table 15 lists a set of 15 known faults introduced to the TE process. Training
and test sets have been collected by running 25 and 48 h simulations, respectively, in
which faults have been introduced 1 and 8 h into the simulation, and each variable is
sampled every 3 min. Thus, training sets consist of 500 samples, whereas test sets contain
960 samples per set of simulation [29,30].

Table 15. Descriptions of known faults in TE process.

Fault ID Process Variable Type KPI-Related

1 A/C feed ratio, B composition constant

Step

Yes

2 B composition, A/C ration constant Yes

3 D feed temperature

4 Reactor cooling water inlet temperature

5 Condenser cooling water inlet temperature Yes

6 A feed loss Yes

7 C header pressure loss-reduced availability Yes

8 A, B and C feed composition

Random variation

Yes

9 D feed temperature

10 C feed temperature Yes

11 Reactor cooling water inlet temperature

12 Condenser cooling water inlet temperature Yes

13 Reaction kinetics Slow drift Yes

14 Reactor cooling water valve
Sticking

15 Condenser cooling water valve

4.2. The Numbers of Time Lag in TE Process

Here, Lx and Ly are the lag numbers in the augmented process variables matrix
and the augmented KPI matrix, respectively. In this work, we set Lx ∈ [0, 1, . . . , 6] and
Ly ∈ [0, 1, . . . , 6]. Several values of Lagx and Lagy and their corresponding changes in rate
are listed in Tables 16 and 17.
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Table 16. The values of Lagx under different Lx values.

Lx = 0 Lx = 1 Lx = 2 Lx = 3 Lx = 4 Lx = 5 Lx = 6

Lagx 159 62.95 28.32 3.6 13,104.51 66,817.24 34,678.86

Table 17. The values of Lagy under different Ly values.

Ly = 0 Ly = 1 Ly = 2 Ly = 3 Ly = 4 Ly = 5 Ly = 6

Lagy 159 112.86 100.61 85.87 83.91 79.84 79

RC% / 29.02% 10.85% 14.65% 2.28% 4.85% 1.05%

From the data presented in Tables 16 and 17, the values of Lagx(Lx = 3) tended to be
the lowest, and the values of Lagy(Ly = 3) tended to be the lowest if Ly was less than or
equal to 3. At this time, the values of the rate of change were less than 5% when Ly gradually
increased from 3. That is to say, the values of Lagy would not decrease significantly if we
continued increasing Ly. Therefore, the optimal numbers of lags were Lx = 3 and Ly = 3.

4.3. Simulation Study

We tend to focus on the ability to detect KPI-related faults in the TE process. Table 18
lists a set of nine KPI-related faults introduced to the TE process. It shows the detection and
false alarm rates for four algorithms: OSA, DOSA, Dynamics CCA (DCCA), and Dynamics
PLS (DPLS).

Table 18. Testing results of KPI-related faults for the TE process.

DPLS DCCA OSA DOSA

T2 SPE1 SPE2 T2
C SPEC T2

C SPEC

False alarm rate 0 1.3 1.3 0 0 0 0.63

Fault 1 42.625 73.7 91.4 61.75 88.25 99.375 97.375

Fault 2 98.75 86 89 15.375 53.75 97.125 96.375

Fault 5 20.125 98.9 99.9 16.875 11.25 22.375 15.125

Fault 6 96.5 100 100 99.125 100 100 100

Fault 7 38 17.5 34.5 21.5 89 63.75 29.125

Fault 8 68 43.3 53.1 67 51.625 92.875 74.75

Fault 10 5.375 21.9 37.2 60.875 13.125 66.875 70.25

Fault 12 31 66.2 85.2 69.125 51.125 94.625 77.375

Fault 13 66.125 78.6 85.2 80 70.625 90.75 76.625

Considering the data presented in Table 18, DOSA shows better performance com-
pared to the other algorithms for KPI-related faults. Meanwhile, the DOSA algorithm
showed a great advantage in Faults 1–2, 8, and 12–13 over the OSA algorithm. From
this analysis, it can be concluded that the DOSA algorithm performs better than the OSA
algorithm on dynamic problems. Figure 4 shows the simulation diagram of OSA and DOSA
monitoring in these faults. The blue line represents the value of the statistic, and the red
line represents the value of the control limit. When the blue line is higher than the red line,
a fault has occurred. It is obvious that the DOSA algorithm is more sensitive to these faults.
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5. Conclusions

In this paper, we have presented an improved algorithm of OSA for conducting
large-scale process monitoring, called the DOSA algorithm, and compared its performance
against DPLS and DCCA, which are KPI-related algorithms that are also used to solve
dynamic problems.

Considering the testing results of the dynamics model, this article proved that it
is necessary to expand the dimension of both the process variables matrix and the KPI
matrix while using the DOSA algorithm. Furthermore, the DOSA algorithm is able to
adequately solve the dynamics issue; Thus, we can know whether a fault actually occurs in
the KPI-related or KPI-unrelated process variables or in the measurement of the KPIs.
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The comparative study was conducted using the Tennessee Eastman benchmark
process, and we can conclude that the DOSA algorithm achieves better detection rates of
faults from the analysis of the results obtained. However, the DOSA algorithm is sensitive
to the change in sampling period. We intend to solve this problem as we continue the
improvement of this project in the future.
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