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Abstract: Butene is a typical component of exhaust gas in the petrochemical industry, the emission of
which into the atmosphere would lead to air pollution. In this study, a tubular multilayer dielectric
barrier discharge (TM-DBD) reactor was developed to decompose 1-butene at ambient pressure. The
experimental results show that a decomposition efficiency of more than 99% and COx selectivity of
at least 43% could be obtained at a specific energy density of 100 J/L with an inlet concentration of
1-butene ranging from 100 to 400 ppm. Increasing the volume ratio of O2/N2 from 0 to 20% and the
specific energy density from 33 to 132 J/L were beneficial for 1-butene destruction and mineralization.
Based on organic byproduct analysis, it was inferred that the nitrogenous organic compounds were
the main products in N2 atmosphere, while alcohol, aldehyde, ketone, acid and oxirane were detected
in the presence of O2. In addition, the contents of formaldehyde, acetaldehyde, ethyl alcohol, acetic
acid and propionic acid increased with an increase in specific energy density, but the contents of
propionaldehyde, ethyl oxirane, butyraldehyde and formic acid decreased. Three main pathways of
1-butene destruction were proposed involving Criegee intermediates and ozonolysis of the olefins,
and the following degradation could be the dominant pathways rather than epoxidation. Overall, the
developed TM-DBD system paved the way for scaling up the applications of plasma technology for
gaseous pollutant decomposition.

Keywords: 1-butene; decomposition; dielectric barrier discharge reactor; O2 concentration;
oxidation mechanism

1. Introduction

Butenes are important raw materials for synthetizing masses of industrial chemicals
(such as 1,3-butadiene [1] and acetic acid [2]) and polymers (such as linear low density
polyethylene and atactic polypropylene [3,4]). Meanwhile, butenes are the typical gaseous
pollutants in petrochemical waste gas, which are unwanted byproducts in dehydrogenation
and unreacted monomers in polyreactions. Although butenes have low toxicity and exert
little effect on human health, their emission into the atmosphere should be controlled to
avoid secondary pollution mediated by photochemical reactions [5–7]. Therefore, it is
imperative to develop appropriate technology to remove butenes before being emitted into
the atmosphere.

At present, there are many conventional methods to remove 1-butene, including
adsorption, thermal combustion and catalytic oxidation. However, these techniques have
some limitations in VOC treatment. For example, the adsorption method suffers from
secondary pollution (such as spent adsorbent and collected organics). Thermal combustion
has high natural gas consumption and produces extra CO2. The catalytic oxidation can
work well only at a high temperature, and catalyst poisoning is also a major problem [8].
In comparison, non-thermal plasma (NTP) technology has been widely used for odor and
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exhaust gas treatment due to its good decomposition capacity and low operating cost [9,10],
especially for low concentration VOCs (<1000 ppm) [11–13]. Additionally, NTP technology
also has some specific advantages, such as simple operation, quick switch of equipment,
and simultaneous treatment of multiple pollutants. There are many ways to generate NTP,
such as glow discharge, corona discharge and dielectric barrier discharge (DBD). Among
these methods, DBD can prevent the occurrence of arc discharge and avoid the corrosion
of metal electrodes by covering the electrodes with barrier layers [14,15]. Therefore, DBD
has been recognized as the most commonly industrial NTP. In the discharge space, the
molecules of VOCs can be decomposed and oxidized by highly reactive species, e.g., O(1D),
O(1S), O(3P), O+, O2

+, O3, N2(A3Σ+
u ) and N2(B3Πg), which are produced by collisions

between energetic electrons and background gas molecules, such as N2 and O2 [16–18].
Thus far, only a handful of studies have been concerned with alkene decomposition by NTP,
and most of them focus on the removal of ethylene. Mok et al. [19] reported that alkene
and substituted alkene have much higher decomposition rate constants than aromatics and
substituted alkane compounds. Aerts et al. [20] studied ethylene decomposition by the
global (0D) model and found that atomic oxygen is the dominant destruction species at a
low specific energy density (SED) and low inlet concentration, whereas the metastables
dominated the destruction process at a high concentration and high SED. In the discharge
space, O2 promotes the mineralization of VOCs but also produces some hazardous organics,
e.g., alcohol, aldehyde, ketone, acid, etc. [21–24]. In addition, SED and O2 concertations
also affect the formed COx and byproducts [25,26]. The decomposition and mineralization
of ethylene can be improved with plasma-catalytic reactors developed by Mok et al. [27–29],
and some unwanted byproducts, including O3 and NOx, were inhibited at a low ethylene
concertation. In conclusion, these researchers offered a rich diversity of methodologies to
investigate 1-butene decomposition in the plasma system. However, as an important waste
gas during industrial processes, 1-butene decomposition by DBD plasma is still unknown.
The comprehensive analysis of the 1-butene decomposition mechanism in NTP would be
beneficial to promote the application of NTP technology in industrial VOC management.

In this work, a tubular multilayer dielectric barrier discharge (TM-DBD) reactor was
developed for the effective decomposition of 1-butene at ambient pressure. The indus-
trial operation parameters, such as inlet 1-butene concentration, SED and O2/(N2+O2)
ratio on 1-butene decomposition, were studied in a DBD reactor. The distribution of
organic byproducts was detected by GC-MS analysis under different SED and N2/air con-
ditions. The decomposition mechanism of 1-butene was proposed in terms of byproduct
analysis results.

2. Experimental Setup and Method
2.1. Experimental Setup

As shown in Figure 1, the experimental setup consisted primarily of a gas feeding
system, a DBD reactor, a power supply, and electric and gaseous analytical systems. All
continuous flow gases were supplied by gas cylinders and were adjusted by mass flow
controllers (MFC). The 1-butene was mixed and diluted with N2 and O2 in a flask and
then fed into the DBD reactor. The gas flow rate was selected at 40 L/min, 60 L/min and
80 L/min, and the initial 1-butene concentration was set at 100 ppm, 200 ppm and 400 ppm,
respectively. The O2 concentration in the fixed flow rate was adjusted by changing the
proportions of O2 and N2. A tubular multilayer dielectric barrier discharge (TM-DBD)
reactor was designed based on a study by Zhang et al. [30]. The TM-DBD reactor was
energized by a high-frequency and high-voltage AC power supply (CTP-2000K, China)
with sine wave output, which could supply voltage varying from 0 to 30 kV and frequency
varying from 1 to 100 kHz. The applied voltage and current were monitored with a digital
oscilloscope (Tektronix DPO3054, Beaverton, OR, USA), a high voltage probe (Tektronix
P6015A) with an attenuation ratio of 1000:1, and a passive probe (Tektronix TPP0500). Gas
samples were collected at the outlet of the DBD reactor. The 1-butene concentration was
measured on a gas chromatograph (Agilent 8890B, Santa Clara, CA, USA) equipped with
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a flame ionization detector (FID). Organic intermediates were qualitatively analyzed on
gas chromatography mass spectrometry (GC-MS) (Agilent 7890B-5973N, America). The
concentrations of CO and CO2 were quantified using a Fourier transform infrared (FTIR)
spectrometer (Thermo Fisher, Antaris IGS, Waltham, MA, USA) fitted with a 20 cm long
gas cell. The O3 concentration was monitored by a O3 analyzer (uSafe 3000, Shenzhen,
China). The NO2 concentration was determined online using a flue gas analyzer (Testo 350,
Titisee-Neustadt, Germany).
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Figure 1. Schematic of the experimental system for 1-butene decomposition in a DBD reactor.

2.2. DBD Reactor

The TM-DBD reactor is shown in Figure 2a and the pinouts were led out from the
endpoints of iron powder for connecting high voltage power supply or ground. Each
hollow quartz dielectric tube had a wall thickness of 1.5 mm, outer diameter of 10 mm and
length of 80 mm. All electrodes were divided into 2 layers arranged in parallel. Adjacent
electrodes were placed in every layer evenly with a gap distance of 4 mm. One layer
consisting of 4 electrodes was connected with a high voltage power supply, acting as the
discharge electrodes. The other layer, consisting of 5 electrodes, was connected with the
earth, serving as the ground electrodes. The gap distance between the adjacent discharge
electrode and the ground electrode was 3.8 mm. The gas could be treated through the “V”
shape of the discharge spaces, which were located between the discharge electrodes and
two adjacent ground electrodes. The cross section of gas through the reactor had a height
of 80 mm and a width of 60 mm. Figure 2c shows the actual discharge conditions of the
TM-DBD reactor in this experiment.
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Figure 2. The configuration of the TM-DBD reactor in (a) cross-sectional view and (b) side view, as
well as (c) the discharge picture of cross-sectional view and (d) the discharge picture of side view.

2.3. Measurement Methods

The energy consumed in the TM-DBD reactor was calculated using the voltage-charge
(V-Q) Lissajous method [31]. The specific energy density (SED) was defined as the discharge
power (W) divided by the total gas flow rate (L/min), which was calculated using the
following relations:

SED(J/L) =
Discharge power

Gas flow rate
× 60 (1)

The percentage of decomposition efficiency (DE) and selectivities toward CO, CO2
and COx were obtained based on the following equations:

DE(%) =
[C4H8]i − [C4H8]o

[C4H8]i
× 100 (2)

CO selectivity(%) =
[CO]o

4× ([C4H8]i − [C4H8]o)
× 100 (3)

CO2 selectivity(%) =
[CO2]o

4× ([C4H8]i − [C4H8]o)
× 100 (4)

COx selectivity(%) = CO selectivity + CO2 selectivity (5)

where [C4H8]o and [C4H8]i are the concentrations of 1-butene at the inlet and outlet of the
TM-DBD reactor, respectively.

3. Results and Discussion
3.1. 1-Butene Decomposition

The capacity of the TM-DBD reactor toward the destruction of 1-butene was evaluated
at different initial 1-butene concentrations and specific energy density (SED). In this series
of experiments, a fixed O2/(N2+O2) volume ratio of all the carrier gases was set at 20% for
simulating air. As shown in Figure 3a, the decomposition efficiency of 1-butene increased
with increasing SED at any inlet concentration until complete degradation. Specifically,
1-butene decomposition efficiency increased from 91.2% to nearly 100% with elevating SED
from 33 to 66 J/L at an inlet 1-butene concentration of 200 ppm. The SED for attaining
complete 1-butene degradation required at least 33 J/L, 66 J/L and 101 J/L when inlet
concentrations were 100 ppm, 200 ppm and 400 ppm, respectively. The COx selectivity
could directly reflect the mineralization extent of 1-butene because CO and CO2 were the
main decomposition products of 1-butene after plasma treatment. Figure 3b shows that
CO selectivity was significantly higher than CO2 selectivity. Notably, it was found that
the CO2 selectivity increased remarkably with the increase of SED, but the increase of CO
selectivity was not evident under the same condition. For example, when the inlet 1-butene
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concentration was 400 ppm and SED increased from 33 to 203 J/L, the CO2 selectivity rose
rapidly from 4% to 13%; however, the CO selectivity rose slowly from 33% to 35%, which
was higher than CO2 selectivity. These results could be attributed to the fact that CO was
much more easily produced than CO2 in air plasma at atmospheric pressure, and these
two oxidation products were generated through different paths (discussed in Section 3.4).
Even though both oxidation processes could be enhanced with the increase of SED, CO
selectivity increased slightly while an evident increase of CO2 selectivity was observed.
The reason might be that an increase of SED promoted the production of CO; however,
most of the generated CO was subsequently consumed to synthesize CO2 in the presence
of extensive active particles.
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In addition, Figure 3a,b indicates that lower inlet 1-butene concentration gained higher
decomposition efficiency (under the state of incomplete degradation) and low CO/CO2
selectivity. Taking the SED of 51 J/L and inlet 1-butene concentration of 100 ppm as an
example, the decomposition efficiency, CO selectivity and CO2 selectivity were 100%, 37%
and 10%, respectively, while the results decreased to 68%, 34% and 5%, respectively, at
an inlet 1-butene concentration of 400 ppm. The reason for this phenomenon was more
possibilities for less organic molecules to react with highly reactive species in the same
discharge space [32].

O3 and NOx were the main inorganic byproducts during the plasma treatment process,
which should also be measured in the VOC decomposition process. In the air plasma
discharge system, these two gaseous compounds were generated via dissociation, exci-
tation and ionization. First, the excited-state atomic nitrogen N(2D) and N(2P), as well
as excited-state molecular nitrogen N2(A3Σ+

u ) were produced by electron collisions with
N2 in Equations (6)–(8) [33,34]. These reactive species reacted with O2 to generate NO
and atomic O, as shown in Equations (9)–(11). In addition, the electron collisions with
O2 also produced the atomic O in Equation (12). O3 was generated from atomic O via
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reactions with O2 and M in Equation (13), where M could be either O2 or N2 [35,36]. NO2
was detected as a major NOx species, but no NO was detected in the gas treated by plasma
because of the oxidization of O3 and atomic O, as shown in Equations (14) and (15) [37]. As
the equations shown, O3 and NOx are both involved in the generation and consumption
of “useful” active species, such as atomic O and O2, which could directly oxidize VOC
compounds.

e + N2 → e + N
(

2D
)
+ N

(
2D

)
(6)

e + N2 → e + N
(

2P
)
+ N

(
2P

)
(7)

e + N2 → e + N2
(
A3Σ+

u
)

(8)

N
(

2D
)
+ O2 → NO + O· (9)

N
(

2P
)
+ O2 → NO + O· (10)

N2
(
A3Σ+

u
)
+ O2 → O ·+O ·+N2 (11)

e + O2 → e + O ·+O· (12)

O ·+O2 + M→ O3 + M (13)

O3 + NO→ NO2 + O2 (14)

O ·+NO + M→ NO2 + M (15)

Figure 3c,d shows that the concentration of O3 and NO2 increased with the increase of
SED. When the inlet 1-butene concentration was 100 ppm and SED increased from 33 to
203 J/L, the concentrations of O3 and NO2 increased from 514 to 1325 ppm and from
286 to 620 ppm, respectively. However, the increase of inlet 1-butene concentration led
to an inhibition of the formation of O3 and NO2. For example, the O3 concentration was
reduced from 1021 to 533 ppm at an SED of 101 J/L as the inlet 1-butene concentration
increased from 100 to 400 ppm. Meanwhile, the NO2 concentration decreased from 520 to
367 ppm accordingly. The reason could be attributed to the consumption of energetic
electrons and reactive species (e.g., N species and atomic O) during the process of 1-butene
degradation [38]. In consideration of the significant formation of O3 and NO2 produced in
the plasma process, many studies have reported that packing catalysts downstream of the
DBD reactor could consume these byproducts effectively [39,40].

3.2. Effect of O2/(N2+O2) Ratio

O2 often plays an important role in VOC decomposition by affecting the electric field
and the active species (Equations (9)–(15)). Three effects of O2/(N2+O2) volume ratio
on VOC decomposition performance based on the literature are shown below. First, the
naphthalene decomposition efficiencies increased with the O2/(N2+O2) volume ratio by the
DBD plasma, indicating that the reactive species derived from O2 mainly contributed to pol-
lutant decomposition [41]. Next, the decomposition efficiencies of chlorodifluoromethane
(CHF2Cl) decreased with the increase of the O2/(N2+O2) ratio because the reactive species
from N2 primarily contributed to the destruction of CHF2Cl rather than those from O2 [42].
Finally, the decomposition efficiencies of benzene and toluene reached a maximum value
at 3–5% O2 and then decreased with increasing O2/(N2+O2) volume ratio. This result
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might be caused by the fact that an enhanced generation of O atoms with the increase of O2
concentration generally led to a higher degradation efficiency. However, with the further
increase in O2 concentration, more excited-state nitrogen species, O3 and O atoms, were
consumed through collisions between active particles (Equations (9)–(11), (14) and (15)),
which would otherwise be used for destroying benzene [43,44]. In order to understand the
influence of O2 on the degradation of 1-butene, a series of experiments were conducted
in which the O2 volume ratio was varied from 0 to 20% at different SED, and the experi-
mental results are illustrated in Figure 4. In this series of experiments, the inlet 1-butene
concentration was maintained at around 200 ppm.
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As shown in Figure 4, the decomposition efficiency, COx selectivity, and the yield of
O3 and NO2 increased rapidly with the O2 concentration. Taking the SED of 66 J/L as
an example, in the absence of O2 in the gas, the 1-butene decomposition efficiency was
only 11%, and COx, O3 and NO2 were not detected. When the O2 volume ratio was raised
to 20%, the 1-butene decomposition efficiency and COx selectivity increased to 99% and
45%, respectively, and the concentrations of O3 and NO2 were 588 ppm and 301 ppm,
respectively. The increase of O2/(N2+O2) ratio in the gas was beneficial for 1-butene
mineralization and oxidation product formation by facilitating the production of atomic
O, which was concordant with the previous literature [41,43,44]. In addition, SED could
enhance the decomposition efficiency and COx selectivity even at a low O2/(N2+O2) ratio.
For example, when the O2/(N2+O2) volume ratio was 5% and SED was increased from
33 to 132 J/L, the decomposition efficiency increased from 31% to 99% and COx selectivity
increased from 15% to 38%. The results suggest that raising the SED was one of the most
effective ways to improve 1-butene degradation, especially at a low O2/(N2+O2) ratio.
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3.3. Organic Byproduct Analysis

In order to illustrate the reaction mechanism of 1-butene destruction in N2 and air, the
gas compounds in the outlet of the TM-DBD reactor were analyzed by GC-MS at an SED of
51 and 203 J/L, respectively. The inlet concentration was maintained at around 300 ppm.
The detected organic byproducts and their relative abundance under four different experi-
mental conditions are presented in Figure 5 and Table 1. For 1-butene decomposition in N2
plasma, hydrocarbon and oxy-organics were not found in the outlet gas even though the
SED was increased. Moreover, COx has not been found either under similar experimental
conditions, as shown in Figure 4b. These results indicate that the decomposition products
of 1-butene mediated by the N reactive species may be in the main forms of nitrogenous
organic compounds (such as amine, nitrile and nitrogen heterocyclic) [41]. Unfortunately,
these nitrogenous organic compounds cannot be detected by GC-MS analysis. In compari-
son, abundant organic byproducts of 1-butene decomposition were found in air plasma,
which included alcohol, aldehyde, ketone, acid and oxirane. With the SED raised from 51 to
203 J/L, the contents of formaldehyde, acetaldehyde, ethyl alcohol, acetic acid and propi-
onic acid increased, while the contents of propionaldehyde, ethyl oxirane, butyraldehyde
and formic acid decreased.
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Table 1. The organic byproducts detected in four experimental conditions.

Peak
Numbers

Time
(min)

Organic Compound Structure
Relative Abundance

SED = 51 J/L
in N2

SED = 51 J/L
in Air

SED = 203 J/L
in N2

SED = 203 J/L
in Air

1 6.839 1-butene CH2 = CHCH2CH3 5,094,566 3,544,865 4,561,915 n.d
2 6.034 Formaldehyde CH2O n.d 169,841 n.d 177,739
3 7.126 Acetaldehyde CH3CHO n.d 215,131 n.d 263,062
4 8.686 Ethyl alcohol CH3CH2OH n.d 639,90 n.d 148,173
5 9.382 Propionaldehyde CH3CH2CHO n.d 1,231,359 n.d 147,682
6 12.017 Ethyl oxirane CH3CH2CH(O)CH2 n.d 840,904 n.d 704,603
7 12.091 Butyraldehyde CH3CH2CH2CHO n.d 371,202 n.d 82,059
8 12.225 Formic acid HCOOH n.d 67,179 n.d n.d
9 12.344 2-butanone CH3COCH2CH3 n.d 77,893 n.d 79,384

10 13.322 Acetic acid CH3COOH n.d n.d n.d 63,755
11 15.705 Propionic acid CH3CH2COOH n.d n.d n.d 93,962

n.d: not detected.

3.4. Proposed Reaction Mechanism

Based on the intermediates detected by GC-MS analysis, three possible 1-butene
decomposition pathways were proposed during the air plasma treatment. As shown in
Figure 3, 200–1500 ppm O3 were detected during the air plasma discharge procedure
at a 1-butene concentration of 100–400 ppm. The cleavage of the double bonds of 1-
butene (1) and related isomer 2-butene could easily take place by ozonolysis via 1,3-dipolar
cycloaddition to give a carbonyl compound and a carbonyl oxide commonly called Criegee
intermediates [45]. For Path A, due to the asymmetric structure of 1-butene (1), two
zwitterion species, 5-O and 2-O, could be formed along with formaldehyde (2) and propanal
(5), respectively. Criegee intermediates 5-O and 2-O could be trapped by nucleophiles,
such as N-oxides, in air plasma. The generated species subsequently decomposed into
related reduction products, propanal (5) and formaldehyde (2). With the aid of the active
oxidants (i.e., •OH, O•), aldehyde compounds could proceed through further oxidation
to produce the related acid propionic acid (11) and formic acid (8) [46], which could go
through a direct decarbonylation process to furnish CO and H2O. Additionally, after further
oxidation of formic acid to carbonic acid (12), a decarboxylation reaction could take place
to eliminate a carboxyl group and with the release of CO2. As shown in Figure 3b, it
suggests that CO and CO2 originated in two independent ways, and it was easier to obtain
CO than CO2. It should be noted that other possible pathways from acid compounds to
generate CO and CO2 could not be completely excluded, especially in surroundings full of
high-energy electrons. For Path B, in the discharge atmosphere, the charged 1-butene (1-H)
was capable of isomerizing with the resonance structure charged 2-butene (1-H’). Owing to
the symmetrical structure of 2-butene, only one zwitterion specie 3-O was obtained and
then reduced to acetaldehyde (3). The acetaldehyde (3) could not only be sequentially
reduced to alcohol (4) but also be oxidized to acetic acid (10). For Path C, 1-butene could
also react with Criegee intermediates to generate the epoxidized compound (6). According
to the breaking method of C-O bonds, routes a and b were proposed in Figure 6. The
n-butylaldehyde (7) and 2-butanone (9) could be determined, accompanying the rupture of
the correspondent C2-O (route a) and C1-O bonds (route b), respectively.
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In addition, the amounts of the above organic byproducts were examined under
conditions of 51 and 203 J/L, respectively. In Path A, as shown in Table 1, with the increase
of SED, extra propionic acid (11) was found with the decrease of propionaldehyde (5), while
formaldehyde (2) was enriched, and formic acid (8) totally vanished to form COx. (i.e., CO
and CO2). In detail, there was a slight increase in the amount of CO2, while the amount of
CO remained the same (Figure 3b). Active oxygen species were required for the formations
of the COx precursors, i.e., formic acid and CO2. The O2 concentration plays a positive role
in raising COx selectivity, which can be supported by the experimental results shown in
Figure 4b. As for Path B, acetic acid (10) appeared along with both acetaldehyde (3) and
ethyl alcohol (4). However, unlike Paths A and B, ethyl oxirane (6) and butyraldehyde (7)
in Path C both declined, while 2-butanone (9) was well maintained. On the basis of the
above results, ozonolysis of the olefins and the subsequent degradation reaction may be
the dominant pathways rather than epoxidation.

4. Conclusions

In this study, we developed a TM-DBD reactor for the decomposition of 1-butene at
ambient pressure, which is a typical gaseous pollutant in petrochemical exhaust gas. The
results indicate that DBD plasma was an effective technology for removing a low 1-butene
concentration of 100–400 ppm from the exhaust gas. First, the decomposition efficiency, COx
selectivity and by-product yield were systematically studied with operating parameters
(e.g., inlet concentration, SED). When SED reached 100 J/L, a decomposition efficiency
of more than 99% and COx selectivity of at least 43% could be obtained; meanwhile, the
production of O3 and NO2 were lower than 1021 ppm and 520 ppm, respectively. Second,
the effect of O2/(N2+O2) ratio was also examined. The increasing O2/(N2+O2) ratio
and SED were beneficial in improving the 1-butene decomposition and COx selectivity.
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Finally, the degradation mechanism of 1-butene was proposed according to the analysis of
organic byproducts. The main organic byproducts of 1-butene decomposition in air plasma
consisted of alcohol, aldehyde, ketone and organic acid, as well as oxirane. Based on the
above experimental results from the GC-MS analysis, three main pathways were proposed
involving Criegee intermediates. In particular, ozonolysis of the olefins and the following
reduction (Paths A and B) could be the dominant pathways rather than epoxidation (Path
C), which was consistent with the GC-MS analysis results. In general, this study did not
only offer an effective TM-DBD reactor for 1-butene decomposition but also illustrated the
potential 1-butene degradation pathways, facilitating the industrial application of plasma
technology for gaseous pollutant control. More importantly, these original data played
a constructive role in promoting plasma industrialization, especially in the treatment of
petrochemical waste gas.
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