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Abstract: The viscosity of a liquid is the property that measures the liquid’s internal resistance to flow.
Monitoring viscosity is a vital component of quality control in several industrial fields, including
chemical, pharmaceutical, food, and energy-related industries. In many industries, the most com-
monly used instrument for measuring viscosity is capillary viscometers, but their cost and complexity
pose challenges for these industries where accurate and real-time viscosity information is vital. In this
work, we prepared fourteen solutions with different water and PVP (Polyvinylpyrrolidone) ratios,
measured their different viscosity values, and produced videos of their droplets. We extracted the
images of the fully developed droplets from the videos and we used the images to train a convo-
lutional neural network model to estimate the viscosity values of the water–PVP solutions. The
proposed model was able to accurately estimate the viscosity values of samples of unseen chemical
formulations with the same composition with a low MSE score of 0.0243 and R2 score of 0.9576.
The proposed method has potential applications in scenarios where real-time monitoring of liquid
viscosity is required.

Keywords: viscosity; convolutional neural networks; water–PVP; Polyvinylpyrrolidone; viscosity
estimation

1. Introduction

The internal resistance of a liquid to flow or shear is measured by its viscosity. This
fundamental characteristic parameter is essential for quality control in various industrial
areas, including but not limited to the pharmaceutical, food, chemical, and energy-related
sectors [1]. In the pharmaceutical industry, viscosity plays a significant role in ocular
drug absorption and Indomethacin dissolution [2], as well as in determining nanoparticle
sizes, drug contents, and dissolution profiles [3]. In the food industry, viscosity is an
important quality parameter, which affects the texture, consistency, appearance, and taste
of the product [4]. Measuring the viscosity accurately is crucial in the design of industrial
equipment and chemical processes. This is particularly important for applications that
involve molten salts [5] and in simulating reservoirs, forecasting production, and planning
thermal enhanced oil recovery methods to improve recovery [6,7]. Various instruments
are available to measure viscosity, including capillary viscometers, orifice viscometers,
rotational viscometers, and vibrational and ultrasonic viscometers. The capillary viscometer
is the most commonly used method in several industries due to its affordability and ease
of use. This method involves measuring the time taken for a specific volume of liquid to
flow through a narrow tube under a given pressure [8]. Viscosity measurements through
these invasive methods require laboratory conditions with constant temperature control,
resulting in high costs, and they also affect the accuracy of the measurements. For example,
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the accuracy of heavy oil viscosity measurements can be affected by sample handling,
storage, and cleaning procedures and by the selection of viscometers and the experimental
procedures followed by different operators [9]. This makes these methods unsuitable for
continuous in-process monitoring and intervention in case of errors. Thus, it is crucial to
develop a cost-effective, time-efficient, and accurate alternative for viscosity measurement.

Employing machine learning and image processing algorithms to estimate viscosity
values is a potential alternative to the conventional viscosity measurement techniques.
Using image processing and supervised learning techniques, Caponi et al. were able to
predict the viscosity of hydrocarbons located at a particular reservoir depth in a heavy
oil reservoir situated in California [10]. Zhang et al. created machine learning models
that can process biomass compositions analysis and pyrolysis conditions to predict the
yield, viscosity, and oxygen–carbon ratio (O/C) of bio-oil [11]. Cengiz et al. used Extreme
Learning Machine (ELM), Multi-Layer Perceptron (MLP), and K Nearest Neighbor (KNN)
methods to predict the kinematic viscosity of fuel oil [12]. Rahmanifard et al. trained
38 supervised machine learning algorithms to predict gas component viscosity using data
of independent variables that impact the viscosity of pure gas components [13].

Researchers have employed artificial neural networks to estimate the dynamic vis-
cosity of various substances. Afrand et al. predicted the dynamic viscosity of a hybrid
nanolubricant using an optimal ANN model [14]. Esfe et al. demonstrated the high accu-
racy of their model in predicting the dynamic viscosity of ferromagnetic nanofluids [15].
Additionally, Al-Amoudi et al. proposed artificial neural network models to predict the
viscosity of undersaturated, saturated, and dead oil in Yemeni fields, utilizing laboratory
measurements of oil samples [16]. Furthermore, Nigerian crude oil viscosity has been
predicted using 32 datasets that include reservoir temperature, oil and gas gravity, and the
solution gas–oil ratio, through the use of artificial neural networks [17].

The correlation between liquid droplets and liquid viscosity has been the subject of
several research studies.

In their paper [18], H. Zhu et al. revealed the correlation between extensional viscosity
and spray droplet sizes of polymer spray solutions. According to Wang et al.’s study
in [19], an increase in liquid viscosity results in a logarithmic increase in droplet diameter
in vertical gas–liquid annular flows. The increase is initially rapid but slows down as the
viscosity increases. The impact of viscosity on droplet–droplet collision outcomes was
investigated by Gotaas et al. in their research reported in [20].

Some researchers have investigated the application of image processing techniques for
the measurement of liquid viscosity. In their study published in [21], Kheloufi et al. utilized
video analysis of falling ball viscometers to measure the fall height of a ball and compute the
viscosity of the fluid under study. Mrad et al. employed an artificial neural network model
to accurately classify droplets of water–PVP solutions into different viscosity categories [22].
Santhosh and Shenoy used a combination of imaging and artificial neural network techniques
to accurately estimate the viscosity of a liquid. Specifically, they captured refracted laser images
using a camera; processed them using thresholding, filtering, and histogram techniques; and
used an artificial neural network to establish the relationship between the processed data and
the viscosity. The results of their study were published in [23].

The convolutional neural network (CNN) is a well-known deep learning architecture
inspired by the natural visual perception mechanism of the living creatures. CNNs have
a wide range of applications, such as text recognition, speech, and natural language
processing. However, they are mostly employed in image recognition systems [24]. CNNs
were applied in image classification in various industries. Iwata et al. applied a CNN
to classify scanning electron microscopy (SEM) images of pharmaceutical raw material
powders to determine if a CNN can evaluate particle morphology [25]. Ghorbani et
al. trained a convolutional neural network with a visual dataset of oil spills containing
images from different altitudes and geographical locations to detect the existence of an
oil spill in an image with an accuracy of 92% [26]. CNNs were also used for viscosity
estimation: Vasconcelos et al. created a CNN model that estimated the elasticity and
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viscosity parameters from simulated shear wave motion images [27]. Mohan et al. used
CNN to extract key features from a video of fluid flow and fed it to a recurent neural
network (RNN) to estimate the viscosity of the fluid [28].

Due to the advantages of the ability of convolutional neural networks to automatically
learn and extract relevant features from images along with the features and information
that an image of a liquid droplet can provide, they appear to be a promising non-invasive
continuous method to estimate the viscosity value of the corresponding droplet.

In this study, we prepared fourteen solutions with different water and PVP (Polyvinylpy-
rrolidone, which is a water-soluble polymer) ratios and measured their viscosity values
using a viscometer. We carefully recorded videos of the droplets of these solutions as they
dropped from a syringe pump using a high-quality monochrome camera, thereby capturing
their exact behavior and characteristics. Using the data we generated, we aimed to train a
convolutional neural network model that would be capable of accurately estimating the
viscosity value of the given solution based on its droplets’ images.

2. Materials and Methods
2.1. Materials

We used Povidone (PVPK30), which was provided to us by BASF (Ludwigshafen, Ger-
many). The procedure for preparing the PVP solution involved dissolving 20 g of PVP in
100 mL of distilled water that had a 20 µS\cm resistance. PVP solutions were used because
PVP is a polymer that is soluble in water and the concentration of PVP in the solution is
known to influence the viscosity. Therefore, PVP is ideal for preparing solutions with differ-
ent viscosities. However, the flow behavior will not be investigated in this study as it has
been investigated in the literature. MINESHITA and al. observed that non-Newtonian flow
behavior was observed in all ranges of shear stress for Polyvinylpyrrolidone solutions [29].

2.2. Measurement Setup

The Department of Organic Chemistry and Technology at the Faculty of Chemical
Technology and Biotechnology, Budapest University of Technology and Economics, pro-
vided us with the necessary materials and software for conducting the experiment. These
included fourteen 500 mL laboratory bottles, a one-channel syringe pump SEP-10S PLUS,
a transparent rubber tube, a laboratory dropper, an LED white light panel, and one lab
beaker. The department also provided us with the recording materials: an acA720-520um
USB 3.0 monochrome camera manufactured by Basler AG, a German company founded in
1988 that specializes in the design and production of digital cameras, Pylon Viewer, and
PharmaVision Videometry software.

2.3. Methods
2.3.1. Experimental Setup

For the experiment, a total of fourteen solution samples (formulations) were created by
combining the PVP solution and distilled water in various ratios, resulting in solutions with
a range of viscosity values, as outlined in Table 1. The objective of the experiment was to
capture the formation process of droplets from each of these solutions via video recording.

During the experiment, the liquid sample was dispensed from an automatic syringe
pump through a transparent rubber tube to a pipette dropper at a controlled rate of 20 mL
per hour. The dropper was held in a fixed perpendicular position to the horizontal plane
using a stand while a lab beaker was placed directly beneath it to collect the falling droplets.
A high-quality monochrome camera, held in place using another stand, was positioned
behind the dropper to capture videos of the droplet formation process. To ensure a uniform
background, a strong white LED panel was positioned behind the dropper. The videos
were recorded from the moment a droplet appeared in the dropper until it fell into the
beaker using a frame rate of 200 frames per second and dimensions of 600 by 1000 pixels.
The recorded videos were in black and white and were analyzed using the internally
developed software, PharmaVision Videometry. The experiment was performed for each
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of the fourteen solution samples, with key parameters, such as the dropper and camera
positions and infusion rate, kept constant. To ensure the accuracy and comparability of
the results, the syringe and rubber tube were thoroughly cleaned before each sample
preparation to eliminate any residue that could affect subsequent measurements. A total of
fourteen videos were recorded, each with a duration of 10 min, providing informative data
on the characteristics of droplets during their formation stages. The experimental setup
and test can be viewed in Figures 1 and 2.

Table 1. Different chemical formulations used in sample preparation. Formulations chosen for testing
are displayed in bold.

Formulation Name (PVP%) Distilled Water (mL) PVP Solution (mL)

PVP00.0 75 0
PVP05.0 71.25 3.75
PVP07.5 69.375 5.625
PVP10.0 67.5 7.5
PVP15.0 63.75 11.25
PVP20.0 60 15
PVP25.0 56.25 18.75
PVP27.5 54.375 20.625
PVP30.0 52.5 22.5
PVP35.0 48.75 26.25
PVP40.0 45 30
PVP42.5 43.125 31.825
PVP45.0 41.25 33.75
PVP50.0 37.5 37.5

Figure 1. Experimental setup.

Figure 2. Experimental setup in test: droplet in different states.
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2.3.2. Viscosity Measurement

The viscosity values of the various samples were quantified using the DMA 4500 M
viscometer manufactured by Anton Paar, an Austrian company founded in 1922, and
were documented in Table 2. The measurements were obtained by determining the rolling
time of a 1.5 mm diameter steel ball through the sample in a capillary tube angled at
−45◦ while the temperature of the sample was maintained at a constant 25.00 ◦C. The
values are in mPa·s (millipascal-second), which is a unit of dynamic viscosity. It is equal
to one-thousandth of a pascal-second (Pa·s) that is the SI unit of dynamic viscosity. The
values presented are the apparent viscosity values given by the instrument.

Table 2. Viscosity values of water–PVP samples. Samples chosen for testing are displayed in bold.

Formulation Name (PVP%) Viscosity in mPa·S
PVP00.0 0.891
PVP05.0 1.055
PVP07.5 1.084
PVP10.0 1.228
PVP15.0 1.482
PVP20.0 1.763
PVP25.0 1.975
PVP27.5 2.102
PVP30.0 2.302
PVP35.0 2.598
PVP40.0 2.904
PVP42.5 2.931
PVP45.0 3.222
PVP50.0 3.691

2.3.3. Data Analysis

In this study, we processed and analyzed the videos of the droplets to identify valuable
information. Various features of the droplets were identified, such as the duration of
the droplet formation process; the area, perimeter, and diameter of the droplet; and the
maximum length and width the droplet can reach before it falls. In the videos, the droplet
can be seen in three different states, as shown in Figure 3. However, we focused on
capturing images of the droplets just before detachment from the dropper as it provides
more information about the droplets to be used for comparison with other droplets in
a similar state. We extracted 6074 images of droplets in the “before-detachment” state.
We carefully examined each image and made adjustments when necessary so that any
differences between the images only reflected changes in the droplet characteristics. The
captured images were adjusted to a resolution of 53 by 91 pixels, as shown in Figure 4,
using OpenCV, a publicly available library of functions that comprises a range of image
processing techniques, including but not limited to image filtering and transformation,
object tracking, and feature detection [30]. This was to ensure that the input size of the
CNN is consistent across all images and to address the issue of large file sizes and memory
usage. The pixel values of the images were normalized to a range between 0 and 1 to
improve the convergence rate during the training of the proposed model by dividing the
pixel values by 255. The resulting dataset is represented in Table 3.
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Table 3. Number of captured images for each formulation.

Formulation Name (PVP%) Number of Images

Training and validation set

PVP00.0 437
PVP05.0 450
PVP10.0 473
PVP15.0 447
PVP20.0 394
PVP25.0 440
PVP30.0 393
PVP35.0 442
PVP40.0 440
PVP45.0 435
PVP50.0 437

Testing set

PVP07.5 425
PVP27.5 422
PVP42.5 439

Total 6074

Figure 3. Stages of droplet formation, including three droplets: a droplet in the development phase
on the left, a completely formed droplet just before detachment in the middle, and a detached droplet
on the right.

Figure 4. Resized images of droplets with their corresponding viscosity values.
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2.3.4. Convolutional Neural Networks

CNNs typically consist of multiple layers, including convolutional, pooling, activation,
and fully connected layers, each playing a unique role in the processing and analysis of the
input image. The convolutional layers apply a set of filters to the input image to extract
relevant features, while the pooling layers reduce the output of the convolutional layers, re-
ducing the dimensionality of the data. The fully connected layers use the extracted features
to make predictions or classifications. The output layer produces the final prediction or
classification result. By combining these layers in a specific architecture, CNNs can achieve
state-of-the-art performance on various image processing tasks, including object detection,
recognition, and segmentation [31]. In this study, our goal was to estimate the viscosity
values of the solution sample using the images of the droplets.

For this objective, convolutional neural network (CNN) models were created utilizing
the Keras library, a high-level open-source Python library for deep learning that is designed
to run on top of TensorFlow [32]. The activation function ReLU was utilized by the models
on the different layers. The weights on the models were optimized using the Adam
optimizer and the mean squared error (MSE) was the loss function used on the proposed
models. The dataset consists of 6074 images from which 3830 images were used for training
and 958 images were used for validation (20% of the training set). The samples chosen
for validation were selected uniformly from the training data. For testing, we used data
from three distinct chemical formulations (PVP07.5, PVP27.5, and PVP42.5) that were not
included in the training or validation data of the models. The data used for testing consists
of 1286 images, which is around 33% of the data used for training the models.

2.3.5. Evaluation Measurement

To provide a comprehensive evaluation of the proposed models’ performance in the
estimation of the viscosity of water–PVP solutions, we decided to check the following
evaluation metrics, which are commonly used for similar regression problems:

• Mean squared error (MSE): The MSE calculates the average of the squared differences
between the predicted and actual values. It is the metric used by the proposed models
for the loss function.

1/n
n

∑
i=1

(yi
pred − yi

true)
2 (1)

where n is the number of samples in the dataset, and yi
pred and yi

true represent the
predicted and actual values for the ith sample, respectively.

• Mean absolute error (MAE): This metric calculates the average absolute difference
between the predicted and actual values. The MAE is a good metric to use when the
dataset has a large number of outliers because it is less sensitive to outliers than other
metrics such as MSE. Since our data consist of images that are quite similar to the
naked eye but might hide some outliers, it would be important to check the MAE.

1/n
n

∑
i=1
|yi

pred − yi
true| (2)

where n is the number of samples in the dataset, and yi
pred and yi

true represent the
predicted and actual values for the ith sample, respectively.

• R2 score (coefficient of determination): The R2 is a metric that measures the propor-
tion of the variance in the dependent variable that is predictable from the independent
variables. It provides an indication of how well the model fits the data. The R2 score
ranges from 0 to 1, with 1 indicating a perfect fit.

MSE
Var(yi

true)
(3)
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where Var(yi
true) is the variance of the actual values.

Together, these metrics provide a good overall evaluation of the performance of the
CNN models in estimating the viscosity values of water–PVP solutions. By evaluating the
MAE, MSE, and R2, we can assess the accuracy of the models. This information can be
used to compare different models and choose the best one for our task.

3. Results and Discussion

Multiple CNN models were created, and various hyperparameters were tuned to
find the best-performing model. Specifically, the following parameters were varied during
the models’ creation: the number of convolutional layers, the number of filters in each
convolutional layer, the size of the convolutional filters, the pooling method and size, the
number and size of the fully connected layers, and the learning rate of the optimizer. Three
models were selected to be presented, each with a different architecture that determines
how it processes the input images and makes predictions:

• SimpleModel: The SimpleModel has a basic architecture, which consists of 1 convolu-
tional layer with 32 filters of size (3, 3), followed by a max-pooling layer of size (2, 2),
a flatten layer, 2 dense layers of sizes 64 and 1, respectively, and a dropout layer with
a rate of 0.5. The input shape of the SimpleModel is (91, 53, 3), which represents the
size of the input droplet images.

• DeepModel. This model architecture is more complex than the SimpleModel, con-
sisting of two convolutional layers with 32 and 64 filters of sizes (5, 5) and (5, 5),
respectively, followed by 2 max-pooling layers of size (2,2), a flatten layer, 2 dense
layers of sizes 128 and 1, respectively, and a dropout layer with a rate of 0.5. The input
shape of the DeepModel is also (91, 53, 3).

• ComplexModel. This model architecture is the most complex of the 3 models and
includes 3 convolutional layers with 32, 64, and 64 filters of sizes (7, 7), (7, 7), and (7,
7), respectively, followed by 3 max-pooling layers of size (2, 2), a flatten layer, 3 dense
layers of sizes 128, 64, and 1, respectively, and 2 dropout layers with a rate of 0.5. The
input shape of the ComplexModel is also (91, 53, 3).

In all three models, the first layer is a convolutional layer that applies filters to the
input droplet images, extracting features such as edges and patterns. The max-pooling layer
then reduces the spatial size of the feature maps, reducing the number of parameters in the
model to prevent overfitting. The flatten layer reshapes the output of the convolutional
layer into a 1D array, which is then passed to the dense layers that perform the regression
task. The dropout layer is used to randomly drop some of the neurons during training,
preventing overfitting and improving the generalization performance of the model. The
different architectures are shown in Figure 5.

Figure 5. CNN models’ architectures.

The models were trained on 100 epochs, with an early stopping introduced to monitor
the validity loss with a patience of 15 epochs. The training and loss curves are presented
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in Figure 6. We can notice that the curve for the SimpleModel decreases slowly initially
but then stops improving at the later epochs. For the DeepModel, the curve decreases
rapidly over the initial epochs as the model begins to learn the patterns in the data, and it
continues to decrease at a slower rate during the remaining training epochs. The validation
curve generally follows a similar trend to the training loss curve with some very small
fluctuations. The ComplexModel curve is similar to the Deepmodel curve with a slower
learning rate and with higher fluctuations on the validation curve.

Figure 6. CNN models’ loss curves.

The performance of each model was evaluated using the metrics presented in
Section 2.3.5. The results are presented in Table 4. The first model, the SimpleModel,
did not perform well, with an MSE score of 0.1798 and R2 score 0.6867 on the testing
set. This suggests that the architecture was not complex enough to accurately capture
the features and patterns in the droplet images that are relevant to predicting viscosity.
The second model, the DeepModel, performed significantly better than the SimpleModel,
with an MSE score of 0.0243 and R2 score of 0.9576 on the dataset. The architecture of the
DeepModel, with its additional convolutional and max-pooling layers, was able to extract
more relevant features from the droplet images and significantly improve the accuracy of
the viscosity predictions. The third model, the ComplexModel, also performed reasonably
well with an MSE score of 0.0400 and R2 score 0.9302 on the testing set, but not as well as
the DeepModel. This indicates that adding more convolutional and max-pooling layers
beyond a certain point does not necessarily improve the performance of the model and
may lead to overfitting. These results demonstrate the importance of the architecture of
CNN models for accurately estimating viscosity from droplet images. The DeepModel
architecture was found to be the most effective for this task, suggesting that for a similar
task a moderate level of complexity is optimal for capturing the relevant features in the
images.

The DeepModel results indicate that the model is both robust and capable of gener-
alization, as it was able to accurately estimate the viscosity values of new, unseen images
that were not used during training. Most importantly, the model was able to predict the
viscosity of the testing set images of water–PVP formulations that it had not been previously
exposed to or trained on. The viscosity values predicted by the DeepModel on the testing
set, which consists of droplet images of the formulations PVP07.5, PVP27.5, and PVP42.5
with the measured viscosity values of 1.084, 2.102, and 2.931, respectively, are presented in
Figure 7. The figure shows that the majority of the predicted viscosity values are very close
to the measured viscosity values of the solution, except for few cases, which may be due
to outliers.

The high accuracy the DeepModel achieved on the test set suggests that the model is
not only able to learn from the training data but also capture the underlying patterns in
the samples that can generalize well to new, similar chemical formulations. Moreover, the
accuracy values achieved on both the training and validation sets indicate that the model is
not overfitting to the training data but rather effectively generalizing to new data.

Our findings suggest that CNNs offer an advantage in that they can learn and identify
patterns in a dataset without prior knowledge of the underlying physical laws governing
the behavior of liquids. Specifically, our DeepModel trained on water and PVP solutions
can accurately predict the viscosity of liquids with the same composition. However, we
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acknowledge that this approach is limited to the specific composition used in the training
dataset and cannot be generalized to other types of liquids or polymers.

That being said, we believe that this method has potential applications in scenarios
where real-time monitoring of liquid viscosity is required. While we do not propose it as
a replacement for traditional viscometers, it can serve as a cost-effective alternative for
certain use cases. Additionally, the calibration process is simple and can be completed in a
matter of hours with only a few solutions required.

Table 4. Results of the different models on the training, validation, and testing sets. The best-
performing model is marked with *.

SimpleModel DeepModel * ComplexModel

Results on the training set

MSE 0.1297 0.0144 0.0185
MAE 0.3010 0.0906 0.1092

R2 0.8328 0.9813 0.9761

Results on the validation set

MSE 0.1530 0.0142 0.0223
MAE 0.3215 0.0903 0.1186

R2 0.8174 0.9829 0.9733

Results on the testing set

MSE 0.1798 0.0243 0.0400
MAE 0.3633 0.0971 0.1504

R2 0.6867 0.9576 0.9302

Figure 7. Predicted vs. actual viscosity values of DeepModel on testing set.

4. Conclusions

In this study, we have presented a novel approach for estimating the viscosity values
of different water–PVP solutions using a convolutional neural network model trained on
images of droplets. Our approach is based on the idea that the characteristics of the droplets
can provide useful information about their viscosity, and we have demonstrated that a
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CNN model can effectively learn this relationship and accurately predict the corresponding
viscosity values. Fourteen distinct samples were prepared using different water–PVP
ratios, their viscosity values were measured using a viscometer, and their droplets were
captured on video using a high-quality monochrome camera. The videos were used to
extract images of the droplets just before their detachment. We divided our fourteen
chemical formulations into training and testing sets, and we kept all the images from three
formulations for testing. We then selected three models with different architectures and
evaluated their performance using their mean squared error (MSE), mean absolute error
(MAE), and R2 scores. The results indicated that the DeepModel architecture was the most
effective, achieving low MSE scores of 0.0144, 0.0142, and 0.0243 on the training, validation,
and testing sets, respectively, and R2 scores of 0.9813, 0.9829, and 0.9576 on the same sets,
respectively. These values indicate that the model can accurately estimate the viscosity of
new, unseen samples of similar chemical formulations, demonstrating its robustness and
generalization capability. This method has potential applications in scenarios where real-
time monitoring of liquid viscosity is required. it can serve as a cost-effective alternative
for certain use cases, especially since its calibration process is simple and can be completed
in a matter of hours with only a few solutions required. Specifically, our proposed model
trained on water and PVP solutions can accurately estimate the viscosity of liquids with
the same composition.

Overall, the results of this study demonstrate the potential of machine learning tech-
niques, particularly CNN models, in solving complex problems in experimental sciences.
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