
Citation: Frank, J.; Raiber, T.V.;

Grotenhoff, L.; Kohlus, R.

Development of In-Line

Measurement Techniques for

Monitoring Powder Characteristics in

a Multi-Stage Spray Drying Process.

Processes 2023, 11, 1931. https://

doi.org/10.3390/pr11071931

Academic Editor: Li Xi

Received: 7 June 2023

Revised: 16 June 2023

Accepted: 23 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Development of In-Line Measurement Techniques for Monitoring
Powder Characteristics in a Multi-Stage Spray Drying Process
Jennifer Frank *,†, Tobias V. Raiber *,† , Laura Grotenhoff and Reinhard Kohlus

Department of Process Engineering and Food Powders, University of Hohenheim, Garbenstraße 25,
70599 Stuttgart, Germany; laura.grotenhoff@uni-hohenheim.de (L.G.); r.kohlus@uni-hohenheim.de (R.K.)
* Correspondence: jennifer.frank@uni-hohenheim.de (J.F.); tobias.raiber@uni-hohenheim.de (T.V.R.)
† These authors contributed equally to this work.

Abstract: The integration of spray drying and agglomeration offers significant advantages, such
us continuous production with lower energy consumption. However, it is a knife-edge process
with a narrow operating window and limited degrees of freedom that decide between successful
agglomeration and fluidized bed blockage due to excessive moisture. In this contribution, factors
influencing the spray-through agglomeration process of skim milk powder as a model system were
investigated via a design of experiments. Three in-line monitoring methods were applied and tested
to observe the most important parameters in the agglomeration process—the product moisture and
particle size distribution. Regarding the moisture content, a capacitive moisture sensor was calibrated
with linear regression and a near-infrared sensor with partial least squares regression. Near-infrared
spectroscopy was found to be the suitable method for determining the moisture content, while
the capacitive moisture sensor mainly provides information on the bulk density, filling level, or
fluidization state in the fluidized bed. Additionally, particle size distribution data were extracted
from the spectral data using in-line data from a spatial filter velocimetry probe in the fluidized bed.
This opens the potential to monitor both parameters in real time with a single non-invasive sensor.

Keywords: process integration; in-line measurement; capacitive moisture measurement;
near-infrared spectroscopy; fluidized bed agglomeration; spray drying

1. Introduction

Skim milk powder (SMP) is a frequently used ingredient in various food applications
including infant formula, ice cream, confectionery and baked goods [1,2]. The powder is
typically produced by spray drying, where liquid skim milk concentrate is atomized into
fine drops and then dried in a stream of hot air, resulting in a bulk solid. The size of the
drops, as well as the inlet and outlet air temperatures, can be adjusted to control the final
particle size of the SMP. However, a major challenge with this process is the generation
of fine materials [2,3]. These fine particles cause problems in certain applications due to
their dusting properties and poor wettability. This makes it challenging for customers to
effectively incorporate the product into their formulations, as they may struggle to achieve
a consistent mix and accurate dosing [4,5].

To improve the product quality, SMP can be further processed via agglomeration
to increase its flowability, solubility, and dispersibility [3,5]. An effective example of
agglomeration equipment is a fluidized bed [6–8], where a bulk solid is subjected to a flow
of heated gas, which causes the particles to behave in a fluid-like manner. A binding agent
or plasticizer, such as water, is then sprayed onto the particles. Collisions of moist surfaces
cause them to form clusters through the formation of liquid bridges, which are solidified
by the evaporation of the solvent [8].

In addition to batch processes, integrated spray drying and agglomeration solutions
have been reported in the literature as design concepts since the 1980s. Their develop-
ment was driven by the need for more efficient and cost-effective powder manufacturing
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processes, especially for more difficult-to-dry products such as fine or sticky materials [9].
These integrated solutions have the advantage of being able to perform the entire produc-
tion process in a single plant and also allow for continuous production. They also have
certain disadvantages, such as increased process complexity. The mean residence time, i.e.,
the agglomeration time, is determined by the installed bed volume and the throughput of
the spray dryer. Spraying too much binder in this time interval will result in sticky material
and bed blockage, while spraying too little will not achieve the target particle size and,
consequently, the target powder properties. This makes it a knife-edge process. One of the
most important parameters for forced agglomeration with binding agents is the product
moisture content. Monitoring the moisture content is thus crucial, as it directly impacts the
formation and properties of the agglomerates. In addition, it ensures the effective use of
binding agent and energy. When properly implemented, the operating parameters, such as
the fluidization air velocity or binding agent amount, can be adjusted as needed to achieve
the required particle size and shape [8,10].

Measurement technology can be used to monitor and control these parameters. By
utilizing reliable and widespread methods, such as temperature and mass flow rate mea-
surements, only the process conditions can be monitored. Advanced techniques are needed
to measure the product moisture and the particle size, although sampling-based methods
are not suitable for real-time control. Methods such as near-infrared spectroscopy (NIR)
and dielectric property measurement (CM—capacitance measurement) for moisture, as
well as spatial filter velocimetry (IPP—in-line particle probe), focused beam reflectance
measurements, or even image analyses for particle size, can be used [11–13]. In some
cases, attempts have been made to determine basic size information in addition to moisture
information from NIR spectral data [14]. Multi-sensor approaches are already available,
although mostly in the context of individual unit operations and not in the integrated
spray agglomeration process [13]. Advanced monitoring and control strategies are espe-
cially needed for a continuous integrated process, as bed blockages lead to a shutdown
of the entire process. However, their implementation is more challenging due to the
high complexity.

The practical implementation process for this study involved a pilot-scale two-stage
spray-through agglomeration process with an integrated fluidized bed. The fluidization
velocity, temperature, and amount of moisture injected into the system were varied within
the scope of a full factorial design of experiments (DoE). In addition, further trials were
conducted to optimize the agglomeration process and expand the data set. The integrated
fluidized bed was equipped with measurement ports allowing for the simultaneous op-
eration of two sensors (NIR, CM, or IPP). The sensors used in this study varied in terms
of measurement location as well as principle, being either non-invasive (NIR) or invasive
(CM, IPP) and coming into contact with the product. The former can be operated through a
glass window. From a hygienic perspective, non-invasive techniques are preferred in the
context of food production.

The objective of this work was to optimize the two-stage spray-through agglomeration
process with an integrated fluidized bed. An in-line monitoring system was established
with a special focus on the product moisture content and the particle size. The use of these
measurement techniques allows the monitoring and control of the agglomeration process.
This is particularly important with respect to the moisture added to the system with a
binder, regardless of the varying air temperature and mass flow, enabling one to achieve
the desired powder properties within the short residence time of a two-stage spray dryer
without risking a bed blockage.

2. Materials and Methods

This study involved calibration and validation trials using skim milk that had been
dried using a spray-through method in a pilot-scale spray dryer. A detailed explanation of
the spray drying process is given below.
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2.1. Spray Drying and Agglomeration

The starting material was low-heat SMP (Sachsenmilch Leppersdorf GmbH,
Leppersdorf, Germany), which was rehydrated with demineralized water to a total solid
content of 30%. The concentrate was then atomized using either a Schlick-type 100 hol-
low cone pressure nozzle (Düsen-Schlick GmbH, Coburg, Germany) with orifice diame-
ters between 0.3 and 0.5 mm and a pressure of 8 MPa or a two-fluid nozzle (GEA Niro,
Søborg, Denmark) with an orifice of 2 mm. The two-fluid nozzle was operated at a con-
stant air-to-liquid ratio (ALR = 1) to ensure comparable droplet sizes at varying mass flow
rates [15]. The mass flow rate was adjusted to maintain a constant outlet temperature of
75 ◦C under varying process conditions.

The multi-stage drying process, including the fines return and nozzle zone agglomera-
tion, is described in detail in [16]. Additionally, the process parameters were optimized for
the product with the inlet air temperature set to 200 ◦C, drying air mass flow to 200 kg h−1,
and fines return airflow to 25 kg h−1. On average, the selected spray conditions correspond
to a solid mass flow of about 60 g min−1. The perforated plate in the fluidized bed had a
pressure drop of 510 Pa at an empty pipe fluidization air velocity of 0.8 m s−1.

A second two-fluid Schlick-type 970/7-1 S 1 nozzle (Düsen-Schlick GmbH,
Coburg, Germany) with an orifice diameter of 0.8 mm was mounted into the fluidized
bed as a bottom-spray configuration. Water was introduced into the fluidized bed at rates
between 0 and 18 g min−1 as the binding agent. The cap was set on position four. To
measure the properties of the agglomerates formed, measurement ports were mounted at
distances of 60 and 160 mm above the perforated plate.

The equipment configuration is shown in Figure 1. The fluidized bed is located
below the spray dryer with the fluidization air entering through a perforated plate and
exiting the system at the top of the spray dryer. Either the IPP or CM sensor is mounted
on measurement port one. While the IPP sensor protrudes into the fluidized bed, the
NIR sensor is mounted on sapphire glass at port two. Powder discharge is automated to
maintain a constant residence time and filling level based on differential pressure (sensor 3).
The discharge valve is triggered for 0.2 s as soon as the bulk material causes a pressure
drop of 140 Pa.
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Figure 1. Spray-through agglomeration system with an integrated NIR, CM, or IPP sensor.

Different combinations of measurement probes were used to gather the necessary data.
These combinations included the NIR probe and IPP, the NIR probe and CM sensor, or the
CM sensor at the lower position and the IPP at the upper position. This approach allowed
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the simultaneous measurement of different properties using different probes. However, it
should be noted that the measuring positions did not always align in every comparison.

2.2. Experimental Design

A total of N = 85 individual trials were conducted for calibration and validation.
Eighteen of these trials were part of a full factorial DoE with three parameters, two levels,
and the inclusion of the center point. The DoE was duplicated into two blocks with one
block for each nozzle type. The remaining trials were performed as preliminary tests for
optimization and additional systematic trials for calibration (blue circles in Figure 2). In
total, 26 of the 85 trials were conducted using the high-pressure nozzle. The data were
randomly split into calibration and validation sets in a 7:3 ratio, with 60 samples being
used for the calibration of the model.
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An excerpt from the experimental design is shown in Figure 2. The binder addition rate
was varied equidistantly from 0 to 5 g min−1, the temperature was also varied equidistantly
from 60 to 100 ◦C, and the fluidization velocity from 0.6 to 1 m s−1.

A multi-factorial ANOVA with three factors and two levels each was performed. A
two-tailed t-test with particle moisture as the dependent variable was used. The model or
model terms were considered to be significant at a p-value < 0.05. The null hypothesis that
there were no differences between the means was rejected.

2.3. Capacitive Moisture Measurement

The Litronic FMS II system (Liebherr-Mischtechnik GmbH, Bad Schussenried, Germany)
was used for capacitive moisture measurements by measuring the dielectric properties
of the agglomerates. With changing moisture contents, the dielectric properties of the
matrix change, which is represented at the output as a change in voltage [17]. The sensor
had a sampling cycle of one measurement per second and was positioned flush with
the wall. The corresponding values from the capacitive sensor were collected over 30 s
for each measurement and then averaged to obtain an accurate representation of the
dielectric properties.

2.4. Near-Infrared Spectroscopy

NIR spectra were recorded via reflection using a Polytec PSS-H-B02 version 1.7
contact probe (Polytec GmbH, Waldbronn, Germany) equipped with a fiber-optic sys-
tem and a halogen lamp. The probe was connected to a PSS 1720 spectrometer over a 3 m
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optical fiber cable. The software PAS-LAB version 1.2 was used for settings and exporting
the taken NIR spectra. The spectra were obtained with an exposure time of 7 ms and
500 accumulators covering a wavelength range of 850 to 1650 nm with 401 measurement
points. Dark and reference measurements were performed prior to each measurement.
Offline spectra were taken in triplicate (100 accumulation) with a measurement cylinder,
which was filled approximately to a height of 150 mm.

Partial least squares (PLS) regression was used for calibration. The samples were ran-
domly split 70:30 into calibration (C) and validation (V) data sets. An in-house developed
MATLAB® (MathWorks, Natick, MA, USA) program automatically tested different number
of factors, pre-processings, and responses based on statistical parameters. The statistical
parameters were the coefficient of determination (R2), root mean square error (RMSE),
standard error (SE), as well as systematic error (bias). Wavelength and sample selections
were tested but will not be shown in this work.

2.5. Spatial Filter Velocimetry

The IPP measures the velocity and flight time of particles in a fluidized bed. The
data are used to calculate the geometrical length of the particles and stored in a ring
buffer. This information is then used to determine the particle size distribution and velocity
distributions. The IPP, which is capable of measuring particles ranging from 50 to 6000 µm
in size and velocities of up to 50 m s−1, is described in detail, including its technical
specifications, in [18]. The internal air flush for dispersion was set to 15 L min−1 and
the external channel was flushed for cleaning every 20 s for two seconds at 2.5 L min−1.
The adjustment factor was set to one and no offset was defined. The ring buffer was
set to 50,000 particles, which was the data set from which the current size distribution
curve was calculated. The maximal loading was set to 50%. At an average particle rate
of approximately 1550 s−1, depending on the degree of fluidization, the ring buffer was
overwritten about every 30 s.

The IPP data were fitted to the cumulative distribution function of the Rosin–Rammler
distribution (Equation (1), [19]), and the scale and shape parameters were extracted as
output variables for the PLS models. A separate model was developed for each parameter:

Q3(x) = 1− exp
(
−
( x

x′
)n)

(1)

with x′ as the scale and n as the shape parameter.

2.6. Off-Line Powder Analysis

The particle size was measured by laser diffraction with a Mastersizer 2000 particle size
analyzer (Malvern Instruments GmbH, Herrenberg, Germany) with a dry dispersion unit at
a dispersion pressure of 0.3 MPa. The moisture content on a wet basis (w.b.) was analyzed
using volumetric Karl Fischer titration according to the method in [20]. A solvent consisting
of 10 mL formamide and 20 mL methanol at a temperature of 50 ◦C and a titration time of
300 s was used for this purpose. The bulk density was measured according to EN ISO 60
using the SMG 53466 bulk density tester from Powtec Maschinen und Engineering GmbH
(Remscheid, Germany). The measurements were performed in triplicate.

3. Results and Discussion

The results are presented in two parts. Firstly, the findings of the DoE are presented
and conclusions are drawn regarding the influence of the investigated factors (nozzle
type, fluidization temperature and velocity, as well as binder spray rate) on the particle
properties. Secondly, in-line monitoring systems for the product moisture content and the
particle size distribution are evaluated. Regarding the product moisture content, capacitive
moisture measurement and NIR measurement approaches were tested. The particle size
distribution was measured in-line via the IPP, fitted to the Rosin–Rammler function, and
used for a PLS regression of the NIR spectra.
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3.1. Spray-Through Agglomeration with an Integrated Fluidized Bed

Agglomeration in an integrated fluidized bed can be optimized by choosing the
appropriate combination of process parameters. Therefore, the process conditions were
varied in a wide range to give an overview of the spray-through agglomeration process.
In the following sections, each investigated factor and its influences on the responses are
described separately. Afterwards, correlations between the responses are shown. Lastly,
selected DoE results are illustrated.

Firstly, the nozzle type influences the size distribution. For example, the results of
the reference trials (80 ◦C, 0.8 m s−1) under the same process conditions without binder
addition are shown in Figure 3. The pressure nozzle (diameter 0.3 mm) produced smaller
agglomerates (d50,3 = 43.82 µm) than the two-fluid nozzle (d50,3 = 70.61 µm). The nozzle
also affects the resulting bulk density, with the pressure nozzle producing higher bulk
densities (535 to 609 kg m−3) than the two-fluid nozzle (469 to 552 kg m−3). The difference
can be attributed to changes in the morphology and porosity of the primary particles, as
well as the agglomerate structure. As stated in the literature, without atomizing gas, the
porosity is lower, which can result in higher bulk densities. The pressure nozzle does
not incorporate air into the droplets, resulting in a increase in bulk density. This higher
density can result in faster sedimentation into the fluidized bed and potentially longer
residence times. However, the smaller size and higher density of the particles produced
by the pressure nozzle may also result in smaller agglomerates, probably due to collision
probabilities, as sedimentation depends on the size, shape, and density of the particles [21].
The residence time in the system is determined by the powder level, and once this is
constant, the powder is discharged.
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Figure 3. Particle size distributions of the reference (center) trial under the same process conditions
with different nozzles used. The central experimental parameters were a fluidized bed temperature
of 80 ◦C, fluidization rate of 0.8 m s−1, and no binding agent.

The second factor to consider is the influence of the fluidization temperature on the
particle properties. The results show that the temperature alone had only minor effects
on the particle properties. This is indicated by the highest correlations of this factor being
found for humidity and water activity, with correlation coefficients of −0.34 and −0.39,
respectively. Normally, an impact of temperature on the particle stickiness, as well as
the corresponding changes in particle size, is expected due to the glass transition as the
thermal binding mechanism [8]. In the trial conducted with the two-phase nozzle at
0.6 m s−1 fluidization, 100 ◦C, and the maximum binder dosage, a moisture level of 6.49%
was achieved. The literature shows that the glass transition temperatures for SMP at this
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moisture level are around 26 ◦C. The glass transition temperature depends on the material
properties and the amount of plasticizer, e.g. water. In the viscous state above the onset
glass transition temperature, the surface viscosity is reduced and material stickiness enables
the agglomeration of particles. The sticky point is reached when the surface viscosity of
the particles falls below a critical value, typically around 10 to 20 K above the onset glass
transition temperature [22]. The fluidizing air was considerably above the sticky point
temperature (55 K), indicating a high particle cohesion probability. However, the measured
particle size was 60.46 µm, which was similar to all DoE trials using the same nozzle. In
addition to the cohesion probability, the collision probability influenced by the fluidization
velocity is a factor controlling the agglomeration. Since the fluidization velocity showed
only minor effects on particle properties, a better understanding of the cohesion and
collision probabilities is necessary.

The amount of binding agent used had an impact on several factors, particularly the
moisture content (r = 0.67) and the water activity. With an increasing binder spray rate, the
moisture content of the particles increases, considering all samples in a common boxplot
(Figure 4). The moisture content can be adjusted via the process parameters without the
addition of binders. Median moisture contents of 4% have been achieved, at which efficient
agglomeration cannot be expected as the product is not sticky enough at the powder
temperatures reached. The addition of a binding agent enables the particles to enter the
sticky region for agglomeration.
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The responses of the product were further analyzed (Table 1). As expected, a strong
correlation was observed between moisture and water activity, which can be described
by a product-specific sorption isotherm. Additionally, moisture was also moderately
positive correlated moderately with particle size parameters, such as with the D3,2 or the
scale parameter. Conversely, the shape parameter correlated moderately negatively with
moisture, meaning that the distribution becomes broader with an increasing amount of
binding agent. This is further supported by the increase in the span. The bulk density
correlated with the offline CM sensor response, while the powder level correlated strongly
with the in-line CM sensor response.

To understand the effect of the process on the particle moisture and to determine the
major influencing factors, an analysis of variance (ANOVA) was used. To select a suited
model description, the center point was included to check for non-linear correlations. The
results showed that the moisture content curvature was not significant. Thus, the null
hypothesis was rejected and an unadjusted model was formed. The model mainly included
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the effects of the binder spray rate (56.52%), the fluidized bed temperature (14.22%), and
the interaction between the nozzle type and fluidization velocity (10.67%). Non-significant
interaction terms were also included to form a physical hierarchical model. The resulting
model was significant (p = 0.0002) with an adjusted R2 of 0.87. The diagnostic parameters
were found to be acceptable; however, the residuals for the two-phase nozzle were observed
to be larger but still within acceptable limits. The expected moisture is plotted as a function
of the main influencing factors (Figure 5). The moisture content increases with higher
binder spray rates and lower temperatures, providing a systematic understanding of how
moisture can be influenced. This allows the moisture in the application to be changed if the
sensors detect a deviation from the nominal value.

Table 1. Correlation matrix of the investigated DoE responses.

Water Activity D3,2 x’ Scale Parameter n Shape Parameter CM Offline CM In-Line

Moisture 0.920 ** 0.596 * 0.592 * −0.650 * 0.170 −0.403
Bulk density −0.182 0.070 −0.289 0.216 0.520 * 0.968 **

Note: *: moderate correlation, **: strong correlation.
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The variation in product moisture values, as shown in Figure 5, covering a range of
3.5 to 6%, is relatively small. However, the product changes within this range from a fully
cohesionless material to a highly sticky powder that agglomerates easily. Controlling this
critical product change is the challenge to be solved through the use of the implemented
in-line measurement and control system. The multi-stage design of the process has the
benefit of process integration but also the particular drawback that less control parameters
can be adjusted to ensure robust and optimal performance.

3.2. Capacitive Sensor Responses

The objective was to determine if the CM sensor can accurately and reliably measure
the moisture content. Firstly, regression was performed for the offline sensor responses but
it was found that the coefficients of determination were low. Specifically, the R2 value was
0.33 for the pressure nozzle and 0.28 for the two-phase nozzle. Combining the data sets for
combined regression did not improve the model (data not shown). Kupfer [23] emphasized
the bulk density as one of the most important influences on indirect water determination.
When the offline sensor response is correlated to the bulk densities of the powder, an R2

of 0.76 is achieved for the pressure nozzle and of 0.91 for the two-phase model (Figure 6).
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Consequently, the effect of the bulk density on the sensor response is more pronounced
than the effect of the moisture content.
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Figure 6. Linear regression of the offline measurement data from the capacitive moisture sensor to
the bulk density.

The in-line sensor response showed no correlation with the water content, as indicated
by an R2 of 0.14 for the pressure nozzle trials and of 0.01 for the two-phase nozzle trials.
However, it was found to be positively correlated with the pressure drop and filling level
of the fluidized material. The correlation was affected by the interval at which pneumatic
hammers release material from the spray dryer wall, occurring every 60 s. This relationship
is illustrated as an example (Figure 7).
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Similar effects with capacitive sensors have been reported in the literature, where it
was necessary to calibrate them at high moisture levels (up to 70%), assuming a consistent
material thickness and density [24]. Due to variances and a lack of mathematical patterns,
corrections for the material thickness and density were unsuccessful. Li et al. [25] summa-
rized the constraints for the moisture measurement of corn related to product properties,
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i.e. the flow state or pore distribution. In these circumstances, NIR sensors have been
favored. The recent research indicates that in fluidized beds, a dependence on process
and product conditions is more prevalent for CM sensors compared to NIR sensors [26].
One possible way to gain a better understanding of the underlying mechanisms is using
a pressure fluctuation analysis, as demonstrated by J. C. Schouten and colleagues. This
method can provide valuable insights that can help refine and optimize the multi-sensor
approach for the early detection of system changes [27].

3.3. Calibration of Near-Infrared Spectra to the Moisture Content

In this chapter, the building of the NIR model via PLS regression to predict the moisture
content (w.b.) in the integrated fluidized bed in-line is presented. Different selections of
spectral data were tested, as the NIR spectra varied with the type of nozzle used to atomize
the feed. Despite these differences, a joint model was established to predict the properties
of the powder samples independent of the nozzle type used. However, if necessary, better
correlations with fewer resulting factors from the PLS can be achieved by using separate
models for each nozzle type. The last minute before taking the sample was averaged for
further evaluation.

To correct the spectral data for noise, baseline shifts or scaling differences, various pre-
processing techniques were tested systematically. This can enhance the model’s robustness
or reduce the number of factors needed. The optimum number of factors for each pre-
processing technique was evaluated using multivariate statistical parameters (Table 2).
Afterwards, a pre-processing technique is suggested according to the lowest number of
factors, highest R2, and lowest error values of the model, as indicated in the table. The
most suitable method chosen was the standard normal variate (SNV) pre-processing with
eight factors.

Table 2. Comparison of different pre-processing techniques and the number of factors included in
the PLS model.

Pre-Processing No. of Factors R2 (C) R2 (V) RMSEC RMSEP SEC SEP Bias

None 2 0.30 0.31 1.17 1.16 1.18 1.19 2 × 10−16

Smoothing 2 0.30 0.30 1.17 1.16 1.18 1.19 −4 × 10−16

Detrending 3 0.75 0.69 0.70 0.78 0.70 0.80 5 × 10−16

SNV 8 0.94 0.83 0.33 0.58 0.33 0.59 −3 × 10−15

1st derivative 5 0.81 0.71 0.62 0.75 0.62 0.76 7 × 10−16

2nd derivative 4 0.75 0.65 0.70 0.83 0.70 0.85 9 × 10−16

MSC 8 0.95 0.81 0.33 0.61 0.33 0.62 −3 × 10−14

The scores indicate the coordinates of the objects in the factor space. A selection of
scores for two factors classified into four groups of different moisture contents (Figure 8a)
shows a lower moisture content for lower scores of factors 3 and 6 and vice versa. However,
using only two factors, the samples could not be separated clearly in the factor space
according to their moisture content. This emphasizes the need for more factors in the PLS
model due to various influences in-line in the spray dryer on the spectral data. When
considering the loadings for these two factors (Figure 8b), the wavelength region between
1400 and 1500 nm (blue) shows a positive impact on the moisture content. This region
correlates with the second overtone of the OH, CH, and CH2 group. The wavelength region
between 1350 and 1400 nm (green), where the second overtone of the CH2 and CH3 group
is located, has an opposite effect for factors 3 and 6.

The predicted moisture is plotted over the measured moisture based on titration
(Figure 9). The R2 was 0.94 and the RMSE was 0.33%. In addition to the mean deviation, the
maximum deviation of the validation set predictions was 1% moisture content or 16% of
the moisture range of 7%. The linear regression with the confidence and prediction interval
is illustrated for the calibration data set.
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Figure 8. Selection of (a) the scores and (b) the loadings of factors 3 and 6 for prediction of the
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between 1400 and 1500 nm correlates with the second overtone of the OH, CH, and CH2 group.
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Figure 9. Reference compared to the predicted water contents for calibration and validation data sets
(80 samples) with linear regression.

The model predicts a moisture content range for the agglomerates of 3 to 9.5%. From
pre-trials, it has been shown that low moisture contents (<3%) can only be achieved without
the addition of binders and with extended post-drying, while high moisture contents above
about 10% lead to blockage of the fluidized bed. To conclude, the final model includes all
relevant process regions for the manufacture of SMP in this spray drying setup.

In the literature, the pre-processings and number of factors vary for comparable PLS
models. SNV pre-processing was used in predictions from offline and online built mod-
els [28,29]. This standardization method corrects for scattering effects due to differences
in the physical properties of the samples, mainly the particle size, and is commonly used
for particulate systems. The number of factors depends on the complexity of the samples.
While only a few factors were needed for models measured offline [28] or with similar
material [30], more than 10 factors were considered for dairy samples with different fat
contents, animal types, producers, etc. [29]. Maltesen et al. [28] also found that the mor-
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phology of the samples had a significant impact on the predictive ability of the models and
recommended using smooth and spherical particles. This explains the number of factors
used for the PLS model in this study, as different nozzle types produce different particle
morphologies. Further, different process conditions can lead to a change in the in-line
NIR signal.

3.4. Calibration of Near-Infrared Spectra to Particle Size Distribution Using Rosin–Rammler Fit

Analogous to the moisture content, the aim was to estimate the particle size within
the fluidized bed using the scattered light data from the NIR spectra. Instead of basing
the model on the particle sizes measured externally in the laboratory, the model was
based on the cumulative distribution curves obtained in-line using the IPP probe. The
advantage of this approach is that the process can be continuously reflected and a higher
number of samples can be analyzed over time with varying process parameters. Further,
the acquisition of the particle size is less complex compared to a subsequent laboratory
analysis, as no samples need to be taken. However, it should be noted that the in-line
measurement method also deviates from the laboratory results. This deviation is attributed
to the different measurement principles as well as the limitations for the lower particle sizes.
The measuring position within the fluidized bed may also lead to a non-representative
sampling of the particles. The use of a single, non-invasive probe to simultaneously obtain
information about both, the moisture and particle size distribution of the sample, holds
potential by indicating the success of the agglomeration in real time.

The selected number of factors and the corresponding statistical parameters for the
different pre-processing techniques are listed in Table 3. The algorithm suggests no pre-
processing and 15 factors. Alternatively, the second derivative with 17 factors could
be considered but was excluded here as the model did not show an improvement in
the prediction.

Table 3. Comparison of different pre-processing techniques and the number of factors included in
the PLS model.

Pre-Processing No. of Factors R2 (C) R2 (V) RMSEC RMSEP SEC SEP Bias

None 15 0.96 0.94 8.18 9.63 8.20 9.68 9 × 10−13

Smoothing 13 0.92 0.92 10.94 10.69 10.96 10.76 4 × 10−13

Detrending 12 0.94 0.93 10.09 10.09 9.86 10.14 1 × 10−13

SNV 3 0.33 0.32 31.79 31.79 34.38 31.97 3 × 10−15

1st derivative 14 0.94 0.93 9.62 9.62 9.54 9.68 3 × 10−14

2nd derivative 17 0.94 0.84 9.12 9.12 7.82 9.17 4 × 10−14

MSC 12 0.90 0.90 12.40 12.40 11.76 12.47 −9 × 10−13

The scores and loadings for factors 8 and 9 of the PLS model are evaluated as an
example. For those two factors, the scale parameter is lowest with negative score values
and increases with increasing score values, which is indicated via 4 differently colored
groups (Figure 10a). However, no explicit separation is possible with only two factors.
Regarding the loadings, a clear peak over both factors was not noticeable and opposing
trends per wavelength can be seen (Figure 10b).

The resulting prediction from the PLS with 15 factors and no pre-processing is com-
pared with the measured values (Figure 11). The scale parameter x′ in µm is shown and
fitted well between 60 and 210 µm. The precision of the fit is represented by an R2 value of
0.96 and an RMSE of 8.18. The maximum deviation of the validation set predictions was
24 µm or 16% of the data spread of 150 µm. This indicates that the model is able to make
reliable predictions.

The same procedure was followed for the shape parameters n in a range between
1.8 and 3.1. Different pre-processing techniques were compared according to multivariate
statistics and the raw spectra with 17 factors, and an R2 of 0.92 and an RMSE of 0.06
were suggested by the algorithm (Table 4). The maximum deviation of the validation set
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predictions was 0.34 or 20% of the data spread of 1.7 µm. The particle size distribution and
the resulting fluidization behavior can lead to a changed scattering effect due to changes
in the amount and direction of the reflected light. This change results mainly in baseline
shifting and noise [31]. As the principle of pre-processing is to reduce the noise and the
baseline shift from the spectral data, the information about the particle size is only present
in the models without any pre-processing or those without baseline correction.
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Figure 11. Reference compared to the predicted scale parameter x′ for calibration and validation data
sets (294 samples) with linear regression.

The scores for factors 15 and 16 are illustrated as an example, grouped by shape
parameters via different colors (Figure 12a). The smaller shape parameters < 2 are located
in the third quadrant with negative score values for both factors, while the bigger shape
parameters > 3 are present in the first quadrant with positive score values. However, no
separation in the factor space is possible via two factors. The loadings show no clear peaks
and high noise for the lower wavelengths (Figure 12b).

The predicted shape parameter is plotted over the reference shape parameter for the cal-
ibration and validation data sets with linear regression and corresponding
95% confidence and prediction intervals (Figure 13). The evaluated range represents
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similar particle size distributions and shows a lower data density with shape parameters
above 2.7. For robust prediction, the extension of the model is necessary.

Table 4. Comparison of different pre-processing techniques and the number of factors included in
the PLS model.

Pre-Processing No. of Factors R2 (C) R2 (V) RMSEC RMSEP SEC SEP Bias

None 17 0.92 0.89 0.06 0.07 0.06 0.07 −6 × 10−15

Smoothing 4 0.29 0.28 0.18 0.19 0.18 0.19 6 × 10−16

Detrending 17 0.93 0.90 0.05 0.07 0.05 0.07 −8 × 10−16

SNV 2 0.22 0.24 0.19 0.19 0.19 0.20 −2 × 10−16

1st derivative 9 0.82 0.79 0.09 0.10 0.09 0.10 −8 × 10−16

2nd derivative 5 0.64 0.68 0.13 0.13 0.13 0.13 −1 × 10−16

MSC 2 0.32 0.27 0.17 0.19 0.18 0.19 6 × 10−16
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2nd derivative 5 0.64 0.68 0.13 0.13 0.13 0.13 −1 × 10-16 

MSC 2 0.32 0.27 0.17 0.19 0.18 0.19 6 × 10-16 
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particle size distributions and shows a lower data density with shape parameters above 
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Figure 12. Selection of (a) the scores and (b) the loadings of factors 15 and 16 for prediction of the
shape parameter via PLS regression.
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The model building methodology employed in this study was successful, as it allowed
for the fitting of the particle size distribution not only through a single parameter, such as
the median particle diameter [32], but also by approximating the entire distribution curve
using a Rosin–Rammler fit. The model is able to predict the particle size distribution in
application from the raw spectra with 15 and 17 factors, as demonstrated by the results
in Figures 11 and 13. The high number of factors needed was expected because physical
information about the particle size distribution and morphology can be found in the
baseline offset and noise across the entire spectrum [27,31]. In contrast, Higgins et al. [33]
were able to predict the d90 in an online milling process with one factor, as their samples
had a broad size range but did not differ in chemical composition. This emphasizes the
influence of the particle morphology on the spectrum [27]. In the literature, different
effects of the particle size distribution on the spectral data are observed, but additional
investigation of the underlying principle is required, especially regarding the influence of
the particle morphology. Further, an effect of particle movement in the fluidized bed on the
NIR signal cannot be excluded.

4. Conclusions

This study analyzed the spray drying process with forced agglomeration in an inte-
grated fluidized bed in terms of the nozzle type and key influencing factors such as the
binder rate, fluidization velocity, and temperature. These factors were varied to examine
their effect on the particle moisture and size. The NIR sensor calibration allowed to deter-
mine the moisture content with an RMSE of 0.33%, although the CM sensor calibration was
insufficient. It is currently believed that the primary effect seen in CM measurements is due
to changes in cohesion, resulting in changes in fluidization patterns. Further investigation
and validation of these assumptions is necessary to ensure the accuracy and effectiveness
of this approach. Surprisingly, the non-invasive NIR sensor enabled the prediction of the
particle size distribution with scale and shape parameters of the Rosin–Rammler fit. The
use of a multi-sensor approach as a tool for the very early detection of system changes is a
promising concept with enormous potential for improving quality control by checking for
unexpected deviations in the sensor data. Regarding the process integration, this approach
is particularly useful in knife-edge process situations where even small changes in the
system may have a significant impact on the product quality or process stability. However,
to fully realize the potential of this method, it will be necessary to conduct more detailed
analyses of a broader range of systems.
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Abbreviations

ALR Air-to-liquid ratio
bias Systematic error
C Calibration
CM Capacitance measurement
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D3,2 Sauter mean diameter, µm
d50,3 Median particle diameter, µm
DoE Design of experiments
IPP In-line particle probe
MSC Multiplicative scattering correction
n Shape parameter
NIR Near-infrared
P Prediction
PLS Partial least squares
r Pearson’s correlation coefficient
R2 Coefficient of determination
RMSE Root mean square error
SE Standard error
SMP Skim milk powder
SNV Standard normal variate
Span Width of distribution
V Validation
w.b. Wet basis
x′ Scale parameter, µm
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