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Abstract: Abrasive blasting, sometimes known as sandblasting, is a method used to change the
surface condition of materials, clean surfaces, and prepare surfaces for applications such as paint,
bonding, coating, etc. The abrasive materials used in abrasive blasting are applied to the surface with
compressed air or water and vary according to the purpose of application. The abrasive materials
used have negative effects on the environment and human health. So far, organic materials have been
used in limited applications in abrasive blasting. However, these materials have a high potential
of usage since they are environmentally friendly, safe for human health, and have non-toxic and
sustainable properties. In this study, the usability of three different organic wastes (walnut shell, olive
pomace and mussel shell) recovered by recycling in abrasive blasting was investigated. In addition,
the effect of blasting distance (5, 10 and 15 mm), blasting time (10, 20 and 30 s), powder type (mussel
shell, olive pomace and walnut shell) and grain size (38, 45 and 63 µm) on surface roughness have
been investigated using the Taguchi L9 experimental design. Regression models were built using
ANOVA (Analysis of Variance). Moreover, the surface condition after abrasive blasting was examined
using an Al2O3 abrasive and compared with other samples. As a result, 5 mm, 30 s, mussel shell and
45 µm test sets were recommended for “larger is better” and it was determined that the blasting time
had the greatest effect on the surface roughness by 50.19%. On the other hand, 10 mm, 20 s, walnut
shell and 63 µm test sets were recommended for “smaller is better”, and it was determined that
blasting time had the greatest effect on the surface roughness by 39.02%. While there was an increase
compared to the surface roughness values before abrasive blasting in the first set of experiments, it
was determined that the organic material had a polishing rather than an abrasion effect in the second
set of experiments.

Keywords: abrasive blasting; sandblasting; galvanized steel; organic powder; waste material; surface
roughness

1. Introduction

Sandblasting is a versatile process for roughening, cleaning or smoothing surfaces.
The first sandblasting process was patented (as abrasive) [1] on 18 October 1870 by Ben-
jamin Chew Tilghman. Since then, the sandblasting process has been used for surface
preparation (as a method), resurfacing, surface preparation before painting, creating sur-
face texture [2–5], fossil preparation (paleontological preparation technique) [6], removing
surface coatings [2], etc. In addition, it can be easily applied to developing technological
products. For example, it is used as a finishing process to increase the surface quality of
the products produced in additive manufacturing [7], and to obtain a clean surface and
micro-mechanical retention in the field of dentistry [8].

Another application area of sandblasting is adhesive bonding joints. It is one of the
preferred surface pre-treatments to increase the area to be bonded and ensure wettabil-
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ity [1,9–11]. It is known that the surface formed after sandblasting increases the bond
strength in adhesive bonding joints [4,10–16].

In abrasive blasting, there are different types of abrasive materials classified in the
mineral, agricultural, synthetic and metallic categories [17]. Although sand is mostly
preferred, glass, metal, dry ice, coconut shells or plant shells are also used as abrasive
materials [18]. Although sandblasting has a wide usage area, it has some drawbacks.
According to the nature of the work to be done, special balls made of materials such as
silica, basalt, etc. are used in the sandblasting process. These balls create a time-dependent
solid particle erosion by creating a repeated impact effect, especially in the nozzle [19,20].
The remaining iron-based abrasives on the material surface cause rust formation [21].
In addition, iron-based powders have an ignition risk during processing [22]. Another
disadvantage is the health problems that sandblasting operators are exposed to. One of
the main health problems is silicosis, which occurs as a result of exposure to respirable
crystalline silica, and this has a fatal effect [23,24]. Due to the reasons stated above, it is of
great importance to use a powder that can reduce the aforementioned drawbacks, as an
alternative to the traditional powders used in sandblasting.

Rudawska et al. [25] investigated the effect of sandblasting on the surface properties
of C45 carbon steel. In the experiments, different sandblasting pressures (1, 2 and 4 bar)
and abrasive material groups (brown fused alumina, brown fused alumina, white fused
alumina, glass beads), each of which had different granulation, were used. All experiments
were performed at a 100 mm distance from the surface at a right angle for 1 min. Surface
roughness (Ra) values were taken from three different positions on each sandblasted surface.
The surfaces subjected to sandblasting with glass beads had the smallest roughness. It was
found that the surface roughness obtained with brown fused alumina (2.5–3.5 µm) on the
surface of the steel material with a sandblasting pressure of 2 bar was approximately two
times higher than the others. The results showed that surface roughness was more affected
by changes in sandblasting pressure, depending on the type of abrasive used. It has been
understood that surfaces with different roughness parameters and surface properties were
formed with the sandblasting application.

Bresson et al. [26] applied different surface pre-treatments to improve bonding prop-
erties. For the sandblasting process, they used F80 white corundum with a grain size of
150–212 µm and F60 corundum abrasive with a grain size of 212–300 µm. The sandblasting
pressure was 4 bar, and the corundum grains were sprayed onto the sandblasting surface
with a contact angle of 30◦. The effect of the distance of the nozzle to the part in the
sandblasting process was investigated, and 10 and 35 cm sandblasting distances were
used. While Ra = 3.94 ± 0.18 µm was obtained for a 10 cm distance and F60 abrasive,
Ra = 3.99 ± 0.40 µm was obtained for 35 cm. These roughness values were higher than the
values obtained with F80 corundum abrasive.

Balza et al. [27] sandblasted titanium material at a 90◦ angle with Al2O3 particles from
a distance of 0.1 m. Air pressure was chosen as 0.3 MPa, particle size was 420–600 µm and
sandblasting times were 2, 3, 4, 6, 7, and 10 s. It was observed that the optimum roughness
value was 3.4 µm at 7 s of sandblasting, and this value decreased to 3.1 µm when the time
was increased to 10 s. It was stated that prolonged sandblasting times were associated with
a tendency to decrease roughness.

Isa et al. [28] investigated the mechanical properties of the ASTM A516 Grade 70
steel material and its effect on the fatigue life of the material. ASTM A516 Grade 70 steel
material was blasted with 0.3 mm SAE G-80 for 15, 25, 35 and 45 min. By changing the
time, significant differences occurred in terms of hardness value and grain size. It was
also proven that the sandblasting process significantly increased the fatigue life and tensile
strength of the material.

Ourahmoune et al. [29] investigated the effect of sandblasting on the adhesion of
PEEK (Poly Ether Ether Ketone) thermoplastic material and carbon fiber (CF)- and glass
(GF)-reinforced PEEK material. In all experiments, sandblasting was carried out with a
ceramic nozzle of 8 mm diameter, at 5 bar, at an angle of 90◦, and with a constant distance
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value of 80 mm. Sandblasting time was changed from 5 s to 45 s. Furthermore, 98% of
commercial alumina (Al2O3) powder was used as an abrasive in three different particle
sizes (50 µm, 110 µm and 250 µm). It was observed that the roughness parameters tended
to stabilize after 5 s of sandblasting, regardless of the particle size used. In addition, the
presence of a fiber structure has important effects in the sandblasted material. It was
also observed that CF-reinforced PEEK and GF-reinforced PEEK composites had a higher
roughness level than the PEEK material.

Rudawska et al. [18] sandblasted three different aluminum alloys (EN AW-2024 TO,
EN AW-2219 TO and EN AW-2014 T4) using calcined bauxite content (named EB F54
aloxite) at three different blasting pressures (0.41 MPa, 0.51 MPa and 0.56 MPa). The
grain size of EB F54 aloxite was between 355 and 300 µm. The time was 60 s and the
distance was 200 mm. The Ra surface roughness values measured before sandblasting were
0.42 µm for EN AW-2024 TO, 0.35 µm for EN AW-2219 TO, and 0.28 µm for EN AW-2014
T4, respectively.

Tshimanga et al. [30] blasted Grade 304L austenitic stainless steel with four different
abrasives of varying granulation: garnet, aluminum oxide, steel grit, and platinum grit.
The characterization of the surface morphology created by the process was investigated.
The highest surface roughness (18.2 µm) was obtained in steel grit, while the lowest surface
roughness (7.8 µm) was obtained in aluminum oxide.

In this study, the usability of organic waste materials in powder form in the sand-
blasting process was investigated. Organic materials are biodegradable, environmentally
safe, non-toxic, renewable and sustainable. They eliminate the problem of silicosis disease,
especially caused by breathing [31]. In addition, since organic abrasives do not reduce the
life of the blasting nozzle [32,33], process differences due to nozzle wear will be prevented.
Moreover, since organic abrasives do not react chemically with the surface, unwanted
formations such as rust, etc., will not occur. The organic materials used are environmentally
friendly as they will be obtained from recycling. When the literature is examined, it is
seen that there are many studies on the effects of blasting pressure, blasting time, blasting
distance, and abrasive material type, which are among the blasting process parameters.
However, to the best knowledge of the researchers, there are no studies on abrasive blasting
where waste materials are used as abrasives. Therefore, the aim of this study is to examine
the use of waste materials as abrasive materials in the abrasive blasting process. For this
reason, three different organic materials (walnut shell, olive pomace and mussel shell) and
three different sizes (38, 45 and 63 µm) obtained by recycling were used. By using the
Taguchi experimental design, the effects of powder type, powder size, blasting distance,
and blasting time on the roughness of the blasted surface were investigated.

2. Method
2.1. Experimental Samples

DX51D + Z quality galvanized steel material (EN 10346:2015) with dimensions of
100 × 25 × 1.5 mm was used for experimental studies. The samples were cleaned by
wiping with acetone and drying without any treatment.

The chemical composition of the experimental samples is given in Table 1, and their
mechanical properties are given in Table 2. Values are taken from the manufacturer’s
catalogs [34].

Table 1. Chemical composition of steel (% by weight).

C Mn P S Si Ti Balance

0.18 1.2 0.12 0.045 0.5 0.3 Fe
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Table 2. Mechanical properties of steel.

Hardness (HRB) Yield Strength
(N/mm2)

Tensile Strength
(N/mm2)

Elongation at Break
%

56 319 409 25

2.2. Abrasive Powders

Mussel shell, olive pomace and walnut shell powders (three different kinds) in three
different sizes as 38, 45 and 63 µm were used as abrasive. The grinded powders of 38, 45
and 63 µm are given in Figure 1 as olive pomace, walnut shell and mussel shell, respectively.
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Organic abrasives have an irregular, jagged structure. These properties of the abrasives
used are shown in Table 3.
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Table 3. The abrasives used for abrasive blasting treatment [33,35].

Abrasive Type Shape Size (µm) Specific Gravity
(g/cm3) Hardness

Mussel shell irregular 38–45–63 2.16 3.5–4 Mohs
Walnut shell irregular 38–45–63 1.44 3–3.5 Mohs

Olive pomace irregular 38–45–63 1.44 265.84 [36]
Al2O3 Spherical 25 3.99 9 Mohs

For mussel powders, waste Mediterranean Mussel (mytilus galloprovincialis) shells
were used. Calcium carbonate is a commonly used as filler in polymer material. While the
chemical composition of mussel shell contains 95.7% CaO, this ratio is 99.1% in commercial
CaCO3. Since mussel shells contain a similar amount of CaO to commercial CaCO3, it is
appropriate to use them as an additive material [33].

Olive pomace is the residue remaining after olives are crushed. It was obtained from a
company operating in the Aegean region (Turkey). Walnut shells were also obtained from
people who consumed walnuts. They had a specific gravity of 1.2–1.4 [35].

After the waste materials were dried in the oven, they were ground in a ring mill and
sieved in a sieve shaker.

Moreover, 25 µm alumina was used to make comparisons on the surfaces after abrasive
blasting. Aluminum oxide is an abrasive material with a Mohs Hardness = 9 and high
resistance to abrasion.

2.3. Process Parameters

The organic powders used in abrasive blasting were sprayed from a distance of 5, 10,
and 15 cm. Blasting time was chosen as 10, 20 and 30 s. Three different types of powder
sizes of 38, 45 and 63 µm were used. The sandblasting pen was held at an angle of 90◦ to
the samples to be sandblasted. A sandblasting machine with two pen types was used. The
nozzle material was carbide and the nozzle diameter was 1.2 mm. The blasting pressure
was kept constant at 6 bar.

Two different experiments were performed using aluminum oxide powder to compare
with Taguchi validation experiments. In the first one, a 5 cm distance and 30 s blasting time
were used, while a 10 cm distance and 20 s blasting time were used in the second one. Then,
the surface roughness values obtained from Taguchi, and “larger is better” and “smaller is
better” validation experiments were compared.

The roughness values were measured in accordance with ISO (2021) 21920-2 [37] using
the Mitutoyo SJ-301 profilometer device. The surface roughness of the samples was found
by averaging the values measured from five different positions before and after abrasive
blasting. The experiment was conducted with three replications.

2.4. Design of Experiments

Abrasive blasting is a method used in a wide variety of fields as a complementary
process. The abrasive blasting process is affected by the particle size of the abrasive, the
application pressure, the application time, and the blasting distance [38–40]. The inappro-
priateness of the parameters specified in the abrasive blasting process may cause excessive
material loss [41,42]. In addition, there are problems in biocompatibility if abrasive residues
remain in surface polishing or roughening processes after blasting. Therefore, the use of
natural abrasives will provide advantages in terms of both cost and compatibility.

In the first stage of the abrasive blasting process, the samples prepared were fixed by
placing them on the clamping apparatus. Then, the abrasives to be used were placed in the
abrasive blasting chamber by adjusting the sandblasting distance. Finally, abrasive blasting
was carried out on the surface of the samples within the specified time. In the study, an
experimental design was made using the Taguchi method. In the experimental designs,
two separate designs were made according to the “smaller is better” and “larger is better”
characteristics, and signal-to-noise ratios (S/N) were calculated. The reason for this is that
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user expectations in the abrasive blasting process differ according to the application area.
Control factors and levels are given in Table 4.

Table 4. Levels of the variables used in the experiment.

Control Factor
Level

I II III Units

A: Distance 5 10 15 mm
B: Time 10 20 30 second

C: Powder Type Mussel shell Olive Pomace Walnut shell none
D: Grain Size 38 45 63 micrometer

The experiment design was arranged with the four factors of distance, time, powder
type and grain size, and each factor had three levels. The factors and the values of the
levels of the factors are given in Table 5.

Table 5. L9 Orthogonal Array.

Exp.
Number

Distance
(mm) Time (s) Powder

Type
Grain Size

(µm)
Surface

Roughness (µm)

1 5 10 Mussel shell 38 0.437 ± 0.029
2 5 20 O. Pomace 45 0.430 ± 0.027
3 5 30 Walnut shell 63 0.433 ± 0.033
4 10 10 O. Pomace 63 0.376 ± 0.047
5 10 20 Walnut shell 38 0.344 ± 0.058
6 10 30 Mussel shell 45 0.468 ± 0.032
7 15 10 Walnut shell 45 0.402 ± 0.032
8 15 20 Mussel shell 63 0.364 ± 0.038
9 15 30 O. Pomace 38 0.436 ± 0.049

The first step of the Taguchi method is to select a proper orthogonal array based on
the number of parameters and levels selected as control factors [43]. In the study, the
total degrees of freedom (DOF) for four factors, each of which has three levels, was eight.
Therefore, the L9 (33) array, which is a three-level Taguchi orthogonal array (TOA) with at
least eight DOFs, was selected. The L9 orthogonal array is given in Table 5.

In the Taguchi method, the experimental results are converted to the signal-to-noise
ratio (S/N) to determine the amount of deviation from the desired value. The S/N ratio for
surface roughness is calculated by the following formula:

Larger is better characteristic:

S
N

= −10log
1
n

n

∑
i=0

1
y2

i
(1)

Smaller is better characteristic:

S
N

= −10log
1
n

n

∑
i=0

y2
i (2)

where “n” is the number of tests and “yi” is the value of the experimental result of the test.
In addition, an analysis of variance (ANOVA) test was also performed to determine

the statistical effects of the processing parameters. With S/N and ANOVA analysis, the
most appropriate variation of the process parameters can be determined according to the
determined values. Finally, a validation experiment was conducted to verify the optimal
process parameters obtained from the parameter design.
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3. Results and Discussion
3.1. Analysis of the Factors

The analysis of the effect of each factor on the surface quality was performed using the
noise/signal (S/N) ratio obtained using the Minitab 16.0 statistical software. The responses
of the process parameters are shown in Tables 6 and 7. The tables show the S/N ratios of
each control factor and how they change from level 1 to level 3. The greater the difference
between the levels of the control factor, the greater its effect on the product. In addition,
these tables are used to calculate the Taguchi estimation value according to the optimum
parameter [44].

Table 6. Response table for S/N ratios for larger is better.

Level Distance Time Powder Type Grain Size

1 −7.260 −7.866 −7.520 −7.888
2 −8.120 −8.459 −7.679 −7.280
3 −7.968 −7.023 −8.149 −8.179

Delta 0.860 1.436 0.630 0.899
Rank 3 1 4 2

Table 7. Response table for S/N ratios (smaller is better).

Level Distance Time Powder Type Grain Size

1 7.260 7.866 7.520 7.888
2 8.120 8.459 7.679 7.280
3 7.968 7.023 8.149 8.179

Delta 0.860 1.436 0.630 0.899
Rank 3 1 4 2

The optimal values of the determined factors (for “larger is better” and “smaller is
better”) were determined using the S/N graphs in Figures 2a and 3a. Additionally, the
interaction between the experimental parameters is shown in Figures 2b and 3b.
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The important thing in the Taguchi method is to determine the optimum levels of the
parameters. Optimum levels are determined based on the minimum value (for smaller
is better) and maximum value (for larger is better) of different levels of the parameters,
according to the results of the combinations produced by the L9 orthogonal array.

The distributions of the average test results calculated according to the sandblasting
parameters and levels are shown in Figures 2 and 3. Since the “larger is better” characteristic
was selected in the study, the lowest mean values for all levels of the experimental results
were evaluated to determine the optimal combination of abrasive blasting parameters.
Likewise, the largest values can be considered for the S/N ratios. Accordingly, the optimal
combination for abrasive blasting was obtained as A1B3C1D2 (distance: 5, time: 30, mussel
and grain size: 45). Since the “smaller is better” characteristic was selected in the study, the
optimal combination for abrasive blasting was obtained as A2B2C3D3 (distance: 10, time:
20, walnut shell and grain size: 63).

The effects of distance, time, powder type and grain size on surface roughness were
analyzed by the ANOVA method. The ANOVA values are given in Tables 8 and 9.

Table 8. Result of the analysis of variance for larger is better.

Source DF Seq SS Contribution Adj SS Adj MS

Distance 2 0.002509 18.70% 0.002509 0.001254
Time 2 0.006734 50.19% 0.006734 0.003367

Powder Type 2 0.001416 10.56% 0.001416 0.000708
Grain Size 2 0.002758 20.56% 0.002758 0.001379

Error 0 - - - -
Total 8 0.013417 100.00%

Table 9. Result of the analysis of variance for smaller is better.

Source DF Seq SS Contribution Adj SS Adj MS

Distance 2 0.008151 33.80% 0.008151 0.004075
Time 2 0.006032 25.02% 0.006032 0.003016

Powder Type 2 0.000521 2.16% 0.000521 0.000260
Grain Size 2 0.009410 39.02% 0.009410 0.004705

Error 0 - - - -
Total 8 0.024114 100.00%

As seen in Table 8 (larger is better), the effects of parameters on surface roughness
were obtained as: distance (A) (p = 18.7), time (B) (p = 50.19), powder type (C) (p = 10.56%)
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and grain size (D) (p = 20.56%). The greatest factor affecting surface roughness was “time”,
at 50.19%. The next factor was the “grain size”, at 20.56%. In the study, it was determined
that the time factor was the most important factor affecting the surface roughness. As the
time increased, the amount of wear on the surface increased. The second-most-important
parameter was the grain size. When the experimental results were examined, it was seen
that the abrasive powder sizes should be taken into account in order to obtain this surface
roughness value.

As seen in Table 9 (smaller is better), the effects of parameters on surface roughness
were found as: distance (A) (p = 33.8), time (B) (p = 25.02), powder type (C) (p = 2.16%) and
grain size (D) (p = 39.02%). The greatest factor affecting surface roughness was “grain size”,
at 39.02%. The next factor was “distance”, at 33.80%. Since the hardness values of different
powder materials used in this study are close to each other, it has been determined that the
surface abrasive properties vary depending on the grain size rather than the material type.

3.2. Regression Analysis

Multiple regression analysis was used to derive estimation equations of continuous de-
pendent variables obtained through experimental designs with each combination of control
factors. In the equation, Ra surface roughness symbols M, P and W represent the powder
type. RaM/P/W is the estimation equation for surface roughness created using distance,
time, grain size parameters. The R2 value of the equation obtained by regression analysis
was calculated as 0.99 (99%) (Table 10). In Figure 4, the randomly selected experimental
results from the L9 series and the estimation equation results are compared.

Table 10. Regression analysis formulation.

Powder Type For Larger is Better R2

Mussel shell RaM: 0.4607 − 0.00329 Distance + 0.00204 Time − 0.00093 Grain Size 99.9998
O.Pomace RaP: 0.4516 − 0.00329 Distance + 0.00204 Time − 0.00093 Grain Size 99.9998

Walnut shell RaW: 0.4307 − 0.00329 Distance + 0.00204 Time − 0.00093 Grain Size 99.9996

For Smaller is Better R2

Mussel shell RaM2: 0.4607 − 0.00164 Distance + 0.00204 Time − 0.00093 Grain Size 99.9999
O.Pomace RaP2: 0.4516 − 0.00164 Distance + 0.00204 Time − 0.00093 Grain Size 99.9994

Walnut shell RaW2: 0.4307 − 0.00164 Distance + 0.00204 Time − 0.00093 Grain Size 99.9998
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3.3. Confirmation Test

The final step in the Taguchi experimental design is validation experiments. The
purpose of validation experiments is to verify the prediction obtained in the analysis phase
by comparing the experimental results. Considering the individual effects of control factors,
the surface roughness estimation value obtained for A1B3C1D2 (for larger is better) and
A2B2C3D3 (for smaller is better) according to the Taguchi method and the values obtained
as a result of the control experiment are given in Table 11. The error rates were determined
as 8.41% and 2.37%. It is seen that the consistency of the results and the accuracy of the
predictions are high. According to this result, the values to be obtained using the Taguchi
estimation equation will be within the 90% confidence interval.

Table 11. Prediction and experimental data.

Optimal Control Parameters

Prediction Experimental Error %

Level (larger is better) A1B3C1D2 A1B3C1D2 8.41%Roughness (Ra) 0.505519 0.463

Level (smaller is better) A2B2C3D3 A2B2C3D3 2.37%Roughness (Ra) 0.3251 0.333

3.4. Surface Roughness Measurement for Comparison

Before abrasive blasting, the surface roughness of the samples was measured. The
average surface roughness value was obtained as 0.35 µm. In Figure 5, the surface images
of the test samples after abrasive blasting are given. The red box in Figure 5 shows the
abrasive blasted area.

Table 12 shows that the surface roughness values obtained using the alumina (Al2O3)
powder in the abrasive blasting process are higher than the surface roughness values
obtained using mussels for “larger is better” and walnuts for “smaller is better”. The
reason for this is that the hardness value of Al2O3 (Table 3) and abrasiveness are higher
than the other abrasive materials used. It was determined that there was a significant
difference between the surface roughness value taken before abrasive blasting and the
surface roughness value obtained from the material that was blasted with Al2O3. The
“larger is better” results with organic abrasives were found to increase surface roughness
compared to before blasting. When the “smaller is better” value is compared with the value
before abrasive blasting, it has been determined that it creates a polishing effect on the
surface rather than abrading.

Table 12. Surface roughness values of mussel, walnut and Al2O3.

Distance (mm) Time (s) Powder Type Grain Size (µm) Surface Roughness (µm)

5 30 Al2O3 25 1.576 ± 0.26
5 30 Mussel 45 0.463 ± 0.029

10 20 Al2O3 25 1.556 ± 0.11
10 20 Walnut 63 0.333 ± 0.045
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4. Conclusions and Recommendations

The innovative contribution of this study to the literature is the use of recycled walnut
shell, olive pomace and mussel shell organic powders as abrasives in the abrasive blasting
process and examining the abrasion effect they cause on the surface. This study aimed to
eliminate the damages to the environment and human health that may occur in chemical or
mechanical abrasion. In this way, it will be possible to reduce the cost of the sandblasting
process. In the experimental studies, the parameters that most affected the surface rough-
ness after abrasive blasting were selected as blasting distance (5, 10 and 15 mm), blasting
time (10, 20 and 30 s), powder type (mussel, olive pomace and walnut) and grain size (38,
45 and 63). µm). The Taguchi experimental method (L9 orthogonal array) was used to
examine the relationship between these parameters and surface roughness. In addition,
the effects of the determined parameters on the surface roughness were investigated by
performing ANOVA analysis. To estimate the surface roughness value, a mathematical
model was created, and validation tests were performed. As a result of the measurements
and analyses carried out, the following conclusions were obtained:

• Statistically designed experiments based on Taguchi methods were carried out using
L9 orthogonal arrays according to the “larger is better” and “smaller is better” criteria,
respectively.

• An A1B3C1D2 (5 mm, 30 s, mussel and 45 µm) test set is recommended for the “larger
is better” and an A2B2C3D3 (10 mm, 20 s, walnut and 63 µm) test set is recommended
for the “smaller is better”.

• For the “larger is better”, blasting time was found to be the most important factor
affecting surface roughness. As the blasting increased, the amount of wear on the
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surface increased. For the “smaller is better”, it was determined that the grain size had
the greatest effect on the surface roughness.

• Since the hardness values of the different powder materials used were close to each
other, it has been determined that the surface abrasive properties vary depending on
the grain size rather than the material type.

• The economy of organic powders, the ease of supply, and the fact that they do not harm
people and nature are advantages of using them for abrasive blasting. It is a usable
method, and considering the depleted resources, it is predicted that the importance
and necessity of working with natural materials will become more evident as time
goes on.

Author Contributions: Conceptualization and methodology was introduced by N.A.; data curation,
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