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Abstract: Given the highly nonlinear and strongly constrained nature of the electro-hydraulic system,
we proposed an observer-based approximate nonlinear model predictive controller (ANMPC) for
the trajectory tracking control of robotic excavators. A nonlinear non-affine state space equation
with identified parameters is employed to describe the dynamics of the electro-hydraulic system.
Then, to mitigate the plant-model mismatch caused by the first-order linearization, an approximate
affine nonlinear state space model is utilized to represent the explicit relationship between the output
and input and an ANMPC is designed based on the approximate nonlinear model. Meanwhile, the
Extended Kalman Filter was introduced for state observation to deal with the unmeasurable velocity
information and heavy measurement noises. Comparative experiments are conducted on a 1.7-ton
hydraulic robotic excavator, where ANMPC and linear model predictive control are used to track
a typical excavation trajectory. The experimental results provide evidence of convincing trajectory
tracking performance.

Keywords: approximate nonlinear model predictive control; trajectory tracking control; electro-
hydraulic system; EKF; robotic excavator

1. Introduction

Robotic excavators are a type of multi-joint device driven by hydraulic systems, which
are widely used in earth-moving fields such as energy development, road construction,
and infrastructure construction. However, the operator must have skilled techniques
to control the multiple joints of the excavator to improve operational efficiency [1]. In
addition, in some harsh construction environments, the operator’s safety may be threatened.
As a consequence, it is very difficult for manual operation to meet the requirements of
excavation operations. In this regard, the automation of excavators has attracted a great
deal of interest, which can help reduce human-associated costs and improve construction
efficiency and safety [2,3].

Excavator automation can be viewed as the control of a kind of robot with a bucket
as an end effector, and trajectory tracking control is the key to automated operations [4].
However, since robotic excavators typically use hydraulic systems as their power source,
achieving high-performance trajectory tracking remains challenging due to the nonlinear
and multi-constrained features [5]. Many control methods, such as the improved PID con-
trol [6–8], self-tuning pressure-feedback control [9], adaptive robust control [10], intelligent
control [11,12], and so on, have been proposed to deal with the nonlinearity, time-variance,
and parameter uncertainty of hydraulic robotic excavators. However, they find it difficult
to meet the multi-constraint features of electro-hydraulic systems [13]. In practical applica-
tions, hydraulic actuators face various constraints, such as control input constraints, speed
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constraints, and position constraints. A control strategy that neglects physical constraints
may degrade the control performance and even lead to system instability [14,15].

Due to the presence of constraints in hydraulic systems, the MPC method has become
an increasingly popular control strategy. As an optimal control technique, MPC can actively
handle system constraints during the control process, showing great potential in solving
complex system control problems with strong constraints [16]. In [17], a hybrid control
method consisting of linear model predictive control (MPC) and proportion-integration
control (PIC) was proposed for force control of electro-hydraulic servo systems, where
the MPC in the outer loop provided references to the PIC in the inner loop. For the
trajectory tracking control of a robotic excavator, a linear MPC was designed in [18,19] with
simulation and experimental verification. In [20], a gain-scheduled MPC was proposed
for the dynamic performance enhancement of an excavator, but only the boom joint was
considered. All aforementioned MPC-based controllers are based on linear models, because
nonlinear MPC has the limitation of heavy online computation burden, requiring extensive
computational resources and longer solving times, making it difficult to apply in practical
robotic excavators [21]. Nevertheless, due to the presence of dead zones, saturation,
nonlinear friction, and the compressibility of hydraulic oil, hydraulic systems have complex
nonlinear dynamics [13]. Consequently, linear models based on the first-order linearization
of the nonlinear system using Jacobian calculations will introduce large errors, resulting in
control performance degradation [22].

On the other hand, the MPC control method adopts the concept of full-state feedback
control, which means that all state information (i.e., position signals, velocity signals, and
pressure signals) must be known during the control process [23]. However, for most hy-
draulic excavators, not all system states can be directly measured due to physical limitations
or the high cost of implementing enough sensors. In addition, the heavy noise in the mea-
surement may cause inaccurate state information. Based on the above considerations, state
observers have received considerable attention, such as the Extended State Observer [24],
Sliding Mode Observer [25], and State-Dependent-Riccati-Equation filter [26]. Among these
observers, the Extended Kalman Filter (EKF) has been widely used as a state estimator
in nonlinear systems, providing a simple and effective solution to the state estimation
problem of complex nonlinear systems [27,28]. Within this context, only pressure and dis-
placement sensors are installed for the robotic excavator. Therefore, we design an EKF for
the electro-hydraulic system to estimate the unknown velocity information while reducing
the measurement error of displacement and pressure signals.

Motivated by the above challenges, an observer-based approximate nonlinear model
predictive controller is proposed for a hydraulic robotic excavator in this study. The main
contributions of this paper are as follows.

(1) Parameter identification was performed to identify the key parameters in the nonlinear
non-affine model of the hydraulic excavator using measured data. Then, the nonlinear
non-affine model is approximated to an affine nonlinear state-space model, which can
reduce unmodeled errors and more accurately reflect the system’s dynamic features
compared to the conventional first-order linearization models.

(2) An approximated nonlinear model predictive control (ANMPC) is designed based
on the approximate affine nonlinear state-space model, which can still be solved by
quadratic programming (QP), with the same computation burden as a linear MPC,
avoiding solving the nonlinear MPC problem. As only pressure and displacement
sensors are installed for the robotic excavator, we design an EKF observer for the
electro-hydraulic system to estimate the unknown velocity information while reducing
the measurement error of displacement and pressure signals.

(3) Experiments were conducted on a 1.7-ton hydraulic excavator, where three joints of
the hydraulic excavator were simultaneously controlled to execute a typical excava-
tion trajectory. The results demonstrate that the proposed observer-based ANMPC
outperforms the conventional LMPC in trajectory tracking control during excavation.
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The rest of this article is organized as follows. The working principle of electro-
hydraulic excavator is introduced in Section 2, a non-affine nonlinear mathematical model
of the electro-hydraulic excavator is established, and a parameter identification is performed
to obtain the unknown parameters. In Section 3, an approximate nonlinear model predictive
controller with an EKF for the electro-hydraulic excavator is designed. Section 4 presents
the trajectory tracking control results based on a 1.7-ton robotic excavator. The conclusions
of this study are given in Section 5.

2. System Description and Modeling
2.1. Electro-Hydraulic System Description

A 1.7-ton electro-hydraulic robotic excavator is used in this study, and the flow cou-
pling between different hydraulic cylinders is ignored. As the boom, stick, and bucket are
theoretically the same, we establish an electro-hydraulic control system model using the
bucket as an example. As shown in Figure 1, the electro-hydraulic control system primarily
consists of a controller, a pilot valve, a main valve, and hydraulic cylinders. The working
principle is as follows. According to the reference trajectory and the actual position, the
controller generates a control signal, which is amplified and used to control the pilot valve.
According to the given control signal, the pilot valve will push the spool of the main valve
to move to the left or right, connecting the corresponding pipeline with the cavity of the
hydraulic cylinder. Then, the piston rod will extend or retract under the push of hydraulic
oil, thus realizing the movement of the cylinder. The actual position of the cylinder during
movement will be fed back to the controller through a displacement sensor, to form a closed
control loop.
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Figure 1. Structure of the electro-hydraulic control system.

2.2. Kinematics

The kinematic model of the excavator robot plays a crucial role in determining the
relationship between joint angles and end-effector positions, which is essential for trajectory
planning and control. The D-H coordinate system of the robotic excavator is established as
shown in Figure 2. The D-H coordinate parameters are shown in Table 1.
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Table 1. The parameters of D-H coordinates.

Joint i ai (m) di (m) αi (◦) θi (◦)

1 (Rotation) 0.65 0.82 90 −180 to 180
2 (Boom) 1.8 0 0 −56.1 to 65.5
3 (Arm) 0.95 0 0 −30.0 to −154.0
4 (Bucket) 0.535 0 0 −44.5 to −118.5

We can derive the forward kinematics equations to calculate the end-effector pose
[px, py, pz, ψ] from the joint angles [θ1, θ2, θ3, θ4], which is presented as Equation (1):

px = cos(θ1)[a4 cos(θ2 + θ3 + θ4) + a3 cos(θ2 + θ3) + a2 cos(θ2) + a1]

py = sin(θ1)[a4 cos(θ2 + θ3 + θ4) + a3 cos(θ2 + θ3) + a2 cos(θ2) + a1]

pz = a4 sin(θ2 + θ3 + θ4) + a3 sin(θ2 + θ3) + a2 sin(θ2) + d1

ψ = θ2 + θ3 + θ4

(1)

The inverse kinematics equations can also be derived to calculate the joint angles
required to achieve a desired end-effector position and orientation. The angles of each joint
θ1 − θ4 can be calculated by Equation (2):

θ1 = atan( py
px )

θ2 = α + β + γ

θ3 = π − acos( a2
2+a3

2−CQ2

2a2a3
)

θ4 = ψ− θ2 − θ3

(2)

where α is the angle between CF and the horizontal line, β is the angle between CQ and the
horizontal line, and γ is the angle between CV and the horizontal line.

2.3. Mathematical Model of EHS

Usually, the response speed of the pilot valve is much faster than that of the main
valve, so the dynamic characteristics of the pilot valve can be ignored without significantly
reducing control performance [7,8]. Therefore, this process can be regarded as a pure
proportional stage:

xv = kv I (3)

where xv is the spool displacement of the main valve, I is the control current, and kv is a
coefficient.
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The following equation expresses the orifice flow equation in the main valve:

QL = Cdωxv

√
Ps − sgn(xv)PL

ρ
(4)

where QL is the load flow, PL is the load pressure, Cd is the discharge coefficient, ω is the
spool valve area gradient, ρ is the fluid mass density, Ps is the supply pressure, and sgn(∗)
is the symbolic function.

Ignoring the external leakage of the hydraulic cylinder, the continuity equation of the
hydraulic cylinder flow can be expressed as:

A
.
y + CtPL +

Vt

4βe

.
PL = QL (5)

where A is the cross-sectional area of the cylinder, y is the displacement of the piston rod,
Vt is the total actuator volume, Ct is the coefficient of leakage, and βe is the effective bulk
modulus.

The force balance equation of the hydraulic cylinder is:

PL A = m
..
y + b

.
y + ky + Ff (6)

where m is the equivalent mass, b is the viscous damping coefficient, k is the equivalent
spring stiffness, and Ff is the friction force. In our study, the coulomb viscous model is
selected to describe the frictional force acting on hydraulic cylinders:

Ff = Fc + Fv
.
d (7)

where Fc is the stiction force and Fv is the dynamic friction coefficient.
Combining the above equations of each sub-system, selecting the state vector

[x1; x2; x3] = [y;
.
y; PL] and the control input u = I, the model of an electro-hydraulic system

can be represented by the following three non-affine nonlinear state space equations:

.
x1 = x2
.
x2 = − k

m x1 − b
m x2 +

A
m x3 − Fcsgn(x2)+Fvx2

m
.
x3 = − 4Aβe

Vt
x2 − 4Ct βe

Vt
x3 +

4Cd βeωkv
Vt
√

ρ

√
Ps − sgn(u)x3 · u

(8)

Equation (8) can be rewritten as:

.
x1 = x2
.
x2 = −a1x1 − a2x2 + a3x3 − a4sgn(x2)
.
x3 = −a5x2 − a6x3 + a7

√
Ps − sgn(u)x3 · u

(9)

where, a1 = k
m , a2 = b+Fv

m , a3 = A
m , a4 = Fc

m , a5 = 4Aβe
Vt

, a6 = 4Ct βe
Vt

, and a7 = 4Cd βeωkv
Vt
√

ρ .
We selected the sampling time as Ts and the system output as y(k) = x1(k). Then, the

discrete state space equation model can be obtained through forward difference discretization:

x1(k + 1) = Tsx2 + x1(k)

x2(k + 1) = (−a1x1(k)− a2x2(k) + a3x3(k)− a4sgn(x2(k)))Ts + x2(k)

x3(k + 1) =
(
−a5x2(k)− a6x3(k) + a7

√
Ps − sgn(u(k))x3(k) · u(k)

)
Ts + x3(k)

(10)

2.4. Model Validation

To estimate the model parameters, a pseudo-random binary signal (PRBS) with a
range of [−200 mA, 200 mA] is selected as the excitation for parameter identification, as
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shown in Figure 3a. We construct nonlinear grey-box modeling of EHS using the System
Identification Tool in MATLAB. The settings of grey-box parameter identification [17] are
as follows: The solver was the Runge-Kutta 45 solver with an adaptive step size, the search
method was the Trust-Region Reflective Newton method of nonlinear least squares, the cost
function was set as the sum of squared error between the measured output and simulated
output, and the absolute error and relative error tolerances were 1 × 10−6 and 1 × 10−5,
respectively. The parameter identification results are given in Table 2. Under this set of
parameters, model outputs fit 98.48% of actual system outputs and the final prediction of
the error is 1.57 × 10−7, and the comparison between the model response and the actual
data is shown in Figure 3b. Thus, we ensure that the results of parameter identification
are reasonable.
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Table 2. The estimated parameters.

Parameters a1 a2 a3 a4 a5 a6 a7

Estimated Values 0 133.75 1.65 × 10−6 12.5 1.05 × 1010 81.33 1.047 × 104

To verify the estimated mathematical model, we tested the real system with mixed
sine signals of different frequencies, as given in Equation (11). Subsequently, we compared
the experimental results with the model output. Figure 4b shows that the response of the
model agreed well with the experimental data, indicating that the identified model can
accurately predict the behavior of the real system.

u(t) =
{

80 + 20[sin(4πt) + sin(2.6πt) + sin(2πt) + sin(1.6πt) + sin(0.8πt)], t ≤ 15
−120− 30[sin(2πt) + sin(1.3πt) + sin(πt) + sin(0.8πt) + sin(0.4πt)], t > 15

(11)
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As an example, the identification results of the bucket are listed in Table 2. Similarly,
we can obtain the parameters for the boom and arm, as shown in Table 3.

Table 3. The estimated parameters of boom and arm.

Parameters a1 a2 a3 a4 a5 a6 a7

Boom 0 53.3 2.5 × 10−5 5.0 1.05 × 1010 63.16 8.21 × 103

Arm 0 89.17 3.67 × 10−5 8.33 1.05 × 1010 71.77 9.33 × 103

3. Approximate Nonlinear Model Predictive Controller Design

The design of an MPC controller requires a model to predict the future state and obtain
the optimal control input by solving an optimization problem in real-time [21]. Therefore,
accurate modeling of a system is crucial for an MPC controller. The electro-hydraulic
system is highly nonlinear, but the design of the NMPC controller will cause difficulties
in solving optimization problems and bring a large computational burden. Therefore,
linearization methods are often used to obtain the linear expression of the model, and an
LMPC will be designed based on it.

Usually, the linearization method involves computing the Taylor expansion of the
model at the equilibrium point and ignoring the higher-order terms. However, the first-
order linearization introduces unmodeled errors, thus the linearized model cannot accu-
rately reflect the dynamic characteristics of the system. When the equilibrium is improperly
selected, it can lead to a decrease in controller performance or even cause the control system
to diverge. Therefore, to reduce the plant-model mismatch caused by linearization, this
study uses an approximate method to represent the explicit relationship between the output
and input.

3.1. Approximation Affine Nonlinear State Space Model

Due to the nonlinear relationship between the input and output, it is difficult to
derive the relationship between the output and the input and design a predictive controller.
Therefore, an approximate model is first derived for System (9) to ensure a simplified input–
output relationship. For the non-affine nonlinear model i, where i = boom, arm, bucket
in this study, the Taylor expansion of xi(k + 1) with respect to ui(k) around ui(k− 1) is
shown as:

xi(k + 1) = fi[xi(k), ui(k− 1)] + ∂ fi [xi(k),ui(k−1)]
∂ui(k)

(ui(k)− ui(k− 1)) + εi(k)
= fi[xi(k), ui(k− 1)] + gi[xi(k), ui(k− 1)]∆ui(k) + εi(k)

(12)
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where εi(k) =
∂2 fi [xi(k),µi(k)]

∂u2
i (k)

∆u2
i (k) and µi(k) = ηiui(k) + (1− ηi)ui(k− 1) with ηi being a

positive constant.
Since only the derivative expansion of the control input is performed, the nonlinear

characteristics of the state variables are retained. Subsequently, the approximate model
may not miss too many characteristics of the system [27,29].

3.2. ANMPC Design

Ignoring εi(k) in Equation (12), an approximate affine nonlinear system can be repre-
sented by state space Equation (13):

xi(k + 1) = fi[xi(k), ui(k− 1)] + gi[xi(k), ui(k− 1)]∆ui(k)
yi(k) = Cxi(k)

(13)

with constraints:
ui,min ≤ ui(k) ≤ ui,max

∆ui,min ≤ ∆ui(k) ≤ ∆ui,max
yi,min ≤ yi(k) ≤ yi,max

where xi(k) ∈ <nx is the state vector, ui(k) ∈ <nu is the input vector, yi(k) ∈ <ny is the
output vector, ∆ui(k) is the input increment, fi(∗) and gi(∗) are nonlinear functions, and
ui,min ≤ ui,max, ∆ui,min ≤ ∆ui,max, and yi,min ≤ yi,max are vectors of lower and upper
bounds and C = [1, 0, 1].

Note that there are two main reasons why we ignore the second-order term εi(k).
Firstly, the output of a physical system in practice cannot change too fast within a small
time interval due to the “inertia” of the system [26,28], which means that ∆ui(k) is limited.
Secondly, when the reference trajectories to be tracked are constant, the approximation error
εi(k) will approach zero because ∆ui(k)→ 0 in the steady state. In addition, the mechanism
of a receding horizon and repeating optimization gives MPC inherent robustness.

The MPC controller is an iterative optimization technique, and at each sampling time
k, the optimal control input is obtained by solving the optimization problem online based
on the current system states and references, and the first element of the control sequence
will be applied to the system. The optimal control input is obtained by continuously solving
the following optimization problem:

min
∆ui(k)

Ji(k) =
Np

∑
j=1
‖ri(k + j|k)− yi(k + j|k)‖2

Q +
Nm−1

∑
j=0
‖∆ui(k)‖2

W (14)

where ri(k + j|k) is the reference, Np and Nm are the prediction horizon and the control
horizon, respectively, Nm ≤ Np, Q, and W are weighting matrices for two optimization
terms, and ‖∗‖2 denotes the Euclidean norms of vectors.

The first term in Equation (14) represents the error between the predicted output and
the reference, while the second term considers the change in the control input. According
to the approximate affine non-linear Model (13), we have:

xi( k + 1|k) = fi[xi(k|k− 1), ui(k− 1)] + gi[x(k|k− 1), ui(k− 1)]∆ui(k)
xi( k + 2|k) = fi[xi(k + 1|k− 1), ui(k− 1)] + gi[x(k + 1|k− 1), ui(k− 1)](∆ui(k) + ∆ui(k + 1))

...
xi( k + Np

∣∣k) = fi[xi(k + Np − 1
∣∣k− 1), ui(k− 1)] + gi[x(k + Np − 1

∣∣k− 1), ui(k− 1)](∆ui(k) + . . .
+∆ui(k + Nm − 1))

(15)

Define the following vectors:

Yi = [yi( k + 1|k) ,yi( k + 2|k) , · · · yi( k + Np
∣∣k)]′ ∈ <Npny (16)
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Ri = [ri( k + 1|k) ,ri( k + 2|k) , · · · ri( k + Np
∣∣k)]′ ∈ <Npny (17)

∆Ui = [∆ui(k) ,∆ui(k + 1), · · · ∆ui(k + Nm − 1)]′ ∈ <Nmnu (18)

Xi = [xi( k + 1|k), xi( k + 2|k) , · · · xi( k + Np
∣∣k)]′ ∈ <Npnx (19)

Transforming recursive Equation (14) into matrix form, we have:

Yi = CXi = C(Fi + Gi∆Ui) (20)

where:

C =

C · · · 0
...

. . .
...

0 · · · C

 ∈ <Npny×Npnx

Fi =


fi[x(k), u(k− 1)]

fi[x (k + 1|k), u(k− 1)]
...

fi[x (k + p− 1|k), u(k− 1)]

 ∈ <Npnx

Gi =


gi [x(k|k− 1), ui(k− 1)] 0 · · · 0
gi [x(k|k− 2), ui(k− 1)] gi [x(k + 1|k− 1), ui(k− 1)] · · · 0

...
...

. . .
...

gi [x (k + Np − 1
∣∣k− 1), ui(k− 1)] gi [x (k + Np − 1

∣∣k− 1), ui(k− 1)] · · · gi [x (k + Np − 1
∣∣k− 1), ui(k− 1)]

 ∈ <Npnx×Nmnu

Hence, the original optimization Problem (14) becomes:

min
∆Ui

Ji(k) = ‖Ri −Yi‖2
Q + ‖∆Ui‖2

W

=
∥∥Ri − CFi − CGi∆Ui

∥∥2
Q + ‖∆Ui‖2

W

(21)

s.t.
ui,min ≤ ui(k− 1) + ∆Ui ≤ ui,max
∆ui,min ≤ ∆Ui ≤ ∆ui,max
yi,min ≤ C(Fi + Gi∆Ui) ≤ yi,max

The above optimization problem is a standard quadratic programming problem, if
the weight matrices W and Q are positive definite, then the objective Function (21) is
strictly convex, and the feasible region defined by the constraints is a closed convex set.
Therefore, the solution to Equation (21) is unique and satisfies the Karush–Kauhn–Tucker
(KKT) conditions [30,31].

3.3. EKF-Based ANMPC Design

For the MPC method, the full-state feedback control concept is adopted, which means
that all state information (i.e., position signal, velocity signal, and pressure signal) should
be available in electro-hydraulic system control. However, in practical systems, due to
limitations in installation conditions and cost, not all state information can be obtained
through sensors directly. In this study, the displacement and pressure signals of hydraulic
cylinders can be obtained through sensors. In terms of the velocity signal, the Extended
Kalman Filter (EKF) is introduced as a state observer, which is one of the most popular
state estimation techniques primarily developed for nonlinear systems [32]. In addition,
the EKF is capable of correcting the position and pressure signals to reduce noise, which
further improves the accuracy of the state estimation.
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For the nonlinear System (10), the EKF of model i is implemented as follows:

x̂i(k + 1) = fi(x̂i(k), ui(k)) + Ki(k)(yi(k + 1)− H fi(x̂i(k), ui(k)))
Ki(k + 1) = Pi(k + 1)HT(HPi(k)HT + RF,i(k))

−1

Pi(k + 1) = Fi(k)(Pi(k)− Pi(k)HT(HPi(k)HT + Ri(k))
−1HPi(k))Fi(k)

T + QF,i(k)
(22)

where Fi(k) =
∂ fi(xi(k),ui(k))

∂xi(k)

∣∣∣xi(k)=x̂i(k) , H represents the measurement matrix, QF,i(k) and
RF,i(k) are the noise matrix of model and observation, and the choice of QF,i(k) and RF,i(k)
can be found in [27,32]. The stability problem of the Kalman filter can be found in [28].

We defined the observer error of EKO as ξi(k) = xi(k)− x̂i(k), then:

ξi(k + 1) = xi(k + 1)− x̂i(k + 1)
= (I − Ki(k + 1)H) ∂ fi(ηi(k),ui(k))

∂xi(k)
(23)

where ηi(k) ∈ [xi(k), x̂i(k)]. According to [32], ξi(k)
T pi(k + 1)−1ξi(k) is a decreasing se-

quence and thus ξi(k)→ 0 as k→ ∞ .
After introducing the Kalman state observer, Equation (14) can be represented by:

x̂i( k + 1|k) = fi[x̂i(k|k− 1), ui(k− 1)] + gi[x̂(k|k− 1), ui(k− 1)]∆ui(k)
x̂i( k + 2|k) = fi[x̂i(k + 1|k− 1), ui(k− 1)] + gi[x̂(k + 1|k− 1), ui(k− 1)](∆ui(k) + ∆ui(k + 1))

...
x̂i( k + Np

∣∣k) = fi[x̂i(k + Np − 1
∣∣k− 1), ui(k− 1)] + gi[x̂(k + Np − 1

∣∣k− 1), ui(k− 1)](∆ui(k) + . . .
+∆ui(k + Nm − 1))

(24)

Then, Equations (19) and (20) become:

X̂i = [x̂i( k + 1|k), x̂i( k + 2|k) , · · · x̂i( k + Np
∣∣k)]′ ∈ <Npnx (25)

Yi = CX̂i = C(F̂i + Ĝi∆Ui) (26)

where:

F̂i =


fi[x̂(k), u(k− 1)]

fi[x̂ (k + 1|k), u(k− 1)]
...

fi[x̂ (k + p− 1|k), u(k− 1)]

 ∈ <Npnx

Ĝi =


gi [x̂(k|k− 1), ui(k− 1)] 0 · · · 0
gi [x̂(k|k− 2), ui(k− 1)] gi [x̂(k + 1|k− 1), ui(k− 1)] · · · 0

...
...

. . .
...

gi [x̂ (k + Np − 1
∣∣k− 1), ui(k− 1)] gi [x̂ (k + Np − 1

∣∣k− 1), ui(k− 1)] · · · gi [x̂ (k + Np − 1
∣∣k− 1), ui(k− 1)]

 ∈ <Npnx×Nmnu

Thus, the optimization problem Equation (21) can be rewritten as:

min
∆Ui

Ji(k) = ‖Ri −Yi‖2
Q + ‖∆Ui‖2

W

=
∥∥Ri − CF̂i − CĜi∆Ui

∥∥2
Q + ‖∆Ui‖2

W

(27)

s.t.
ui,min ≤ ui(k− 1) + ∆Ui ≤ ui,max
∆ui,min ≤ ∆Ui ≤ ∆ui,max
yi,min ≤ C(Fi + Gi∆Ui) ≤ yi,max

In summary, for the electro-hydraulic control system of a single joint i, the overall
ANMPC framework is shown in Figure 5.
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4. Experiment
4.1. Experiment Platform

Figure 6 shows the experimental platform, which was modified from a 1.7-ton electro-
hydraulic excavator. Wire displacement sensors are installed on the hydraulic cylinders to
measure the piston rod displacement of the boom, arm, and bucket, and then the position
of the bucket tip can be determined by the kinematics of the robot. In addition, six pressure
sensors were installed on the joints of the corresponding cylinders to measure the pressure
in the rod and non-rod chambers.
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Figure 6. Experiment platform.

The entire control system is divided into the slave part and the master part, which are
connected via the CAN bus. The slave part uses a PLC controller primarily for data acquisi-
tion and hydraulic system control. The master part uses a computer, and all planning and
control algorithms are deployed on the master. Based on the MATLAB GUI environment,
the master realizes data reception, display, and the implementation of trajectory planning
and trajectory tracking control algorithms.

4.2. Controller Settings

In the experiment, the sampling time of the control system was uniformly set to 0.01
s, which is short enough for the control and the acquisition of data. In order to perform
excavation tasks, it is necessary to simultaneously control the boom, stick, and bucket, and
the parameters of the three controllers are listed in Table 4.
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Table 4. Controller parameters.

Parameters Boom Arm Bucket

[Np, Nm] [10, 2] [10, 2] [10, 2]
[umin, umax] (mA) [−1000, 1000] [−1000, 1000] [−1000, 1000]
[∆umin, ∆umax] (mA) [−100, 100] [−100, 100] [−100, 100]
[ymin, ymax] (m) [0, 0.38] [0, 0.445] [0, 0.352]
[

.
ymin,

.
ymax] (m/s) [−0.3, 0.3] [−0.5, 0.5] [−0.5, 0.5]

[pmin, pmax] (MPa) [−15, 15] [−12, 12] [−12, 12]
Dead zone (mA) [300, 300] [220, 220] [200, 200]

At the same time, we designed a linear MPC controller for comparison. Unlike
ANMPC, the LMPC linearizes system Model (10) at the equilibrium point (xi ,0, ui ,0):

xi(k + 1) = fi(xi,0, ui,0) +
∂ fi(xi,0, ui,0)

∂xi
(xi(k)− xi,0) +

∂ fi(xi,0, ui,0)

∂ui
(ui(k)− ui,0) = Aixi(k) + Biui(k) (28)

where Ai =
∂ fi(xi,0,ui,0)

∂xi
, B = ∂ f (x0,u0)

∂x .
Based on Equation (28), the LMPC can be obtained as:

min
∆Ui

Ji(k) = ‖Ri −Yi‖2
Q + ‖∆Ui‖2

W

= ‖Ri − Sixi(k)−Viui(k− 1)−Mi∆ui(k)‖2
Q + ‖∆Ui‖2

W

(29)

s.t.
∆Ui,min ≤ ∆Ui ≤ ∆Ui,max
Ui,min ≤ ui(k− 1) + ∆Ui ≤ Ui,max
Yi,min ≤ Yi ≤ Yi,max

where the definitions of Si, Vi, and Mi are referenced in [30,31]. The parameter settings of
the LMPC were the same as those of ANMPC in our experiment.

4.3. Trajectory Planning

In the experiment, the excavator did not rotate, so only motion in the X-Z plane was
considered. To verify the effectiveness of the proposed controller, a typical excavation
trajectory was used as the reference trajectory. A typical excavation process includes
penetration, cutting, and loading [33], and the trajectory of the bucket tip is shown in
Figure 7. By solving the inverse kinematics, the trajectory of the bucket tip is converted
into the trajectory of each joint, as shown in Figure 8.
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4.4. Experiment Results

The LMPC and ANMPC were used to control the hydraulic cylinders to move along
the planned trajectory, and the actual trajectories of each joint were obtained through
sensors. In the experiment, the tracking performance of each controller was analyzed both
in joint space and Cartesian space.

In the joint space, the trajectory tracking control results of the boom, arm, and bucket
are given in Figures 9–11, respectively. When using the LMPC, the maximum track-
ing errors of each joint are 4.11 × 10−3 m, 3.89 × 10−3 m, and 2.65 × 10−3 m, respec-
tively, while the maximum trajectory tracking errors of each joint are 1.92 × 10−3 m,
1.72 × 10−3 m, and 2.06 × 10−3 m, respectively, when using the ANMPC.
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In the Cartesian space, the bucket tip trajectories when using different controllers are
shown in Figure 12a, and the position errors are shown in Figure 12b. The maximum errors
of the LMPC and ANMPC are 87.5 × 10−3 m and 23.1 × 10−3 m, respectively. In addition,
the tracking performance of the bucket tip in the X-axis, Z-axis, and bucket angle is given
in Figures 13–15, respectively.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

  

(a) (b) 

Figure 10. Tracking result and errors of Arm: (a) Trajectory; (b) errors. 

  

(a) (b) 

Figure 11. Tracking result and errors of bucket: (a) Trajectory; (b) errors. 

  
(a) (b) 

Figure 12. Bucket tip trajectory and errors: (a) Trajectory; (b) errors. 

Tr
ac

ki
ng

 E
rr

or
s(

m
)

Tr
ac

ki
ng

 E
rr

or
s(

m
)

Figure 12. Bucket tip trajectory and errors: (a) Trajectory; (b) errors.



Processes 2023, 11, 1918 16 of 18
Processes 2023, 11, x FOR PEER REVIEW 17 of 19 
 

 

  
(a) (b) 

Figure 13. Bucket tip in X-axis and errors: (a) Trajectory; (b) errors. 

  

(a) (b) 

Figure 14. Bucket tip in Z-axis and errors: (a) Trajectory; (b) errors. 

  

(a) (b) 

Figure 15. Bucket angle and errors: (a) Angle trajectory; (b) errors. 

5. Conclusions 
In this study, a novel observer-based ANMPC was proposed for the trajectory track-

ing of a hydraulic robotic excavator. Firstly, considering the highly nonlinear characteris-
tics of the electro-hydraulic system, a non-affine nonlinear system model was established, 

Tr
ac

ki
ng

 e
rr

or
s(

m
)

Tr
ac

ki
ng

 e
rr

or
s(

m
)

0 10 20 30 40 50
Time(s)

–3.5

–3

–2.5

–2

–1.5

–1
Ref
LMPC
ANMPC

Tr
ac

ki
ng

 e
rr

or
s(

ra
d)

Figure 13. Bucket tip in X-axis and errors: (a) Trajectory; (b) errors.
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The tracking errors of different controllers when tracking a typical excavation trajectory
are shown in Table 5. Due to the less unmodeled error of the approximate affine nonlinear
model, the proposed ANMPC has a significant advantage over the LMPC in terms of
trajectory tracking control performance of the robotic excavator.
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Table 5. Tracking errors of the experiment.

Errors (10−3 m)
Joint Space Cartesian Space

Boom Arm Bucket Distance X-Axis Z-Axis Angle

LMPC
Max 4.1 3.9 26.4 87.5 25.6 63.9 0.0659

RMSE 2.3 2.1 6.7 31.4 19.7 24.5 0.0425

ANMPC
Max 1.9 1.7 2.1 23.1 13.8 18.5 0.02

RMSE 1.0 0.9 1.2 11.6 5.6 10.1 0.0083

5. Conclusions

In this study, a novel observer-based ANMPC was proposed for the trajectory tracking
of a hydraulic robotic excavator. Firstly, considering the highly nonlinear characteristics of
the electro-hydraulic system, a non-affine nonlinear system model was established, and
the parameters of the model were obtained through a parameter identification method.
Then, in order to reduce the plant-model mismatch caused by the conventional first-order
linearization, we used an approximation method to obtain the explicit linear relationship
between the output and input, and ANMPC is designed based on the approximate affine
nonlinear model. Compared with the linearized model, the approximate affine nonlinear
state space model can better reflect the dynamic characteristics of the system and predict
the future state more accurately. At the same time, ANMPC avoids the difficulties in
solving nonlinear MPC problems for non-affine nonlinear systems due to the slow solving
speed and insufficient computing resources. Trajectory tracking control experiments were
designed on a 1.7-ton excavator platform, where ANMPC and LMPC were used to control
the robot to perform a typical excavation trajectory, and the three joints of the robot
were controlled simultaneously in the experiment. The experimental results showed that
ANMPC had better trajectory tracking control performance than LMPC.

Given the significant external disturbances that robotic excavators face during oper-
ation, such as soil resistance, our future work will focus on suppressing disturbances to
further improve the performance of the controller and promote its application in engineer-
ing. Moreover, combining autonomous navigation and 3D reconstruction to achieve fully
autonomous operation is a promising research direction.
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