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Abstract: Gas-To-Liquid (GTL) processing involves the conversion of natural gas to liquid hydro-
carbons that are widely used in the chemical industry. In this process, the Fischer–Tropsch (F-T)
approach is utilized and, as a result, wastewater is produced as a by-product. This wastewater
commonly contains alcohols and acids as contaminants. Prior to discharge, the treatment of this
wastewater is essential, and biological treatment is the common approach. However, this approach is
not cost effective and poses various waste-related issues. Due to this, there is a need for a cost-effective
treatment method. This study evaluated the adsorption performance of activated carbon fibers (ACFs)
for the treatment of GTL wastewater. The ACF in this study exhibited a surface area of 1232.2 m2/g,
which provided a significant area for the adsorption to take place. Response surface methodology
(RSM) under central composite design was used to assess the effect of GTL wastewater’s pH, initial
concentration and dosage on the ACF adsorption performance and optimize its uptake capacity. It
was observed that ACF was vitally affected by the three studied factors (pH, initial concentration and
dosage), where optimum conditions were found to be at a pH of 3, 1673 mg/L initial concentration
and 0.03 g of dosage, with an optimum uptake of 250 mg/L. Kinetics and isotherm models were
utilized to fit the adsorption data. From this analysis, it was found that adsorption was best described
using the pseudo-second order and Freundlich models, respectively. The resilience of ACF was shown
in this study through conducting a regeneration analysis, as the results showed high regeneration
efficiency (~86%) under acidic conditions. The results obtained from this study show the potential of
using ACF under acidic conditions for the treatment of industrial GTL wastewater.

Keywords: industrial water treatment; activated carbon fibers; optimization; isotherm models;
kinetics models; adsorption regeneration; GTL process

1. Introduction

To counteract climate change, there has been a vast focus on the Fischer–Tropsch
(F-T) process to produce liquid hydrocarbon products [1]. This is reasoned for F-T’s ability
to operate at lower carbon dioxide (CO2) emissions than regular fossil fuel production
processes [2]. Along with that, fossil fuels from the F-T process have lower contents of
sulfur and aromatics in comparison to fossil fuels from conventional processes [3]. These
lower contents are advantageous towards the environment [2] as they are favored by end-
users [4]. However, there is a side effect of this process, where wastewater is produced as a
by-product in huge quantities [5], and this by-product is expected to grow even further [6,7].

Wastewater produced from the F-T process is known as Gas-To-Liquid (GTL) water [8].
For every ton of liquid fuel obtained from the F-T process, 1–1.3 tons of wastewater is
produced as a by-product. The source of this GTL wastewater is mainly from the reaction
units [9], and this water mainly contains dissolved organic matter. This organic matter
is usually constituted of acids, alcohols, acetates, ketones and aldehydes [10,11]. The

Processes 2023, 11, 1932. https://doi.org/10.3390/pr11071932 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11071932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3485-3354
https://orcid.org/0000-0002-6164-1421
https://doi.org/10.3390/pr11071932
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11071932?type=check_update&version=2


Processes 2023, 11, 1932 2 of 18

adversity of the presence of these contaminants is usually portrayed through measuring
their chemical oxygen demand (COD) or total organic carbon (TOC) [12,13]. Commonly,
the COD of GTL wastewater mixture consists of 76% and 10% of short- and long-chain
alcohols, respectively, with the rest being acids and hydrocarbons [8]. Due to the organic
mixed nature of this wastewater, there are limited treatment approaches. Given that, the
conventional treatment approach is anaerobic biodegradation. This treatment in the GTL
process does not achieve complete removal of these contaminants before discharge [14–16].
Hence, there is a need to explore new methods to achieve better removal levels, where
discharge regulations are expected to become even sterner [7].

As the current treatment method delivers undesirable removal, a more robust treat-
ment approach is needed to achieve better treatment of GTL wastewater. Advanced
biological treatment methods for contaminant removal have been of interest in the litera-
ture to enhance the current treatment approach [8]. Such methods were observed to be cell
immobilization [17,18] and bio-nanotechnology [19,20]. Regardless of their effectiveness,
these methods exhibit several drawbacks. These drawbacks were reported to be mainly cost
related, linked to the cost of chemicals and the considerable solid waste produced [8,21].
Based on this, a low-cost approach with less waste and appealing removal is needed for
GTL wastewater treatment.

Although the literature is mostly focused on developing advanced aerobic biological
methods, exploring alternative cost-effective treatment methods is of value to enhance GTL
wastewater treatment. Such methods need to be able to tackle various contaminants at the
same time, while exhibiting minimal solid waste and operational costs. From the different
methods of treatment discussed in the literature for wastewater treatment, adsorption
is known to bring in these attributes: low cost and waste [22,23]. In addition to that,
the best material reported to exhibit these attributes using the adsorption technique is
known to be activated carbon [6]. This is due to its high efficiency and reusability, as it is
reported to last for several adsorption cycles through means of regeneration [6,24]. Based
on the advantages brought by activated carbon and the lack of work on GTL wastewater
adsorption in the literature, there is a need to explore this area as it is of great economic
value. Hence, the objective of this study is to investigate the effectiveness of inexpensive
activated carbon fibers (ACFs) for the treatment of GTL wastewater as an inexpensive
alternative method to costly biological treatment. To report the output of this investigation,
the ACF was characterized and tested against actual GTL wastewater using different
investigation approaches. These approaches consisted of response surface methodology
(RSM) to determine the optimal conditions for the adsorption medium, equilibrium studies
that were used to discuss the adsorption mechanism and a regeneration study to report the
recyclable nature of the ACF used.

2. Materials and Method
2.1. Materials

GTL wastewater samples for the study were collected from a local GTL plant. The main
characteristics of this water have been reported in a previous study by Surkatti et al. [25].
To ensure the stability of the system, the GTL wastewater samples were pretreated using
aeration to remove any volatile organic components such as short-chain alcohols. Analysis
of the GTL wastewater is shown in Figure 1.

2.2. Adsorbents

Activated carbon fibers (ACFs), obtained from Zhejiang Xingda in China, were utilized
as adsorbent materials. The ACF was selected based on a screening process, where several
types of adsorbents were tested for the removal of organic pollutants in GTL wastewater.
These adsorbents are as shown in Table 1. Out of these types, ACF showed superior
performance in terms of reducing the COD and TOC content.
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Table 1. Screened adsorbents for GTL wastewater treatment.

Sample Uptake (mg/g) Source

Powder AC ND * Commercial
Fibrous AC 81 [26]

ACF 116.5 Zhejiang Xingda
Date-Pit ND * Produced in house

Steel Dust ND * Produced in house
Wood ND * Produced in house

* ND: no detectable uptake was observed.

2.3. Activated Carbon Fibers Characterization

To characterize the ACF, functional groups were obtained using transform infrared
spectroscopy (FTIR) analysis that was performed on a range from 400 to 5000 cm−1. Trans-
mission electron microscopy (TEM—EDX) was used to observe the internal form of the
adsorbent using Transmission Electron Microscopy Model: TECNAI G2 TEM, TF20, Thermo
Fisher Scientific, Waltham, MA, USA. The choice of TEM instead of the SEM is due to the
sample size. Depending on the sample size, it was reported by many studies that it is ideal
to use TEM to view the internal details of the adsorbent [27–30]. The X-ray diffraction
(XRD) trims were obtained using Rigaku MiniFlex-600 equipped with a Cu X-ray tube.
The readings from the device provide diffraction peaks that define the structures present
using their distinct fingerprint. The intensity and width of the peak can be used to identify
the quantity of the structures present. Surface area and pore volume were obtained using
Brunauer Emmett Teller (BET, Micromeritics, Tristar II series, USA).

2.4. Batch Adsorption and Response Surface Methodology

For the adsorption studies, a shaker of Labnet model was used. This shaker was
used at a 200 rpm rotational speed and 293 K temperature for all the experiments. The
factors under investigation consisted of GTL wastewater pH and initial concentration, in
addition to adsorbent dosage. GTL wastewater of 50 mL in a sealed jar was used in all
the batch experiments unless it is otherwise mentioned. For each experiment where an
adsorbent was inserted into the GTL wastewater, a corresponding GTL wastewater of the
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same concentration without an adsorbent was placed in the shaker. This was performed to
unify the conditions where concentration readings are taken. The concentration readings
are measured with an HAC—UV spectrophotometer using COD reagents. The samples
were inserted into HAC LCK514 cuvettes and were heated for 2 h to ensure the completion
of the reaction between the GTL wastewater sample and the reagent. The cuvettes were
then transferred to HAC 3900 to measure the COD content that is reported in milligrams
per liter (mg/L).

These concentration measurements are used to quantify the uptake capacity using
Equation (1). This is to show the effect of the GTL wastewater pH, initial concentration and
ACF dosage.

qe =
(Ci − Ce)

m
V (1)

where qe is the adsorption capacity in milligrams per gram (mg/g), Ci is the initial concen-
tration in mg/L, Ce is the equilibrium capacity in mg/L, V is the volume of the adsorption
system in L and m is the mass of the ACF adsorbent.

The factors under investigation were three, and they are as shown in Table 2. The
Minitab software generated 20 experimental runs under central-composite type of design.
The results obtained from the RSM analysis were fitted using a polynomial shown in
Equation (2) to acquire the investigated factors at their optimized conditions.

Y = β0 +
4

∑
i=1

(βiXi) +
4

∑
i=1

4

∑
j=1

(βiXiXj) +
4

∑
i=1

(
βiiX2

i

)
+ ε (2)

where Y is the measured response (adsorption capacity—qe); β0, βi, βij and βii are the
coordinates of constant, linear, interaction and quadratic, respectively. Xi is the independent
factor that affects the measured response and E is the error posed by the model. To gain the
interactions between the factors and the measured response, analysis of variance (ANOVA)
was utilized. The significance of the factors in the model on the response was assessed
using the Fisher value ratio (F-value) and probability value (p-value) and the correlation
between them was constructed based on the correlation coefficient (R2).

Table 2. Parameters for designing the 3-factor RSM for GTL wastewater treatment.

Independent Factor
Factorial and Center Level Axial Level

Low (−1) Center (0) High (+1) Lowest (−α) Highest (+α)

pH 2.64 6 9.36 4 8
Initial Concentration

(mg/L) 327.28 1000 1672.7 600 1400

ACF Dosage (g) 0.032 0.3 0.37 0.1 0.3

Based on the results obtained, another set of 12 experimental RSM runs was conducted
for two factors to confirm the results obtained from the first RSM. The runs obtained are
under the same levels and they are shown in Table 3.

Table 3. Parameters for designing the 2-factor RSM for GTL wastewater treatment.

Independent Factor
Factorial and Center Level Axial Level

Low (−1) Center (0) High (+1) Lowest (−α) Highest (+α)

pH 1.79 2.5 3.21 2 3
Initial Concentration

(mg/L) 434.31 1000 1565.69 600 1400

2.5. Kinetic and Isotherm Modeling

For reporting the kinetic behavior of the GTL wastewater adsorption system, the
adsorption process was conducted at room temperature, using 250 mL of GTL at 1000 ppm
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concentration. The pH was set at the original pH conditions which are (3.2) of 1000 ppm.
A total of 0.25 g of ACF was used in the system, and a 10–180 min of contact time was
considered. The output of this experiment was assessed using the below models.

Pseudo-first order : qt = qe

(
1− e−k1t

)
(3)

Pseudo-second order : qt =
k2 q2

e t
1 + k2qet

(4)

Intraparticle diffusion : qt = Kint
√

t (5)

where qt is the uptake capacities of the ACF at the time of measurement in (mg/g), qe
is the equilibrium uptake capacity qe in (mg/g) of the ACF where t is the time of the
measurement (min). k1 is the rate of adsorption factor (min−1), k2 is the rate constant of
the Pseudo-second order model (g/mg.min), Kint is the intraparticle diffusion constant
(mg/g min0.5) [31,32].

In order to obtain the adsorption isotherms, batch experiments were carried out for a
duration of 24 h. These experiments were conducted at room temperature, where an ACF
dosage of 0.1 g was used in a 100 mL volume of GTL wastewater. The initial concentration
of the GTL wastewater ranged between 300–1640 ppm and the output of these runs were
fitted using the below models.

Langmuir : qe =
qmk1Ce

1 + k1Ce
(6)

Freundlich : qe = k f C
1
n
e (7)

Exponential : qe = a
(

1− ebCe
e

)
(8)

Dubinin-Radushkevick (D-R) : qe = qe exp
(
−β

[
RTln

(
1 +

1
Ce

)]
2
)

, E =
1
√2β

(9)

where qe is the uptake capacity of ACF at equilibrium in mg/g, qm is the maximum uptake
capacity in mg/g, k1 is the Langmuir isotherm constant in L/mg, kf is the Freundlich
constant in mg/g (L/g)n, 1/n is the heterogeneity factor, a and b are the exponential
isotherm model constants in mg/g and g/mg, respectively, β is the activity coefficient of
the D-R model in mol2/kJ2, R is the gas constant, T is the absolute temperature in (K) and
E is the free energy of sorption in kJ/mol [33,34].

2.6. ACF Regeneration

The ACF adsorbents were regenerated using ethanol, which has been reported to
achieve the best performance for the regeneration of activated carbon [35] (El-Naas et al.,
2010). A specific mass of the saturated adsorbent (about 0.1 g) was tested in a series of
batch experiments with 1000 ppm COD GTL wastewater. After each batch experiment,
the uptake capacity is calculated and ACF was treated with 100 mL of 100% ethanol and
placed on the shaker for a period of 2 h. The ACF was washed using distilled water and
later dried in the oven at 105 ◦C for 24 h. The results from these runs are then translated
into regeneration efficiency that is described below:

Regeneration E f f iciency (%) =
qr

q1
100% (10)
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where q1 is the uptake capacity in mg/g obtained from the first cycle of batch adsorption
and qr is the uptake capacity in the succeeding cycles in mg/g.

3. Results and Discussion
3.1. TEM—EDX and BET Analysis

Figure 2 shows the TEM imaging for the ACF used in this study. From the figure, it
can be seen that the activated carbon fibers are cylindrical in shape, which is similar to
other fibrous activated carbon used in the literature [27,28]. In addition, the surface of the
adsorbent shown is rough, as indicated by the stripes in Figure 2b. These stripes enable
the adsorbent to enhance the trapping of small organic molecules [36,37], and this serves
the objective of this study: removing organic material from GTL wastewater. With the
rough surfaces, various smears are observed on the ACF. These indicate the modification
of the adsorbent, where similar smear patterns were observed in the literature [38–40]. This
confirms the treatment of the ACF shown in the map—EDX in Figure 3. From this map,
it is seen that the used ACF consists of 87.97, 10.08 and 1.95 wt% of carbon, oxygen and
phosphorous, respectively. In addition to this, the BET analysis revealed a surface area of
1232.3 m2/g and BET average pore diameter of 21.4 A. The distribution of the BET pore
volume is shown in Figure 4.
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3.2. X-ray Diffraction Analysis (XRD)

In addition to the discussed ACF characteristic analysis above, the ACF has undergone
an XRD analysis. The results from this analysis confirmed the characterization of this
study’s adsorbent as fibrous activated carbon (ACF) when compared to the ACF XRD
readings present in the literature [41,42]. The XRD reading in Figure 5 shows two broad
diffraction peaks that correspond to 23◦ and 43.4◦. These two peaks are representations of
the 002 and 100 reflections of carbon that are observed in other studies [43,44]. These two
planes confirm the presence of amorphous carbon in the adsorbent used in this study [45].
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3.3. RSM Analysis of Statistical Model

RSM is a widely used method in the experimental field to design tests for obtaining
desired optimized conditions using a set of experiments. These experimental sets are
obtained through stating key variables, in which they are optimized to reach the maximum
desirable response [46,47]. As stated in the methods section, the response here is the uptake
of contaminants in GTL wastewater. Using the RSM results for the experiments, at the
specified conditions, the maximum observed uptake was 111 mg/g while the minimum



Processes 2023, 11, 1932 8 of 18

case was where no uptake took place. From these results and the proposed independent
factors, the obtained mathematical equation is as shown below:

Uptake = 171.8− 34.65 pH + 0.0975Ci − 568Dosage + 1.599pH2

−0.000017C2
i + 436Dosage2 − 0.0035pH Ci

+51.6pH Dosage− 0.0402CiDosage
(11)

To learn about the importance level of the model, ANOVA is utilized as a method that
is generated after analyzing the RSM output. From the ANOVA, the p-value and F-value
are obtained, in which they represent the adequacy of the model through being small and
large in value, respectively [48]. As shown in Table 4, the metric to measure the significance
of the variables was the p-value < 0.05 along with the F-value < 247.7 for DF 1 or <8.667
for DF 3. This shows that the model obtained poses a 95% level of confidence for the
experimental data, hence its adequacy. Furthermore, for the three tested factors, the p-value
and the F-value obtained showed that their effect on the uptake is significant. All the
interactions in the model were observed to be significant as well. To determine the quality
of the model, the correlation coefficient (R2) is used as an indication. For the model shown
in Equation (11), the obtained R2 was 0.9341 and this shows the strength of the model in
determining the uptake of GTL wastewater contaminants using the independent factors.

Table 4. Analysis of variance (ANOVA) for response quadratic model for adsorption uptake.

Source DF Adj SS Adj MS F-Value p-Value Remarks

Model 9 10,854.9 1206.10 15.74 0.000
Linear 3 8936.2 2978.74 38.88 0.000

pH 1 4077.1 4077.08 53.21 0.000 Significant
Ci 1 2746.5 2746.48 35.84 0.000 Significant

Dosage 1 2112.7 2112.67 27.57 0.000 Significant
Square 3 983.3 327.77 4.28 0.035 Significant

pH× pH 1 589.7 589.73 7.70 0.020
Ci×Ci 1 100.5 100.53 1.31 0.279

Dosage×Dosage 1 274.1 274.05 3.58 0.088
2-Way Interaction 3 935.4 311.79 4.07 0.040 Significant

pH×Ci 1 62.6 62.62 0.82 0.387
pH×Dosage 1 852.1 852.09 11.12 0.008
Ci×Dosage 1 20.7 20.66 0.27 0.615

Error 10 766.2 76.62
Lack-of-Fit 5 755.6 151.12 71.13 0.000
Pure Error 5 10.6 2.12

In order to obtain a comprehensive view of the RSM model using the stated experi-
mental conditions, the three (Ci, pH and dosage) independent factors were examined in
the form of plots. To determine the effect of each independent factor, the three-dimensional
(3D) and contour plots were obtained as shown in Figure 6. From the plots and Table 4, it is
observed that the three examined factors have a significant effect on the response, while
their squares do not. This non-effect is also observed through the two-way interaction
between the factors. This finding was based on the p-value and F-value obtained.

In this GTL wastewater system, pH showed influence over the uptake and was
examined for the range of 2.6–9.4. To explain the behavior of the ACF under various pH
conditions, it is essential to first gain an overview of the adsorption mechanism for AC.
As suggested in the literature, the mechanism of adsorption occurs via multiple complex
mechanisms. These adsorption mechanisms can take place due to: (1) accumulation of GTL
wastewater on the surface of the ACF, (2) adsorption due to functional group polarity and
(3) π–π interactions between the different layers of the adsorbent and the adsorbate [49]. As
the nature of GTL wastewater consists of aliphatic compounds, the latter mechanism is not
expected to take place in this study (mechanism 3). Due to this, electrostatic interactions
are considered to be playing the major role between the ions in the GTL wastewater and
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the ACF surface [50]. As ACF is amphoteric in nature, adsorption is influenced by the pH
of the system [51]. To examine the effect of pH on the interaction between GTL wastewater
and ACF, drops of 0.1 M NaOH or 0.1 M HCl were used. From Figure 6, the effect of this
modification can be observed, and it is concluded that at low pH, higher uptake is attained
at different initial GTL wastewater concentrations and ACF dosages. The low performance
of the adsorbent at high pH is explained by the competition on the ACF active sites that
occurs between the OH− ions present in the GTL wastewater and the added electrons.
Furthermore, at high pH, the occurrence of soluble complexes is possible, which can also
hinder the uptake capabilities of the ACF [52].

Processes 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 6. 3D surface and contour plots for three-factor (pH, Ci and dosage) RSM. 

Similar to the initial concentration effect, dosage exhibited similar behavior in terms 

of uptake. As observed in Figure 6, the uptake of the GTL wastewater system increased 

with the increase of the dosage. This is simply explained by the presence of more active 

sites where more adsorption took place. However, this increase is expected to be hindered 

when a mass transfer limitation is faced [53].  

As discussed above, GTL wastewater is favorable for treatment with ACF under 

acidic conditions. The most-favored conditions were around an optimum pH of 3 in the 

three-factor RSM, which is GTL wastewater’s pH without any modification. This optimum 

condition is ideal for the GTL wastewater, as it is acidic in nature and hence will not re-

quire pre-treatment prior to the adsorption process. Based on this, an economic benefit is 

introduced by the ACF adsorbent studied, as there will be no requirement for pH modifi-

cation and extra treatment costs are avoided. Most adsorbents in the literature operate at 

basic or neutral pH [6,54,55], whereas the ACF used in this study can withstand acidic 

conditions. This shows the effectiveness of this adsorbent to handle and operate efficiently 

at acidic environments. The confirmation of this advantage was also shown through the 

two-factor RSM analysis (Figure 7), where the adsorption system was also optimal at pH 

close to 3, and this is due to the reasons explained previously.  

Figure 6. 3D surface and contour plots for three-factor (pH, Ci and dosage) RSM.

As pH was part of the RSM analysis, initial GTL wastewater concentration was also
examined using the series of batch experiments. The effect of initial concentration on the
GTL wastewater is as shown in Figure 6. From this figure, it is seen that uptake is mostly
optimal at high concentrations. The reason for this is the presence of more OH− groups
from the GTL wastewater in the system at high concentrations. This increased presence
of OH− was reported in the literature to increase adsorption due to the increase of mass
transfer forces [53]. Based on this, more uptake takes place under high concentrations
in GTL wastewater using ACF and it is due to the increase in the driving force of the
mass transfer.
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Similar to the initial concentration effect, dosage exhibited similar behavior in terms
of uptake. As observed in Figure 6, the uptake of the GTL wastewater system increased
with the increase of the dosage. This is simply explained by the presence of more active
sites where more adsorption took place. However, this increase is expected to be hindered
when a mass transfer limitation is faced [53].

As discussed above, GTL wastewater is favorable for treatment with ACF under
acidic conditions. The most-favored conditions were around an optimum pH of 3 in
the three-factor RSM, which is GTL wastewater’s pH without any modification. This
optimum condition is ideal for the GTL wastewater, as it is acidic in nature and hence
will not require pre-treatment prior to the adsorption process. Based on this, an economic
benefit is introduced by the ACF adsorbent studied, as there will be no requirement for
pH modification and extra treatment costs are avoided. Most adsorbents in the literature
operate at basic or neutral pH [6,54,55], whereas the ACF used in this study can withstand
acidic conditions. This shows the effectiveness of this adsorbent to handle and operate
efficiently at acidic environments. The confirmation of this advantage was also shown
through the two-factor RSM analysis (Figure 7), where the adsorption system was also
optimal at pH close to 3, and this is due to the reasons explained previously.
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3.4. Model Optimization and Validation

From the developed RSM model, the response was optimized to determine the best
conditions for maximum uptake. The output of the optimization is shown in Table 5, where
uptake is seen to be optimum at an acidic pH, high concentration and low dosage. These
data were validated experimentally, where the obtained uptake was seen to be higher than
expected. This better performance is expected due to the increase in mass driving force due
to the high concentration and small dosage.

Table 5. RSM model validation using repeated experiments.

pH Ci (mg/L) Adsorbent
(g)

Actual Uptake
(mg/g)

Predicted
(mg/g)

Trial 1 2.6 1672.7 0.03 248.4 177.5
Trial 2 2.6 1672.7 0.03 250.0 177.5

To assess the adequacy of the model, the response obtained from the model was
validated experimentally. The assessment’s results are as shown in Figure 8, where can be
seen that the experimental data are close to the uptake obtained from the model. With these
results, it can be concluded that the obtained model to determine the uptake is adequate
for GTL wastewater contaminant removal using ACF.



Processes 2023, 11, 1932 11 of 18

Processes 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 7. 3D surface and contour plots for two factor (pH and Ci) RSM. 

3.4. Model Optimization and Validation 

From the developed RSM model, the response was optimized to determine the best 

conditions for maximum uptake. The output of the optimization is shown in Table 5, 

where uptake is seen to be optimum at an acidic pH, high concentration and low dosage. 

These data were validated experimentally, where the obtained uptake was seen to be 

higher than expected. This better performance is expected due to the increase in mass 

driving force due to the high concentration and small dosage.  

Table 5. RSM model validation using repeated experiments. 

  pH  Ci (mg/L)  Adsorbent (g)  Actual Uptake (mg/g) Predicted (mg/g) 

Trial 1 2.6 1672.7 0.03 248.4 177.5 

Trial 2 2.6 1672.7 0.03 250.0 177.5 

To assess the adequacy of the model, the response obtained from the model was val-

idated experimentally. The assessment’s results are as shown in Figure 8, where can be 

seen that the experimental data are close to the uptake obtained from the model. With 

these results, it can be concluded that the obtained model to determine the uptake is ade-

quate for GTL wastewater contaminant removal using ACF. 

 

Figure 8. Model v at Ci 1000 mg/L and 3.0 pH. Figure 8. Model v at Ci 1000 mg/L and 3.0 pH.

3.5. Kinetic and Isotherm Studies

To determine the adsorption rate, experimental data were collected at the identified
conditions in the methods section. The collected data were fitted into three kinetic models:
pseudo-first order, pseudo-second order and intraparticle diffusion. The choice of these
models is based on their common presence in the literature. The data obtained from this
analysis are shown in Figures 9–11 and Table 6 using the kinetic models stated in the
methods section. Using the R2 obtained via fitting the models, the fitting adequacy of each
model was assessed. Figure 9 shows the linearized plotting of the pseudo-first order model
where the slope and the intercept were used to obtain the equilibrium uptake Qe and rate
constant k1. The R2 for this model was of 96%, which indicates that the kinetics of GTL
wastewater follow the pseudo-first order model. Similarly, in Figure 10, the linearized
pseudo-second order plot was constructed using t/Qt versus time. The experimental data
in this plot were very close to the predicted values, and this is represented by the 98% R2

value. On the other hand, for the intraparticle diffusion in Figure 11, the linearized plot of
Qt versus time0.5 showed a correlation of 84%. This low R2 indicates that the adsorption
system of GTL wastewater and ACF do not follow the intraparticle model.
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Table 6. Kinetic models fitted for ACF/GTL wastewater adsorption process.

Kinetic Model Parameters Value

Pseudo-first order
qe (mg/g) 51.8
k1 (min−1) 0.01

R2 0.96

Pseudo-second order
qe (mg/g) 111
k2 (min−1) 0

R2 0.98

Intraparticle diffusion
Kint (mg/g min0.5) 5.66

I (mg/g) 35.1
R2 0.84

The illustration in Figure 11 of the intraparticle diffusion shows that multistage ad-
sorption occurrs in the GTL wastewater/ACF system. The figure indicates the presence of
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two stages for how adsorption takes place. The first stage is the external diffusion of the
adsorbate into the ACF surface where the adsorbate is instantaneously adsorbed. This is
reflected in the steep slope observed at the beginning of the treatment time. The later stage
is when the adsorption rate is slow, and this represents the slow motion of the adsorbate
in the system from the large pore to the small ones. Overall, the observed behavior from
Figure 11 indicates that the adsorption process for the GTL wastewater system into ACF is
not only intraparticle controlled [56,57].

Out of all the examined models, the pseudo-second order model was observed to be
the better representative of the kinetics of the GTL wastewater/ACF system. Based on this,
the system’s adsorption mechanism follows chemisorption.

In addition to the kinetics, an isotherm analysis was conducted to assess the appli-
cability of Langmuir (Equation (6)), Freundlich (Equation (7)), exponential (Equation (8))
and D-R (Equation (9)) isotherm models. Using the nonlinear regression approach—the
sum of square errors (SSE), R2 and the Akaike Information Criterion (AIC) [35], the quality
of fitting for each model was determined. The AIC is a method used for comparison
between different models in which the lowest value yielded from the following formula is
considered the best model:

AIC = 2p + Nln
(

SSE
N

)
(12)

where p is the number of independent parameters in the tested model, N is the number of
data points. For a small sample size (N/p < 40), the second-order AIC (AICc) is used. AICc
is defined as follows:

AICc = AIC +

[
2p (p + 1)
N − p− 1

]
(13)

The following difference in the AICc using the model’s AICc and minimum AICc
(AICcmin) for all the models is used to find the Akaike weight (wi), where the highest value
recommends the best model:

∆AICc = AICc(i) − AICcmin (14)

wi =
exp

(
− 1

2 ∆AICc(i)

)
∑i=1 exp(− 1

2 ∆AICc(i))
(15)

Figure 12 shows the fitting of these models against experimental data with isotherm
parameters of each model in Table 7. From this table, the best fit that is close to experimental
data is seen to be exhibited by the Freundlich isotherm model, with R2 being at 97%, SSE
being the lowest (228) and wi being the highest at 0.79. Overall, from the tested models, the
Langmuir and Freundlich models best fitted the isotherm obtained experimentally. This can
be reflected in Figure 12, as it shows that the adsorption mechanism is non-ideal, reversible,
monolayer and multilayer. The maximum adsorbed contaminants on the monolayer (qm)
were found to be 322 mg/g, while kF, representing the bond between GTL wastewater
contaminants and the surface layer of the ACF, was 2.7 [6,58–61]. From these findings, it
can be concluded that the ACF adsorbent is a desirable material for the treatment of GTL
wastewater. Furthermore, the results obtained in the table were used to determine the
mean free energy of sorption—E (Equation (9)). The value was found to be 6 kJ/mol, which
is lower than the typical range of bonding energy for ion-exchange mechanisms, that is,
between 8–16 kJ/mol [35,62,63]. This implies that ion exchange does not play a major role
in the treatment of GTL wastewater using ACF and chemical/physical adsorption are the
main followed adsorption mechanisms.
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Table 7. Isotherm models fitted for ACF/GTL wastewater adsorption process.

Isotherm
Model Parameters Value R2 SSE AIC AICC wi

Freundlich
kF (mg/g) 2.69

0.97 228.3
23.1 29.1 0.79

N 1.74

Langmuir qm (mg/g) 322.25 0.95 470.1 26.7 32.7 0.13
k1 (L/mg) 0.0008

Exponential a (mg/g) 225.05
0.94 569.1

27.7 33.7 0.08
b (g/mg) 0.0011

D-R
qe (mg/g) 165.7

0.68 2791.3
35.6 41.6 0.002

β (mol2/kJ2) 0.014

Studies related to GTL wastewater treatment using the adsorption technique are
scarce in the literature. To make a comparison for where the ACF use in this study stands,
similar industrial wastewater studies were used. Table 8 contains a summary of industrial
wastewater studies using the adsorption technique. Through comparing the stipulated
values in the table, the ACF used for GTL wastewater treatment shows a very competitive
result in comparison to other adsorbents used in similar studies.

Table 8. Comparison of uptake capacities for various industrial wastewater.

Adsorbent Contaminant Uptake (mg/g) Source

ACF GTL wastewater 250 This work
Commercial Activated Carbon Organic compounds from a Bio-Process 303 [64]

Wood Biochar Organic compounds from a Bio-Process 166.63 [64]
Date-Pit Activated Carbon Industrial wastewater (Phenol) 56.9 [35]

Rice Husk Activated Carbon Petroleum refinery wastewater 28 [65]

3.6. Regeneration Study

In order to examine the adsorbent’s reliability, three cycles of regeneration were
conducted for the GTL wastewater/ACF system. As observed in Figure 13, adsorption
stayed persistent through all the cycles, while two cycles showed a regeneration efficiency
averaging around 85.5%. Regardless, the cycles showed that the adsorbent can withstand
regeneration cycles, and this reflects on the resilience of this ACF for multiple adsorption
cycles under acidic conditions for GTL wastewater treatment.
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4. Conclusions

In this study, ACF was used for the removal of GTL wastewater contaminants using
the adsorption technique. The feasibility of this technique was optimized through the
RSM approach, where three factors were considered as independent variables: pH, Ci and
dosage. From the performed analysis, it was concluded that the three factors affected the
uptake significantly, while the RSM model was validated experimentally. In addition, the
kinetics and isotherm modeling analysis showed that the ACF/GTL wastewater system
followed pseudo-second order and Langmuir/Freundlich models, respectively. Following
that, the potential of the ACF was shown through conducting a regeneration study, where
the adsorbent showed resilience in terms of offering high efficiencies through multiple
cycles, while operating in an acidic environment. Hence, the outcome of this study shows
the ability of ACF to be an effective adsorbent to treat acidic GTL wastewater.
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